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An iterative method is applied to the search for stable and metastable orders in rigid-lattice
models of fcc ortho-H, with various amounts of quadrupole-quadrupole coupling: unshielded
coupling between all molecules, shielded coupling beyond first-neighbor molecules, and cou-
pling between first neighbors or first and second neighbors only. The model with nearest-
neighbor couplings gives results that are decidedly different from the others in that the order
with space group Pa3 becomes less stable than one with space group P4,/mnm as T rises, and in
the very small difference in the free energies of the stable order and three metastable orders.
The P4,/mnm order is probably without physical significance, since it is destabilized when the
model contains any physically reasonable amount of coupling between farther neighbors. The
existence of complicated metastable phases with relatively low free energy persists in all
models, and suggests that theoretical methods for the study of ortho~H,; may be inadequate if
they place too great a dependence on the assumption of Pa3 order, particularly in the treat-
ment of the model with only first-neighbor coupling, or of the order-disorder transition in

any model.

I. INTRODUCTION

The orientational ordering of nearly spherical
molecules in crystals by multipole-multipole elec-
trostatic interactions offers a problem of surpris-
ing complexity. In the case of H,, the electric
quadrupole terms in the orientational coupling are
much larger than the contributions of valence and
van der Waals interactions, ! and exploratory cal-
culations with rigid-lattice models commonly take
account only of the quadrupole-quadrupole (QQ)
coupling. The orientational ordering of cubic and
hexagonal arrays of quadrupoles under their mutu-
al interactions has been extensively studied from
the classical point of view. =5 A quantum theory
of solid ortho-H, or para-D,, using a rigid-lattice
model and the internal-field approximation, 8.7
shows that classical results are easily translated
into quantum-theoretical results for these sys-
tems. The ground-state wave function is

V=11, ¥y,0(5), (1)

where Y, 4 is the normalized surface harmonic and
€, stands for the spherical angles 6;, ¢;, defined
for each molecule ¢ with respect to a polar axis in
the equilibrium direction for the corresponding
molecule in the classical model. Because of the
libration of the molecules about their equilibrium
orientations, the contribution of the QQ coupling
to the average energy in the quantum model is less
than that in the corresponding classical model by
just a factor of &. It follows that classical and
quantum treatments of a rigid-lattice model of
ortho-H; will predict the same orientational order

2

for the crystal at 7=0°K. At higher 7, however,
quantum effects may be dominant, and a quantum-
statistical treatment of ortho-H, is essential.

In the case of fcc ortho-H,, which is stable at
the lowest temperatures, the orientational order
predicted for T=0 °K has the molecules librating
about equilibrium directions along the threefold
axes of the lattice. This order, illustrated in Fig.
1(a), has the space group Pa3. This structure
has been supported by neutron-diffraction studies ®
of the equivalent para-D, (83% pure) at 1.9 °K,
but difficulties in understanding the Raman® and
far-infrared '* spectra of H, and D, at about 1.6 °K
have led Hardy, Silvera, and McTague to suggest®
that the actual point group may not be Pa3, but a
less symmetrical one such as R3. This is not ex-
cluded by the theoretical studies mentioned above,
which have shown merely that, for a rigid-lattice
model and in the internal-field approximation, the
Pa3 structure is self-consistent at all 7, that it
is the most stable structure at 77=0 °K, and that
it is more stable than orientational disorder for
T up to a transition temperature T,that is 6.85T/k
for a model with only next-neighbor interactions,
and 7. 65T/k for a model that includes unshielded
QQ interactions between all pairs of molecules.
(Here T is the usual coupling constant 6Q2/25R® for
nearest neighbors.) The problem has therefore
been reexamined, using an iterative numerical pro-
cedure developed in the study of hcp ortho-H;, where
it proved to be a powerful means for identifying
complex stable or metastable orientational orders.™

The new study showed immediately that a model

2213



HUBERT M. JAMES

|

2214
8! 4 3 3
\\ —
\\\ 5 /////
4 8 3 1T \\\3
¢ —ef®-
2 8 4772 >
3 7 /4 8
6 7 \\\ 2 _ ///
4 8
7750 | /7
— ~N
z //// \\
8 4 = “al
4 4 7 7
y (a) (c)
X
FIG. 1. (a) Equilibrium orientations of molecules in Pa3 order; sublattice numbering for 4 sc sublattices. (b) Equi-

librium orientations of molecules in P4,/mnm order; sublattice numbering for 8 fcc sublattices.

(c) Equilibrium orien-

tations of molecules in I4;/acd order; sublattice numbering for 8 tetragonal sublattices.

of fcc ortho-H, with only nearest-neighbor QQ cou-
pling does exhibit another orientational ordering of
the molecules, shown in Fig. 1(b), with point group
P4,/mnm. This is more stable than the Pa3 order
for T >5.6T/k, and is metastable at lowest 7. In
addition, the model can assume two other orienta-
tional orderings of comparable stability over nearly
the whole range of 7'<T,, and there are indications
of still other metastable orderings with higher free
energy. These results may in part reflect the spe-
cial characteristics of the internal-field approxima-
tion, but their nature and complexity suggests that
the true behavior of a model with nearest-neighbor
coupling may be less simple than has hitherto been
anticipated; they also raise questions concerning
the adequacy of other approximate treatments of
this model, such as libron theory, when these start
from the assumption of Pa3 order.

Inclusion in the model of QQ couplings between
molecules beyond nearest neighbors tends to de-
stabilize the other orders with respect to the Pa3
order. These results, which have been briefly de-
scribed and discussed elsewhere, 2 suggest that a
model with farther-neighbor QQ couplings may show
a behavior that is both more realistic and simpler
than that of the model with only nearest-neighbor
couplings.

From another point of view, the results illus-
trate the potential usefulness of a careful examina-
tion of self-consistent solutions of the internal-
field problem, even when they do not correspond to
stable phases of the system. The multiplicity of
stable and metastable self-consistent orderings
of the molecules, and the sensitivity of the results

to the couplings included in the model, provide a
reasonable basis for judgment as to what couplings
must be included in a model that is to be studied in
detail by more powerful methods.

This paper begins with a brief general descrip-
tion of the iterative method for solution of the ef-
fective-field problem, with some emphasis on the
significance of metastable self-consistent orienta-
tional orders. Sections III and IV give detailed in-
formation about the calculations on fcc ortho-H,.
Section V presents selected numerical results
that appear to be sufficient for most purposes. Full
numerical data on the several orders found in the
various models, at all T, are too bulky for publica-
tion here; further information on specific points
will be provided on request to the author. Section
VI concludes the paper with comments on the phys-
ical significance of the results and their apparent
implication of possible inadequacy of the model
with only nearest-neighbor coupling.

II. ITERATIVE PROCEDURE

The internal-field approximation involves both
wave-mechanical and statistical approximations.
One assumes that the orientational couplings act-
ing on each molecule ¢ can be represented by an
average orientational potential energy U* (8_2;), from
which one can derive the orientational wave func-
tions ¢’ (Q:) and the orientational energies ef, for
that molecule. In treating solid ortho-H, it is cus-
tomary and usually sufficient to restrict attention
to zero-order solutions of this problem with J=1;
then u runs over only three values, and
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PL (B = ¥y0(0h), (2)

where efL is the angle between the molecular axis
and the symmetry axis of the function ZPL. From
the functions ¥ one can construct a basis set of
orientational wave functions for the crystal,

¥ =1L ll)ii (). (3)

The assumed independence of the molecules, sub-
ject only to the average potential energy of their
interaction, implies that the probability of occur-
rence of state ¥(u}is a product of single-mole-
cule probabilities,

P(ulznipi{’ (4)

where
PJ{:eXp(—Bef“.)/Zuexp (—Bezi), (5)

More precisely, one adds the assumption of ran-
dom phases, assuming that the density matrix in
terms of the basis ¥ ,; is diagonal, with its diag-
onal elements given by Eq. (5). On this assump-
tion, one can calculate the average energy of in-
teraction between each molecule ¢, with orienta-
tion fﬁ, and all other molecules in the crystal. If
these energies are identical with the original

Ut (&-2.;), this internal-field description of the crys-
tal will be termed self-consistent.

Iterative procedures are commonly applied in
the search for self-consistent descriptions of sys-
tems. In the present context, it is natural to di-
vide the molecular lattice into sublattices, treat-
ing all molecules on each sublattice as equivalent.
A calculation at given T can begin with arbitrarily
chosen €, and 9! for the molecules on each sub-
lattice. One can compute ! (by high-speed com-
puter) the corresponding U’ for some chosen sub-
lattice, and from this in turn derive new choices
for the € and y for that sublattice. One canthen
go on to treat the other sublattices similarly, one
after another, over and over, using at each step a
newly computed field to derive a new orientational
distribution, which is in turn used to derive a new
field. If the process eventually converges, it will
have determined a self-consistent orientational
distribution for all molecules.® Any self-consis-
tent distribution will be termed an order.

The order produced by a convergent iterative
process will, in general, depend on the chosen
sublattice structure and on the starting conditions.
If the starting conditions possess some element of
symmetry that is maintained throughout the cal-
culation, one may arrive at an order from which
the iterative process would otherwise diverge. In
other cases, convergence of the process on a par-
ticular order may occur only because of restric-
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tions implied by the chosen sublattice structure.
An order will be termed unstable unless it can be
approached by the iterative procedure from any
sufficiently nearby distribution of whatever sym-
metry, in every sublattice structure in which it
can be described. It seems unlikely that unstable
orders have physical significance or much formal
interest. ** All orders described in this paper have
passed tests for stability to small randomly chosen
distortions in sublattice structures that would per-
mit their disappearance if they were unstable.
While a limited number of tests of this sort can not
be conclusive, it seems unlikely that any of these
orders are unstable.

The orientational free energy F of any self-con-
sistent order is an extremal with respect to varia-
tions of the y within the manifold J=1, and an
absolute minimum with respect to choice of the
P(,, subject to Eq. (4).” It is easily seen that, if
the crystal model includes no interactions between
molecules on the same sublattice, the F associated
with successive orientational distributions in the
iterative process will never increase !°; it thus
approaches the F of the final order monotonely
from above. Couplings within a single sublattice
cause only minor deviations from monotone con-
vergence. Since F is an extremal for the final or-
der, it approaches its limiting value much more
rapidly than does the orientational distribution. In
the computer output one can recognize the emer-
gence of a familiar orientational order throughthe
approach of the calculated F to the corresponding
limit when the order is still undiscernible in a
tabulation of mean molecular orientations.

The computed F for any order at any T is an
upper limit on the exact orientational free energy

F=-kTInZ (6)

of the model at that temperature, Z being the ex-
act partition sum. The order with lowest F pro-
vides the best upper limit on F, and presumably
the best available description of the behavior of

the model, subject to the approximations employed.
This order will be called the stable order (for the
given T'); the orders with higher F that are not
unstable will be called metastable. Whether they
correspond to what one might call metastable
phases of the model is arguable. If one carries
out a series of iterative calculations at successive-
ly lower (or higher) T, using the final result of
one calculation as the starting point for the next,
one can follow an order that is stable in one range
of T into a temperature range in which it is only
metastable, much as one can extend observations
of the properties of liquids into temperature ranges
in which they are supercooled (or superheated).

At any rate, it seems clear that metastable orders
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with F near that of the stable order deserve atten-
tion in the further development of the theory.

III. SUBLATTICES USED IN CALCULATIONS ON
fcc ORTHO-H,

In studying fcc ortho-H,, the molecular lattice
was divided into sublattices in ten different ways.
The first four sublattice structures are most
easily described using coordinate axes parallel to
the edges of the unit cube. Table I gives for each
of four cases the primitive vectors that define the
relative positions of molecules of a single sublat-
tice. The relations of the sublattices to each other

are indicated for the first three cases by Figs .
1(a)-1(c), respectively. These show the position
of at least one molecule of each sublattice, except
that one must understand that in Fig. 1(c) the mol-
ecules of sublattice 6 lie above molecules of sub-
lattice 2 by the length a of the cube edge, as dothe
molecules of sublattice 8 above those of sublattice
4. This specification of the relations between the
numbered sublattices is essential for a full under-
standing of the orders indicated by Table V. Since
all orders to be dealt with here can be described
in terms of these three sublattice structures, it is
not necessary to indicate the way in which the sub-
lattices were numbered in the other cases.

Examination of the sublattices in the first two
cases will show that every molecule is at a center
of inversion for every sublattice. It follows that
every order that can be described in terms of these
two sublattice structures must have every molecule
at a center of inversion. This is not true of most
of the other sublattice structures, and the mole-
cules in the I4,/acd order illustrated in Fig. 1(c)
are not at centers of inversion. This is the only
such order encountered in the present work.

The other sublattice structures were chosen to
permit representation of any periodicity that might
arise from the ..-ABCABC- .. repetition of close-
packed planes in the fcc lattice. They are de-
scribed in Table I in terms of primed coordinates
such that the (x’, ¥’) plane is a close-packed plane.
Each of these sublattices is made up of molecules
from every third close-packed plane — all of them
in the “layered” hexagonal structure, and one-
fourth of them in the other cases. In two cases
the unit cell can be taken to be right hexagonal and
right orthorhombic prisms, respectively; with the
other sublattices these prisms are sheared paral-
lel to the close-packed planes. Calculations with
these sublattice structures indicated the existence
of self-consistent molecular orderings quite differ-
ent from those discussed in this paper, but with
free energies so high that they were not examined
carefully. As concerns the more stable orders,
these calculations confirmed the results obtained
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with other sublattice structures, but added nothing
new.

Convergence of the iterative process is slower
the larger the number of sublattices. In planning
the work it seemed safer to program the calcula-
tions for a variety of relatively simple sublattice
structures than to attempt to devise any single sub-
lattice structure that would afford all the desired
flexibility. In retrospect, it is evident that all the
essential results could have been attained relatively
easily by use of the one division of the lattice into
32 simple cubic (sc) sublattices, except for some
loss of confidence that all important possibilities had
been explored.

IV. LATTICE SUMS USED IN CALCULATIONS

The calculations followed the basic pattern indi-
cated in Ref. 11, using the lattice sums D(,J;p)
defined in and below Eq. (10) of that paper. Equiv-
alences in the relations between sublattices make
it sufficient to compute the sums D(1,J;p), which
will here be written as

DJ,m)= 2, I';P, ,(cosf;)cosm ;,
ITEa) (7)
DyJ,m)= 25 T;P, ,(cosb,;)sinme,.
EIE)
A molecule of sublattice 1 is taken as the origin,
and the sums are carried over molecules j on sub-
lattice J, out to some distance R from the origin.
The spherical coordinates 7 ;, 6;, and ¢, define the
position of molecule j with respect to the usual
coordinate axes parallel to the cube edges, and

T, =T(d/7;)°. (8)

The basic sums needed in calculations with 8
fcc sublattices are given in Table II; simple con-
siderations of symmetry of the sublattices and of
the surface harmonics show that all nonzero D’s
differ from the D’s in that table by, at most, an
easily determined sign. Values of the sums are
given for R =d (nearest neighbors only), R =v2d
(first and second neighbors), and for R =40d. In-
spection of the convergence of the sums as R in-
creases shows that the values for R =40d differ
from sums extended over the whole lattice by no
more than a few units in the last place given. The
independently computed sums can be checked by
the following relations. The fact that the quadru-
poles on sublattice 1 will have the same interac-
tion energy, whether they are all directed along
the x axis or along the z axis, can easily be seen
to imply that

D1,4)=120D (1, 0). (9)
Similarly, one finds

D(5,4) =120 D5, 0), (10)
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TABLE I. Primitive vectors for sublattices used in calculations on fcc ortho-Hj,.
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The type and number of similar

sublattices is given for each case. x , y , 2z denote components parallel to the cube edges of the fcc lattice;
x’, ', z' denote components in a coordinate system in which the (x’, ¥’) planeisa close-packed plane and the x’ axis

is directed from one molecule toward a nearest neighbor, as in Fig. 2, Ref. 7.

separation of nearest neighbors.

a is the cube edge and d=a/+2, the

Sublattices Primitive vectors for sublattice
Type Number
&,y,2)

sc 4 (a, 0, 0) 0, a, 0) (0,0,a)

fce 8 0,a,a) (a,a,0) (a, 0,a)

Tetragonal 8 (a, 0, 0) 0, a,0) (0, 0, 2a)

sc 32 (2a, 0, 0) (0, 2a, 0) (0, 0, 2a)

&', 9, 2’)

Hexagonal (layered) 3 , 0, 0) (3d,%V3d, 0) (0, 0,¥6d)

Hexagonal 12 (2d, 0, 0) (d,V3d, 0) (0, 0,V6d)

Orthorhombic 12 (24, 0, 0) (0,v3d, 0) (0, 0,V64)

Triclinic (tilted hex.) 12 (2d, 0, 0) (0,34, 0) (d, 0, V6d)

Monoclinic (tilted ortho.) 12 (2d, 0, 0) 0,V3d, 0) (d, 0,Y/6d)

Triclinic (tilted ortho.) 12 (2d, 0, 0) (0,3d, 0) (3d,%V3d,/6d)
192 D (2, 0)="72 D (4, 0) +D.(4, 4), (11) D1,m)+4D(2,m)+2D 4, m)+D (5, m)

=32D,(1,m) (all m). (14)

120 D,(2,0) + 8 D (2, 2)- D.(2,4) =0, (12)

72 D,(2,0)+8 D (2, 2) +D(2,4) =192 D.(4,0). (13)

The above relations follow from rotational sym-
metries of the arrays and are valid for all choices
of R. The fact that sublattice 1 differs from the
entire lattice by a scale factor of 2 implies that,

for R=o,

-~

TABLE II. D(J, m)/T [see Eq. (2)], evaluated for the
8 fcc sublattices defined by Table I and Fig. 1(b). Here
dy, dy, d,give the displacement of a molecule on sub-
lattice J from the corresponding molecule on sublattice
1. The range R of the summations is indicated above the
entries in columns 5-7.

x  J dy,dy,d, m R=d R=+2d R=40d
c 1 0 0.0 0.0 —0.041574
c 1 0,00 0.0 0.0 ~4.9889
¢ 2 0 -0.8125 —0.8125 —0.829082
c 2 1 -1.25 -1.25 —1.407329
c 2 ~3%a,0,3a 2 18.75 18.75 18.56797
¢ 2 3 ~52.5 -52.5 —-59.1078
¢ 2 4 52.5 52.5 49.0539

c 4 0 0.75 0.75 0.718249
s 4 sa,%a,0 2 ~15.0 -15.0 —16.88795
c 4 4 -210.0 -210.0 ~210.8976

c 5 0.0 0 0.0 0.618718 0.591036
c 5 i 4 0.0 74.246212 70.9244

This relation is satisfied by the sums for R =40d
to within the estimated difference between these
and the infinite sums.

Table II shows that second-neighbor interac-
tions couple in pairs the sublattices related to each
other like sublattices 1 and 5. Interactions of
more widely separated molecules do not change
the couplings between sublattices in any striking
way, but they do introduce terms in the energy that
depend only on the orientations of molecules on a
single sublattice.

The basic sums needed in calculations with eight
tetragonal lattices are given in Table III, and those
needed in calculations with four sc sublattices are
given in Table IV. Entries in Table IV can be de-
rived from those in Table II, plus symmetry re-
lations, by noting that fcc sublattices J and J +4
together make up sc sublattice J; they are also
easily derived from the entries in Table III.

By making appropriate linear combinations of
the columns in Tables II-IV one can obtain the
sums needed in the treatment of models of ortho-
H, in which different shielding factors are applied
to first-neighbor interactions, second-neighbor
interactions, and interactions of more widely sep-
arated pairs.

In calculations with other sublattice structures,
only first- and second-neighbor interactions were
included. Calculation of the sums is trivial, and
the values will not be reproduced here.
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TABLE IIl. D,(J, m)/T, evaluated for the 8 te-
tragonal sublattice structure. Definitions as in Table II.

J  dy,d,,d, m R=d R=12d R=40d
1 o0 O 0 0.265165  0.337765
1 4 0 74.246212  62.6318
2 0 —0.8125  —0.8125  —0.829082
2 ~%a,0,%a 2 18.175 18.75 18.56797
2 4 52,5 52.5 49. 0539
3 0 0 0 —-0.134594
3 la,la,q 4 0 0 4.9073
5 00 0 0 0.353553  0.211697
5 5%y 0 0 3.3037
T oya,0 © 1.5 1.5 1.571092
7 2HZHT 4 _420.0 —420,0 —416.8879
V. RESULTS

The special virtue of the iterative method is the
relative freedom it offers from initial assumptions
about the orders that are to be dealt with. The
more complex, and thus more flexible, sublattice
structures were used primarily in a searchfor new
orders by iterations starting from random molecu-
lar orientations and in testing known orders for
stability. Nearly 300 runs from random starting
conditions were made in all for the various sub-
lattice structures and coupling assumptions. After
stable or metastable orders were identified, their
properties at various T were determined by runs
from symmetrized starting conditions in the sim-
plest possible sublattice structure.

The symmetries of the stable and metastable or-
ders found in this work can be understood by exam-
ining Table V, which gives (for one particular 7)
the direction cosines of the symmetry axes of the
ground and excited orientational states of the mol-
ecules on each sublattice, in the simplest available
sublattice structure. !® The orientational eigenval-
ues € are also given for each of these states. In-
equivalences of the molecules on the different sub-
lattices are evident as inequalities of correspond-
ing €’s. Axial symmetry of the effective field for
any sublattice is evident in equality of two of the
€’s; when this occurs the corresponding direction
cosines are not uniquely determined. Figures
1(a)-1(c) show the most probable orientations of
molecules in the ground state for the three sim-
plest orders. In these cases the direction cosines
are independent of T; in all other cases they change
as T changes.

A. Model with Only Nearest-Neighbor Couplings

Comments on the course of the search for new
orders will be restricted to the case of coupling
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between nearest neighbors only. It was known that
the cubic Pa3 order was stable with respect to ori-
entational disorder below 27/I'=6.85. Search

for a new order was begun near the upper end of
this range, where orders with high entropy would
be most likely to be stable. With four sc sublat-
tices, 24 out of 28 trials with 27/T" ranging from
6.0 to 7.1 led to the tetragonal P4,/mnm order,
which is the stable order throughout this range.
With 12 hexagonal sublattices, 14 trials at kT/T"
=6.0 led to the metastable Pa3 order 10 times, and
to the stable P4,/mnm order only 4 times; in this
sublattice structure the P4,/mnm order seems to
“nucleate” from a relatively small range of initial
conditions. For k7T/T between 6. 85 and 7. 15,
where the Pa3 order is less stable than orientation-
al disorder but the P4,/mnm order is not, all runs
led to the P4,/mnm order. Twenty-four runs at
RT/T equal to 6.0 or 7.0, using the 12 orthorhombic
sublattices in terms of which the Pa3 order can not
be described, led only to the P4,/mnm order.
Thirty-five runs with the 3 “tilted” sublattice struc-
tures led only to the P4,/mnm order or to complex
orders with free energies so high that they were
not studied further. Attention was then shifted to
lower T, runs being made at 27/T" equal to 3.0 or
4.0. Here new metastable orders appeared. In10
runs using 8 fcc sublattices the stable Pa3 order
appeared twice, the P4,/mnm order appeared twice,
a new monoclinic P2,/b order appeared three times,
and a new tetragonal I4/mcm order appeared three
times. With 32 sc sublattices the corresponding
frequencies of occurrence in 13 runs were 3, 2, 5,
and 3. With 8 tetragonal sublattices, in terms of
which one can not describe the P2,/b and I4/mcm
orders, in 10 runs the Pa3 and P4,/mnm orders
each appeared 5 times. An order with space group
14,/acd, which had been found to be metastable in
models with all molecules coupled, was found to

be unstable when only nearest-neighbor couplings
are included.

TABLE IV. D (J,m)/T, evaluated for the 4 sc sublattice
structure. Definitions as in Table II

J m R=d R=v2d R=40d
1 0 0.0 0.618718 0.549462
1 4 0.0 74.246 212 65.9355

2 0 -1.625 -1.625 —1.658164
2 2 37.5 37.5 37.13594
2 4 105.0 105.0 98.1078

3 0 -1.625 —-1.625 —1.658164
3 2 -37.5 -37.5 —-37.13594
3 4 105.0 105.0 98.1078

4 0 1.5 1.5 1.436 498
4 4 —420.0 —420.0 —421.7952
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TABLE V. (continued)

c2/m(C3,)
__All interactions; 8 fcc sublattices

Yes

Vy3

Ye3

€3/T
7.774

Ye2
8.083

Yy2

Yx2
0.6390
0.5475

0.0

Ez/r
3.717
3.895
5.221
4.857
3.717
3.895

Yzt

F/NT  Sublattice €1/T Va1 Vot

S/Nk

BT/T U/NT

0.4660

—0.5616

0.6837
0.6894
0.4002
0.4916
0.6837
0.6894

-0.0105

0.7691
~0.7564

0.8847
0.6120
- 0.4002

0.3049
0.6328

3 =11.490 -0.3525
4 -11.978
5 -=13.844
6 —12.978

7
8

0.1653 —=0.7052

0.0
0.0

0.3579
0.0
-~ 0.4916
—0.0105

0.4743
0.9164
0.0

0.9164
0.8708
0.4660

8.623
8.121
7.774
8.083

1.

0.0

0.0
-0.7691

0.8708
0.6390
0.5475

0.0

0

0.5616
—0.1653 —0.7052

0.8847
0.6120

—11.490 -0.3525 -0.3049

0.3579

0.7564

0.4743 —0.6328

-11.978

)

1
i

PI(C

First-and second-neighbor interactions; § fcc sublattices

3.0

0.5122
0.6522
0.4996

0.5153
—-0.7541
-~0.4724

6.015 —0.6867

—0.2376

0.8534
0.6539
0.8123
-0.7722

5.172  0.4632

0.8253
—0.0470

0.5580 —0.0742

0.9970

-~11.187
2 - 9.638

1
3
4

0.5920 —5.7050

-5.5273

0.0774
0.7261
0.6917
0.3584
0.4425
0.8023

5.258
7.253

8.878

0.7566
-0.0730

4.380 -—0.0048

3.930
2.662

0.0616
0.3421
0.6212
0.0169
0.9999

0.5787
0.5215

0.8632
0.6038
—-0.3841
—0.0083

—-11.183 =0.3713

-11.540

5 =12.507
6 —11.652
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0.1335 -0.7097

0.3630
—0.2928
—0.4425
-0.0278

0.4996
0.9231
0.0049

0.8755
0.8967
0.4352

0.3238
0. 0053

0.4085
—0.1454 —0.6790

7.446
7.950
8.324
8.247

0.9459
—0.0080
—-0.8846

5.061 -0.1391

0.8967

3.702

0.4655
0.5026

2.942

2,403

—11.266 —0.3736 —0.2249 0.8999
0.6370

8 =10.650

7

0.7196

0.3649

0.7837

0.4791 -0.6039
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Table VI gives, for the Pa3 and P4,/mnm orders
of this model, the full values of U and S per mole-
cule and the change AF in the free energy due to
the orientational coupling. The free energies of
the two orders become equal when 27/I'=5. 6, and
the transition from Pa3 to P4,/mnm order with ris-
ing T occurs with latent heat 0. 245N, The tran-
sition from P4,/mnm order to orientational disorder
occurs at RT/T"="7.15 with latent heat ~0. 20NT.

Figure 2 shows the difference between the free
energies of the various orders (including complete
orientational disorder) and that of the Pa3 order,
as a function of 7. Plots of the free energies of
the several orders would resemble Fig. 3, except
that the curves would be much more closely spaced.
Since the base line corresponds to the free energy
of the Pa3 order, the P4,/mnm order becomes sta-
ble where the corresponding curve dips below the
base line; it ceases to be stable when that curve
intersects the curve for the disordered phase.

Both Pa3 and P4,/mnm order appear to be metasta-
ble at temperatures somewhat above that at which
they become less stable than disorder, but no at-
tempt has been made to determine their range of
metastability. The range of metastability of the
P2,/b and I4/mcm phases is indicated (approxi-
mately) by the extent of the corresponding curves.
One point in Fig. 2 gives the calculated free ener-
gy for the unstable I4,/acd order.

To understand the scale of Fig. 2, one should
remember that the computed value of I for the
rigid-lattice model, without correction for dielec-
tric shielding and other effects, is about 0.7 cm™!
or 1.0k for H,, and 0.84 cm™ or 1. 2% for D,. The
effective values appear to be reduced by roughly
20% by factors not considered here.!” The horizon-
tal scale is thus, roughly, temperature in degrees
absolute, and extends far above the observed tran-
sition temperatures, which are 2.9 °K for H, and
3.9 °K for D,.!® On the vertical scale, one unit
corresponds to about one-fourteenth of the heat of
fusion per molecule of solid H, at 13.8 °K, about
one-hundredth of the cohesive energy per molecule
of solid H,, and about one-twelfth of the computed
energy of excitation of a libron.!® The free ener-
gies per molecule of the four stable and metastable
orders thus lie in a range that is about 4y of the
libron excitation energy.

B. Model with All Molecules Coupled

Figure 4 shows F-F(Pa3) for the metastable or-
ders of the rigid-lattice model when unshielded
QQ interactions between all molecules are included.
In the presence of farther-neighbor interactions
the P4,/mnn order is not even metastable, and there
is no corresponding curve in Fig. 4. The free en-
ergy of the matastable P2,/b order is raised rela-



2 SEARCH FOR STABLE ORIENTATIONAL ORDERS ... 2221

TABLE VI. Contributions of orientational couplings to U, S, and F for Pa3 and P4,/mnm orders, in a model with

nearest-neighbor QQ couplings only.
Pa3 P4y/mam

rT/T U/NT S/NE AF/NT U/NT S/Nk AF/NT
2.0 ~6.3305 0.0016 —4.1364 —6.2441 0.0033 —4.0535
3.0 ~6.2639 0.0268 —3.0483 —-6.1524 0.0383 —-2.9713
4.0 —5.,9684 0.1096 -2.0122 - 5.8063 0.1355 —1.9538
5.0 -~ 5.2635 0.2648 —-1.0944 —-5.0424 0.3039 -1.0689
5.5 —4.,6943 0.3730 -0.7036 —4.4502 0.4165 —0.6988
6.0 - 3.9237 0.5068 -0.3730 — 3.6748 0.5512 —0.3904
6.5 —2.8399 0.6799 -0.1181 -~ 2.6481 0.7153 —0.1562
6.7 —2.2358 0.7714 —-0.0432 - 2.1314 0.7935 -0.0872
6.85 —-1.5990 0.8653 -0.0007
7.0 -1.1297 0.9396 -0.0163
7.13 -0 .4454 1.0363 -0.0014

tive to that of the Pa3 order, but it remains meta-
stable to somewhat higher T than in the absence of
farther-neighbor coupling. Some elements of sym-
metry of the I4/mcm order are lost, and the space
group becomes C2/m; the free energy remains
about equal to that of the P2,/b order. There ap-
pears a new order with space group I4,/acd, with
four molecules per unit cell, which is metastable
until its free energy exceeds that of orientational dis-
order. (This order does not go continuously into
orientational disorder, despite the near tangency of
the corresponding curves in Fig. 4.)

C. Models with Intermediate Coupling of Farther-
Neighbor Molecules

The effect of farther-neighbor interactions in de-
stabilizing the P4,/mnm order was further explored

1.0 E
F-F(Pa3) 14,/acd
NT v
0.5 4
P2 i
y /b 14 /mem tDtsorder
=y,
0.0 0 20 30 4.0 50 8.0
kT
T
FIG. 2. Difference between the contribution of orien-

tational coupling to the free energy of other orders and to
that of the Pa3 order, as a function of T, for the model
with nearest-neighbor couplings only.

by calculations on models that include the full QQ
interactions between nearest neighbors, but have
interactions between other molecules reduced by a
constant factor f. The temperature T, of the tran-
sition to the disordered phase changes nearly lin-
early with f, rising from 6. 85I/%k to 7.65T/k for
the Pa3 order as f goes from 1 to 0 and falling from
7.15T/k to about 5. 86T/k for the P4,/mnm order.
These transition temperatures become equal for f

= 0.15. For larger f the P4,/mnm order is not sta-
ble at any 7'; it is metastable for f=0. 25, but not
for f=0.5.

D. Model with First- and Second-Neighbor Coupling

Calculations have been made to determine wheth-
er second-neighbor coupling can reasonably replace

10 20 30 40 50 60 70 80

14, /acd

FIG. 3. Difference AF between the orientational free
energy of the orders and that of the disordered phase, as
a function of T, for the model with QQ couplings between
first and second neighbors.
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1.5 . - . . T T .
1.0
F-F(Pa3)
NI

0.5

30 40 50 60 70
XT
r

0 1.0 2.0

FIG. 4. Difference between the orientational free energy
of the metastable orders and that of the stable Pa3 order,
as a function of 7', for the model with unshielded QQ cou-
plings between all molecules.

coupling to all farther neighbors. Table VII shows
that the effect of this simplification of the model
on the Pa3 order is not very large. At low T the
coupling energy is increased by about 1%, and%k7T,/T
is increased from 7. 65 to 7. '74. Comparison of
Figs. 4 and 5 shows that the relation of the meta-
stable I4,/acd order to the Pa3 order is little
changed, while the P2,/b order has its relative
free energy increased moderately. Some symme-
try elements of the C2/m order are lost (see Ta-
ble V) and the space group becomes P1, with only
the translational symmetry of the fcc lattice plus
inversion symmetry about each molecule.

VI. DISCUSSION

For all models of solid ortho-H, considered in
this paper there exist a number of metastable or-

)
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P2,/b

Disorder

<

1.0
F-F(Pa3)
NT

14,/acd
4

0.5

"

3.0

1.0 2.0 5.0 6.0 70

FIG. 5. Difference between the orientational free energ
of the metastable orders and that of the stable Pa3 order,
as a function of 7, for the model with QQ couplings be-
tween first and second neighbors.

ders with free energies relatively close to that of
the Pa3 order. The differences are of the same
order as the calculated perturbation of the ground-
state energy by terms neglected in the internal-
tield calculation.®

When only nearest-neighbor couplings are in-
cluded the free-energy differences are particularly
small. At 7=0°K the orientational free energy
is simply the orientational coupling energy; the
coupling energy per molecule is — 6. 33" for the
Pa3 order, — 6. 25T for the P4,/mnm order, — 6.06T
for the I4/mcm order, and — 6. 04T for the P2,/b
order. For T >5.6I/k the higher entropy of the
P4,/mnm order makes it the stable order, up to the

Contributions of orientational couplings to U, S, and F for the Pa3 order, in models with unshielded

TABLE VII.
QQ couplings between first and second neighbors, and between all molecules.
Between first and second neighbors Between all molecules

kT/T U/NT S/Nk AF/NT U/NT S/NE AF/NT
1.0 -17.1583 0.0000 —6.0597
2.0 -7.0687 0. 0006 —4.8726 -7.1574 0.0005 —4.9612
3.0 -7.0331 0.0139 -3.7790 -7.1244 0.0129 —3.8672
4.0 —6.8439 0.0668 —-2,7166 —6.9451 0.0629 —-2.8024
5.0 —6.3548 0.1744 -1.7337 - 6.4765 0.1660 —1.8136
6.0 —-5,.4174 0.3438 —0.8887 -5,5754 0.3289 -0.9571
6.5 —4,7153 0.4560 —0.5384 —4.9021 0.4365 —0.5983
7.0 —3.7834 0.5939 -0.2503 —-4,0159 0.5676 - 0.2989
7.5 —-2,4212 0.7813 -0.0415 -2.7676 0.739%4 —0.0738
7.65 —-1.7652 0.8679 0.0001 —-2.2374 0.8094 - 0.0250
7.75 -1.7636 0.8709 0.0010
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temperature at which orientational disorder takes
over. Inclusion in the model of any physically
reasonable amount of farther-neighbor interaction
(which is certainly more than 15% of the unshielded
QQ coupling) will destroy the stability of the P4,/mnm

order at any temperature and will considerably
increase the stability of the Pa3 order relative tc

all other orders discussed here. There is, there-
fore, no indication that the observations of Hardy
and his collaborators on the Raman and infrared
spectra can be explained in terms of the existence
at low T of a stable order other than the Pa3 or-
der.

This does not mean that the appearance of meta-
stable orders in these internal-field calculations
is not of some broader theoretical interest. It
seems likely that their existence will find expres-
sion in calculations carried out by more powerful
methods, particularly for temperatures at which
orientational order is showing a marked decrease.
A linearized libron theory based on the assumption
of Pa3 order may well be adequate for the discus-
sion of the optical properties of ortho-H, at very
low temperatures, but use of a nonlinear general-
ization of such a theory in discussing the order-
disorder transition, or even a situation in which
the average number of librons is N/10, would ap-
pear to be more questionable. Low-lying meta-
stable orders may also play an important role in
perturbation calculations of the effects of other
types of coupling between molecules.

One can expect a theoretical approach that ig-
nores the possible existence of large local devia-
tions from Pa3 order to yield results that are not
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sensitive to omission from the model of couplings
between molecules other than nearest neighbors,
since this is the case with the internal-field treat-
ment of the Pa3 order, considered alone. At the
same time, it seems quite possible that the results
obtained with more powerful and more accurate
methods of calculation will show a sensitivity to
the coupling assumption that is related to the change
in spacing of the metastable orders found in the in-
ternal-field treatment. In other words, it seems
possible that the model with only nearest-neighbor
couplings will, when treated more accurately, dis-
play anomalous and even unrealistic behavior that
is suppressed in treatments based on the assump-
tion of Pa3 order. Inclusion in the model of at
least the couplings between second-neighbor mole-
cules would appear to be a useful means of avoid-
ing possible anomalous behavior.

In their discussion of the ordering of classical
quadrupoles on an fcc lattice, with unshielded QQ
coupling between all molecules, Nagai and Naka-
mura? did not identify the metastable C2/m, P2,/b,
or I4,/acd orders reported here; they did note the
existence of the unstable P4,/mnm order as one that
makes the energy stationary, but they did not deter-
mine its energy. These omissions did not arise
from any fundamental limitation in their procedure,
but from its inconvenience for the exploration of
possible complex orders, and from the fact that
they were primarily interested in identifying the
order with lowest energy. It can only be hoped
that in the present work the examination of possi-
bilities has been so broad that none of practical
interest have been overlooked.

*Research supported in part by National Science Foun-
dation.
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Using the Adams-Gilbert local-orbital theory,

self-consistent local orbitals for the fce lithium halide crystals.

it has been possible to obtain approximate
In this formalism, terms

to first order in interatomic overlap are included. Nearest neighbors are considered ex-

actly in this formalism, and more distant neighbors in a point-ion model.
All relativistic effects are neglected in this cal-

Roothaan is used to obtain the solutions.
culation

I. INTRODUCTION

Because of the introduction of localized-orbital
theories by Adams, ! Gilbert,? and Anderson, *
self-consistent Hartree-Fock solutions for ground-
state wave functions of polyatomic systems have
become possible. The author has taken the theory
of Gilbert, expanded the environment in powers of
interatomic overlap, and retained terms to first
order in interatomic overlap.* This seems justified
for most ionic or insulating solids, since the over-
laps are typically of the order 0.1 or less.® In the

TABLE I. The values of Ay; and Z,; are given for

The method of

original paper by the author, self-consistent or-
bitals for the LiH crystal were reported. In the
present paper orbitals are obtained for LiF, LiCl,
LiBr, and Lil using the analytic Hartree-Fock
technique of Roothann® in a somewhat modified
form.

These localized orbitals, which the author ob-
tains for the ground state of the lithium halide crys-
tal, should prove very useful for band-structure
calculations. The preliminary results for LiCl
crystal have been used with great success by the
author in computing a band structure.” The author

the s levels of the Li*, F~,Cl~, Br~, and I~ ions.

Li’ F- C1™ Br~ I~
J Aaj 4 oj Aoj Z oj Aof 4 oj Aoj 4 oj Aoj 4 0j
1 0 2.69 0 10, 040 0 18.9832 0 37.3527 0 56,5239
2 0 4.00 0 8.3691 0 14,7941 1 33.1430 1 26.1681
3 0 2.00 0 5.5505 1 14,7181 2 17.2808 2 24,7445
4 1 4,9546 1 9. 6220 2 16,3407 2 12,7500
5 1 3.3675 1 6.7665 2 8.4198 3 10.0218
6 1 1.9804 2 6.2190 2 6.6235 3 5.2591
7 1 1.1869 2 3.2450 3 6.6182 3 3.3269
8 2 2,1679 3 3.4730 4 3.0142
9 2 1.3550 3 2,1970 4 2.2501
10 3 1.4859 4 1.4859
11 4 1.1889




