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A theory of one- and two-phonon-assisted reorientation rates of substitutional OH ions in al-
ka1i-halide crystals has been developed. We treat the case of reorientation of dipoles prefer-
ring (100) directions with a large static applied electric field in a (100) direction. We use un-
perturbed breathing shell-model phonons and a dipole-lattice Hamiltonian which incLudes both
one- and two-phonon operators and which is not limited in its validity to the long-wave limit.
The theory is applied primarily to OH in RbBr with good qualitative agreement with experi-
ment. In particular, we find an approximate T dependence of relaxation rate due to two-pho-
non Raman-type processes in the 5-10 'K temperature range, in agreement with experiment.
Our theory also agrees with experiment in its prediction that two-phonon reorientation process-
es will begin to dominate one-phonon processes above a temperature of about 4 K. In the
temperature range studied, those two-phonon reorientation rates produced by the one-phonon
operators in the dipole-lattice interaction Hamiltonian acting twice exceed by severa1 orders
of magnitude the two-phonon reorientation rates produced by the interaction Hamiltonian two-
phonon operators acting once. Similar results are found for OH in KBr and KC1.

I. INTRODUCTION

There have been several recent studies of the theory
of reorientation processes for paraelectric' and
paraelastic defects in ionic crystals. These
studies all have the feature of using a dipole-lattice
interaction Hamiltonian which is valid only for
long-wave phonons; also, Debye or other approxi-
mate dispersion relations for the phonons have
been used. While these approximations are ade-
quate for treating one-phonon-assisted tunneling
reorientation processes in attainable electric
fields, they are not adequate for two-phonon pro-
cesses which become important above about 5 'K.
In this paper we shall be concerned mainly with an
effort to use more realistic models for the phonons
and the phonon-defect interaction than have been
used heretofore to investigate the one- and two-
phonon-assisted tunneling rates of OH defects in

alkali-halide crystals with a large electric field
applied in a (100) direction. We have developed a
dipole-lattice interaction Hamiltonian which in-
cludes both one- and two-phonon operators and
which is not restricted to the long-wave limit, as
previously used forms of this interaction Hamil-
tonian have been. Our treatment gives a very good
qualitative account of the temperature and electric
field dependence of observed relaxation rates for
OH in RbBr from 1.35 to 12. 5 'K, as well as for
OH in other alkali-halide hosts for which the re-
laxation rates are not known over such a wide tem-
perature range. From this study we can acquire .

new information about the phonon-defect interac-
tion which one hopes may eventually be useful in
unraveling some of the puzzles concerning the in-
frared absorption of these systems. 7 This infor-
mation also should provide a starting point for a
study of the perturbation of the phonons due to
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dipolar defects, an effect which is not included in
the work described in this paper.

In Sec. II a Hamiltonian for a crystal containing
isolated paraelectric defects is described and in
See. III the dipole-lattice part of this Hamiltonian
is discussed. Section IV discusses simplifications
arising from the symmetry which the system has
when a strong electric field is applied in a (100)
direction. Expressions for one- and tmo-phonon-
assisted reorientation rates are developed in Sec.
V and methods of numerical calculation are dis-
cussed in Sec. VI. Qur results are given in Sec.
VII Rnd R summary ls plovided ln See. VIII.

u. mmLTOW~W

QH ions enter alkali-halide crystals as substi-
tutional anion impurities. The interesting proper-
ties of these systems arise from the permanent elec-
tric and elastic dipoles of the defects and the fact
that they are easily oriented under applied electric
fieM or stress even at liquid-helium temperatures.

%e write the Hamiltonian for a crystal containing
a single OH substitutional impurity with applied
electric and strain fields as

where HD is the Hamiltonian for the QH" dipole in
a static lattice, HJ. is that for the phonons, H»
is the dipole-phonon interaction, H~ and H~ are
terms describing the interaction of the defects in
the crystal wj.th applied electric and strain fields.
%e now discuss these terms individually in detail.
The discussion of H» is in Secs. III and IV.

There are tmo complementary mays of treating
HD in use: the Devonshire model" and the tunnel-
ing model. ' Since we are interested only in the
lowest motional states of the dipoles, me mill use
the tunneling model and omit terms describing
libration and stretching vibration motion of the di-
pole. The tunneling model uses a representation
in which the six equivalent orientations of the di-
pole are denoted by li), where i = x, x, v, y, z, Z.
This j,s suitable for QH jn most alkali halides. In
this representation, neglecting 180' tunneling, H~
has only off-diagonal matrix elements':

mhere & is called the tunneling matrix element.
The lattice or phonon Hamiltonian mill be taken

as that of unperturbed phonons of an ideal host
crystal

where a stands for both wave vector q and branch
index X. a~ and a, are the phonon creation and an-

nihilation operators and v, is the frequency asso-
ciated with the phonon o. The eigenstates of H~
are denoted by Q, In, ), where n, is the quantum
number associated with phonon mode o. HI, is di-
agonal in the dipole states ) i).

The matrix elements of H~ are'0

(4)

where E, are the components of the applied field
along the axes associated with the i index. Note
that F.; = F.-,. p,, is the external electric dipole mo-
ment associated with the OH defect in the lattice.
The splitting of OH tunneling states under action
of an applied electric field has been intensive1y
studied. "' %hat is observed is an energy split-
ting associatedmith an applied field. The "external, "
p, , deduced from (4) in this way does not give the
"microscopic" dipole moment of the defect because
of local fieM effects. So long as one is concerned
only with the energy splittings produced by applied
E fields, the value of the "microscopic" dipole
moment p, is of no concern. Homever, it will be
this p, which will enter into our model for H», and
me must be prepared to allow p, to differ from p,
%e note thRt /J, mill be composed of the 1ntl lnsle
OH electric dipole moment about its center of
charge, a dipole moment due to any displacement
of that center of charge from the defect site and

any dipole moment associated with lattice distor-
tions produced by the defect. It may also be im-
portant to include the effects of zero-point libra-
tional motion on p, . The relation between p, and p, ,
is discussed further in Sec. VI.

H8 is also diagonal in the directed representation
and is given, ' for homogeneous strain, by

(i~~B
~
j)=5«(ee« ~ BZ e )

Here e&& are strain tensor components and 4 and 8
are coefficients whose difference can be determined
from strain dichroism experiments. ' There is a
point connected with the ciuantity A —B which is
similar to that which mas just made concerning p, .
In the experimental determination of A —B, energy
splittings for known stresses are measured. Strains
appear in (5), so that deduction of 4 Bfrom ex--
periment involves use of elastic compliance con-
stants to convert from stress to strain. '" If,
owing to lattice relaxation around the defect, the
local elastic compliance constants differ from those
of the bulk crystal, the A —B deduced from stress
experiments mill differ from the "microscopic"
A —8 which me will deduce in Sec. III from the '

long-mave limit of H». This problem is analogous
to the local field problem in connection with the
electric dipole. Again we must be prepared to con-
sider the possibility that the "microscopic" A —B
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We nom derive a form of Hzl, up to the second
order in lattice displacements, i. e. , up to two-
phonon operators, from a microscopic model of the
defect. The model we use is the following: The
OH ls regarded Rs Rn ob)ect with R dipole moment

p and central Born-Mayer interactions with its
nearest neighbors. The H end, the O end, and the
sides of the dipoles all have different interactions
with the neighbor nearest to them. Thecorrespond-
ing Born-Mayer potential functions are called P„,
$0, and P, (see Fig 1); t.hey are differences be-
tween impurity-nearest-neighbor Born-Mayer po-
tential functions and that of the ideal host anion-
cation pair. The OH center of charge could be
taken to be off center, but this does not alter the
form of the H» we will derive, only the interpre-
tation of the coefficients which appear in it. This
can be seen in the long-wave limit in Ref. 2.

To deduce an III,I for this model of the OH we
consider a lattice in which each lattice site oc-
cupant, including the OH, experiences a displace-
ment u(L), where L is the vector specifying the
lattice site, the defect site being chosen as the
origin. The interaction of the defect with the lat-
tice in this displaced condition comes about due to
(i) an electric field at the dipole due to displaced
iona; (ii) changes in the nearest-neighbor distances
which affect the short-range interactions. The
electric field and the Born-Mayer interaction are
expanded in powers of the lattice displacements to
second order. The interaction of the OH with a
single ion at site I. is then given for an OH oriented
in the [100]direction by

[Vq(L)/&']&. (L) - 34 [1 «L)]]+e' [i &(L)]

(0)(first order),

[p, q(L)/I, ] P—,' [1 ~ b(L)] f„-3[i b(L)] h.(L)

FIG. 1. Born-Mayer po-
tentia1 functions for the short-
range interaction of a [100]—
oriented OH ion with each
of its six nearest neighbors.

may differ from the experimental one.
Equation (1) for a single impurity is adequate for

treating reorientation rates in crystals containing
OH defects in sufficiently low concentrations (& 10"
OH"/cc), so that interactions between the defects
are known to be negligible.

III. DIPOLE-PHONON INTERACTION

——.
' h'(L)Q+ y,'[f '(L)/21. ]+ (1/u, )

x [IP~"- P~] [1 b(L)] (second order)

&r fIf.".'
f
j&= h;, Z. [ft, (o)(..—s.')

+ 8;(o)(a + at)]

and similarly for (i iffz+z» i j).
(s)

Here, q(L) is the charge of the ion associated with
lattice site L, b(L) = u(L) —iT(0) is the displacement
of ionI relativetotheOH ion, P~ istheBorn-Mayer
potential-energy function appropriate for the inter-
action of the [100]-oriented OH with the ion at site
L (/~=0 except for nearest neighbors), and the
primes indicate derivatives of the P's evaluated at
the equilibrium separation (the host-crystal lattice
spacing) a. f = Z/I. .

Summing (6) and (7) over Lfor nearest neigh-
bors we get dipole-lattice Hamiltonian terms
(xiH~~'ix) and (xiaD~ix), where H~~ is a one-pho-
non and H~~~ a tmo-phonon operator. The neglect
of neighbors beyond the nearest is a good approxi-
mation when the u(L) are those for long-wave
acoustical phonons. We assume this approxima-
tion adequate for all phonons. Effects of electronic
polarization of lattice ions are omitted from our
model for H». Off-diagonal matrix elements
(i iHDz, i j) are assumed to be negligible. Evidence
for this being a very good assumption will be pub-
lished elsewhere. ' ' They would correspond to
phonon modulation of the tunneling matrix elements,
Although B~~, in the systems under study here,
mill turn out to produce a negligible contribution
to the tmo-phonon reorientation rates at the tem-
peratures at which these processes dominate, it
is not completely clear at this stage that this is
the case Rnd me have carried it through our calcu-
lation for the sake of completeness. We have also
included a study of H~~ since, being quadratic in
lattice displacements, it can be regarded as a
changed force-constant perturbation of the lattice
and may well be of importance in the study of the
perturbed phonons of crystals containing OH ions.

With the use of the expression for lattice dis-
placements in terms of phonon creation and anni-
hilation operators, ' me find

u(L, x) = Z [)r/2Vtif „(o„(q)]'~'(a;,, 8 "'L
qr)t

+a;,,e" ")w(x f&, &),

implying the convention

w(~
f

—q, X) = - w*(x
f q, X)(q x 0),

w being real this way. Then one can write the one-
and two-phonon dipole-lattice operators in the
forms
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x (a;, e "' +a;, e'~' )e(q, X), (ip)

with M, being the total mass of the crystal and

[e(q, ~)/v M,M, ] = w(~
I q, ~)/dier„.

This form of u(L) is adequate for use in establish-
ing the form of the long-wave part of H~~ and has
the advantage of somewhat simplifying (9). In this
approximation,

R;(o)=R, (q, X) = (- I)'~ [h/2M, &u, (q)]'~

x [(A/a)e, (q, A. ) sinq, a+ (B/a) 2 e&(q, X) sinq&a],

H~z, in the form of (8) and (9) is inconvenient for
our purposes and will be worked into a more con-
venient form below. For this reason we will not
give the rather lengthy expressions for the coef-
ficients R„S;, etc. , in general form. It will be
useful, however, to investigate the long-wave part
of (9) to show that our H~z,

' in this limit is the same
as the long-wave limit used in earlier work on one-
phonon relaxation rates and also to establish a con-
nection with He In .the long-wave limit" (q -0)
for the acoustical phonons, w(v [q, X)/vM„becomes
independent of h:, and (8) becomes

u(I. ) = Z [@/2M, (u, (q)]'"

IV. SYMMETRY CONSIDERATIONS

In the next section we shall be discussing the cal-
culation of reorientation rates of OH dipoles oc-
curring under the application of an electric field in
a. (100& direction. The application of such a field
lowers the symmetry of the defect environment
from 0&.to C4„. In this situation it will be useful to
have dipole states and linear combinations of the
b(L)'s for the nearest neighbors which are basis
functions of irreducible representations of the
group C4„. This greatly simplifies the calculations
of reorientation rates.

In large (pE» 6,) electric fields parallel to the
[100]direction the dipole states can be chosen, '0

neglecting terms of order 4/u, E, as

I2A &=-'&Ie&+ I»+ Iy&+ Iy&),

I
iE& = &I/r2) &I.& —I-.&),

I3A,&=I~& .

(18)

ficients A and B which occur in H~~ subject to the
provisos of Sec. I. Equation (13) gives the A and
B of (5) in terms of QH defect-model parameters.
Elasto-optical experiments give

A —B= (P„'+ P, —2$,)a

where sgn(i) = +1; + for i= x, y, z; —for i= 7, y, z.
Here, we have

A =(P„+$0)a, B =2ag,

C -=2(Q„—$0), D —=4u, e/a' (13)

In the long-wave limit q-0, S;(o) is of order q
and Eq. (10) gives, for acoustical phonons,

sx, sI., ;, 2M.(u, (q)

x q;e;(q, ~,) (a(,„-a';,,), (14)

so that, using the long-wave limit of (11), we get

(iIH~,' Ii& Ae, , +B Q-e„. (18)
jAf

We thus see that H~ is the long-wave acoustical
phonon part of H~~ and we have a relationship be-
tween stress dichroism experiments and the coef-

S,(o) = S,(q, X) = sgn(i)[k/2M, (u, (q)]'~'

x[Ce, (q, A)(cosq, a —1)+D Z e, (q, A)(cosq&a —1)],

These states will be designatedby [ m&(m= 1A„2A„
B»1E,2E, 3A, ) with energies E = —p,E, 0, p, p, p,
and p,E, respectively. They are exact eigenstates
of He for E parallel to [100].

The appropriate linear combinations of the near-
est-neighbor b(L)'s will be called symmetry co-
ordinates and are designated by u, (I'y). I' stands
for one of the irreducible representations of C4„.
A»A, »B»B» or E'; y stands for the row of that
representation if it is more than one dimensional,
as in the case of E representations which are two
dimensional. For the one-dimensional represen-
tations, y can be omitted. k is an index identify-
ing a particular one among several equivalent I"

representations if there are more than one. There
are 18 components in all among the six nearest-
neighbor b(L)'s. The 18-dimensional representa-
tion using these components as a basis reduces to
four A, 's, an A,~, two B,'s, aB» and five E rep-
resentations. The symmetry coordinates can be
written as

u, (ry) = Z A(I'ykI Ln)b„(L)
Of, L

where the sum is over n = x, y, z; I, over nearest
neighbors. The coefficients A (I'yk ( Lo. ) are given
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in Table I. The u's, like the b's, are one-phonon
operators.

It will be convenient to regard the u~(I'y) for a
given I'y as components of a vector u(I'y}. These
vectors have dimension 4, 1, 2, 1, and 5 for I'=A„
Aa, B„Ba, and E, respectively .Equation (17) can
then be written as

in Tables III-V,

g= 2P+ $g+ Q'p
p

C= —P+ Qh

e= —P,

b = —2P+ ~o+ no

d= P+ no,
f=n, ,

(22)

u(ry) =+LA(I'yI L)b(L) (16)

where the A(I'y ( L) is nonsquare matrix with com-
ponents indexed by k and z appearing in Table I.

As will be seen in Sec. V, the dipole states (16)
for m =B„1E,and 2E play no role in the reorien-
tation processes of interest to us; consequently, we
omit consideration of H» expectation values for
these states in the following. (I IH» lm) and
(m ( H~la~ ( m) can be found with the aid of Table I
from (6) and (7) summed over nearest-neighbor L's.
The results for nz = 1A, 2A„SA, are in the forms

ry) ~ u(1'y), (19)
ry

&~ IH"'
I
~& =~"'(Fy} N}"'(~l I'y} ~ u(Fy) ~ (20)

ry

Here M"'(m I I'y) is a vector with the same dimen-
sion as u(I'y) and components M„'"(m (I'y) given in
Table II. The Q.lal(m [I'y) matrices are square
matrices with components M,'~'(m II'y) given in
Tables III-V. In arriving at (20) we have used the
group-theoretic result that there are no cross terms
in (I IH~z', Im) between symmetry coordinates with
different I'y. In Table II, we find

P = QI,
—2ile/a', q= —

&po
—2ile/a',

g=e, +(, ,

Il=-,'(d+ c+ 2f), i= 4 (a+ &+2g),

where

P = 3il e/2a',

In, = y, /2a,
and no confusion should arise from using a and e
as constants on the left-hand sides of (22) as well
as for lattice constant and absolute magnitude of
the electronic charge on the right-hand sides.

We now proceed to use these expressions for
H»' and H~~ in a calculation of phonon-assisted
tunneling reorientation rates for 1A, —2A, transi-
tions.

V. TRANSITION RATES

We will calculate one- and two-phonon-assisted
tunneling transition probabilities among the states
( m) for an electric field applied in the + x directior

with no applied strain. For the purposes of per-
turbation theory we group the terms in the Hamil-
'tolllall (1) as

y=2ile/a', s=2$, ;
(21) H=Ho+H

Ho=HI +H~,

with

TABLE I. The nonzero coefficients A (I'pk ) I n ) for
expressing symmetry coordinates u~(l"p) in terms of the

components b~(L), +x being the C4 axis for the C4„op-
erations.

(100) (001) (001)
X y Z X y Z X y Z

A, 1 1
2 1
3
4

(100) (010) (010)
X y Z X y Z X y Z

1
2

1
2

1
2

1
2

A, 1

B, 1
2

B2 1

E11
2
3
4
5

E 2 1
2
3
4
5

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

gl2
v 21

v —,
'

1
2

H =HD+HDI, +H»I (&) P) (23)

The applied E field is to be considered large in the
sense pE»~. The transitions to be considered
are transitions between eigenstates for Ho which
we designate [m)Q, tn, ), where the (m) are given
by (17).

No transitions occur in first-order perturbation
theory since Hei, is diagonal in the ( m) states and

H~ is diagonal in the phonon states. HD+HD'I. ' pro-
duces one-phonon-assisted tunneling transitions
in second-order perturbation theory. Two-phonon-
assisted tunneling transitions occur in second-
order perturbation theory because of HD+HDI' and
in third-order perturbation theory because of
H~+H~~. In calculating transition amplitudes by
perturbation theory, one matrix element factor is
of the form (m (Helnl). He is the only part of the
Hamiltonian (23) which has nonzero matrix ele-
ments between different dipole states. From (16}
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A,
1

A)
2

A(
3

A)

1A,

2Ai 2S 2S1 -'4+p —q)

TABLE II. Nonzero I " (m ) I p) coefficients. The total transition rates for one- and two-pho-
non reorientations are given by

u)"'(m, m')=5 J d(un)' '(m', n„+Ilm, n„), (28)
+)

u"'(m, m')=Z Z J d~ j, d~'u"'
+f w +f

x (m', n„~ l, n, +1lm, n„, n„, ) .(29)

2m 2

h

(o,)-y„(o,) '
6 Sq

X 6(E ~ —E +h&o, }6(&u,-&u) . (24)

Here + refers to phonon emission and —refers to
phonon absorption,

y (0 6) -=(n,
I
(m

I

H" '
I
m)

I
n, 6 1&,

and n„= (e"" " —1) '. The two-phonon reorien-
tation-process transition rates for specific phonons
with frequencies v and ~' are

nP'(m', n„+ I, n„.+1lm, n„,n„.)
2m z 1 ~ P (o+, cr+) —P .(o+, o+)

2 ~~i 5(k (d~ k(d~e)

[y (o+) —y„,(o+)][y (o'+)- y, (o~')]
8'3( + (o,)(a (o,')

X 6(E, -E +f1.(d +g&d )6(|d —(d)Q((d —QP )

(-,o'+) =-&n.
l

&n.
I
&mlH

(2V )

In (26) ++ and ——correspond to the emission or
absorption of two phonons (summation processes)
and + —or —+ correspond to Raman-type phonon

processes.

and (2) it is easy to see that

&»ilH. IE &= &»iIH. I
1E)= &»ilH. I2E}=0

and similarly for 3A, replacing 1A, in these matrix
elements. The 8„1E, and 2E states are thus in-
accessible from the 1A, and 3A, states by phonon-
assisted tunneling by the H of Eq. (28). We ex-
clude the B„1E,and 2E states from further consid-
eration and understand, from this point on, that rn

ranges over 1A„2A„and 3A& only.
For the reorientation (m-m ) process assisted

by the emission or absorption of a phonon with
frequency ~, we find

w' '(m', n„+1lm, n„)

These can be put into compact forms, useful for
computation, in terms of I ifshitz Green's func-
tion). s. We define the vectors

(80)

where + and —refer to anion and cation. In terms
of these symmetrized eigenvectors, we can define
Green's-function matrices

G(F F .(„) p X(FrIo)X'(F'y'Io)
COg—

=G (I'yl&)6r, r 6, ~

where & 0+. Group-theoretic arguments show
these to be zero unless I' = I" and y = y . In the
transition rates which we wish to calculate, it is
the imaginary part of the Green's functions,

G "(ry
I
&&=K.X(ry

I
o)X'(Fr

I
o)(~/2~. &

X [6(Q) —Q)) Q(Q) + Q)}]

which play a role.
The desired compact forms require two further

notational developments: First, we define the vec-
tor

where 4E=E —E ..
Using these definitions we find by straightforward

manipulation that (28) and (29) can be written as

ng@+ 1
t6 (mmmm )=

@ (~)3 Trm (mm' 4 )

~"'(mm'I Fr) -=M"'(ml Fr) -M'"(m'I Fr),(88)

and also the four-dyadic 9R' '(mm'IA )K"' (mm IA&).

Second, we define a set of matrices
N (mm'II'yI &our

') which have the same dimension-
ality as ~3'(m

I I'y} and G (1y I&@), and are given by

N(mm'Idyl~~') -=[M"'(mlFr) —NI"'(m'IFr)]/«

+ [R"'(mm'I ry)SPY"' (mm'I I'y)]/(I'(u(o '), (84}
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Ai A2 Bi B2

y

1 2 3 4 1 1 2 1 1 2 3 4 5 1 2 3 4 5

TABLE III. Nonzero M~ (1A& I I'p; Fp) coefficients. TABLE V. Nonzero +~ (3A& ) I p; I p') coefficients.
Ai A2 B) B2 E

1 2

1 2 3 4 1 1 2 1 1 2 3 4 5 1 2 3 4 5

Ai

A2

Bi

B2

1
2

1 3
4
5

1
2

2 3

f e
e g

f. e
e g

f e
e g

f

f e
e g

A2

1
2

1 3
4
5

1
2

2 3
4
5

f —e
—e

f —e
g

f —e
-e g

f-e
--e g

8H""(mm lA, )G' (A,
l
~B/@), (35)

co oo

sv"'(m m')= dm dm 6(- &E+ Am+ flam )
n ~ OO ~ OO

x(n„+ 1)(n„'+ l)Z TrLN(mm'I I'yl +~ ')

&& &"(rrl~')N(mm'l Wl»')G "(I'rl~)] (36)

We have used n „+1= —n„in deriving Eqs. (35) and

(36), which are valid for both positive and negative

The long-wave Debye limit of Eq. (35) can be
shown to be

&(A —B) 2 3
"sv'( AI„2') =

20 gs s + s (n~E+ I)++
20npA c, c, (37)

where c, and c, are longitudinal and transverse
sound velocities and p is host crystal density.
Equation (37) can be compared with Eqs. (8) and
(10) of Ref. 2. The rates in Ref. 2 are for ~x)-

~ y) transitions and should be multiplied by a fac-
tor of 4 to get a 1A, -2A. , rate. In comparing Eq.
(37) above with Ref. 2, we find that a factor 3/16'
has been inadvertently omitted from Eq. (10) there.
Correcting this error increases the tunneling
matrix elements in column 3, Table I of Ref. 2 by
a factor of (-,'16')'~s. This reduces the discrepancy
between the paraelectric resonance, ' specific-
heat, and microwave values of ~ for OH in KCl
and that 4 deduced from relaxation times, although
the latter is still 30% smaller than the former. It
should be emphasized that Eq. (37) is an adequate
approximation for se'" for the applied electric
fields and temperatures used in the experiments
with which we will be comparing our theory.

The long-wave Debye limit of Eq. (36) is

r' Ai At Bi B2
v 1 2

1 2 3 4 1 1 2 1 1 2 3 4 5 1 2 3 4 5

TABLE Iy. Nonzero M~) (2A) I I'Y; I"y') coefficients. 4 36(A —B) &T
sv '(1A&, 2A) = —s, s —,dx

40pc, h

b, E/ff, T

~r (e"—1)(e'e'~ —x —1)

A2

B,

B2

1

2
1 3

4

1
2

2 3

In deriving (38), H~z,
' was set equal to zero, H~~

was set equal to its long-wave limit, a Debye pho-
non spectrum was used, it was assumed that
T«OD, and the contribution of longitudinal acous-
tical phonons was omitted. Equation (38) is very
similar to but not identical with the two-phonon
rates derived by Pire, Zek5, and Gosar' for elas-
tic dipoles. Equation (38) has the required prop-
erty

Mt(2)(IA 2A ) sv(2)(2A IA )e-ke/xT
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while the rates of Pire et al. do not.
From Eq. (38) we see that in the long-wave Debye

limit and for an experiment in which &E is adjusted
to equal to xT, w' '(1A„2A, ) is proportional to
T . In Sec. VII we show that our calculations,
which are not limited to the approximations inher-
ent in (38), yield two-phonon rates proportional to
T", where n is about 4. Since experiment shows
n to be nearer 4 than 3, we see that the long-wave
Debye approximation is inadequate for two-phonon
processes.

Although we discuss a more detailed calculation
in the following sections, it is interesting to at-
tempt to make a rough estimate of the relative im-
portance in w"'(m, m ) of those two-phonon pro-
cesses produced by H~~'z' acting twice [the second
term inside the absolute value in Eq. (26)] com-
pared with those produced by B~~ acting once. We
will refer to these, respectively, as se» and m~

rates. If these processes were of comparable im-
portance, then the cross term between them zo, z,
which occurs in the square of the absolute value
in (26), would lead to an interesting interference
effect in which the rates w' '(lA„2A, ) and w' '(2A„
3A&) would be different from one another by just
2+ f p Whether such an eff ect is observable depends
on the relative importance of the two kinds of two-
phonon processes. From Eq. (6) we see that the
contributions to H~z' are of the order p, es/a, where
s b/a is-the strain due to phonons. (On any plaus-
ible assumption as to the magnitude of the P,
one finds P -p, e/a~. ) Similarly, H~~~ is of the
order p, es /a. Using these estimates and Eq. (26)
we can estimate the ratio

w, , /w, =(pe/a)&Z/8'(u'~ (38)

where co and co' are the frequencies of the phonons

involved in two-phonon process. For Raman pro-
cesses the dominant phonons participating will be
the most abundant, those with he -vT. Using

p, -1 e A, &E/v-2'K as typicalvaluesforexperi-
ments, one finds that the above ratio to be 10'/T
=10 for T=10 K. Thus, for Raman processes,
we expect se, , processes to dominate; the domi-
nance of zv, , should be even stronger for summa-

tion processes because of the small frequencies of
the phonons associated with them. It appears that
the interference effect mentioned above will be un-

observable for the systems under study here. The

conclusions of this rather rough argument are
borne out by more careful calculations, as will be
seen in Sec. VII.

VI. NUMERICAL CALCULATIONS

In order to arrive at numerical values for the
reorientation rates discussed in Sec. V we need
values for the parameters appearing in H~, 0»,

Q„+ $0 —2&]&,= (8+6) = (A —H)/a

from elasto-optical experiments" (when available)
as discussed in Sec. III, then there remains only
a single adjustable parameter in the matrix N .
Unfortunately, all of these data are not available
for the crystals of interest. Available data are
given in Table VI. In our calculation we have tried
varying p, e, and 8 over plausible values beyond
the experimental constraints even when data are
available. We have discussed in Sec. III the rea-
sons which make this at least permissible.

Since the most extensive experimental data with

TABLE VI. Experimental quantities relevant to HDI, .
p,~ (eA) 8+ (10-' dyn)

RbBr

RbC1

KBr

KC1

1.0 +0.1

1.0 +0.1

1.0+0.1

0.92

(0.7)

—0.620"

—0.684

—0.622

Reference 27.
Values are deduced from the & values of Ref. 17:

8+ = &j(Sj2 —S~~). The value for BbBr is an estimate.
'S. Kapphan and F. Luty, Solid State Commun. 6

907 (1968).
~I. W. Shepherd, J. Phys. Chem. Solids 28, 2027

(1967).

and H~.
HD contains only one parameter 4. It enters

into the rates (35) and (36) only as a multiplicative
factor ~ . One can deduce 4 from the magnitude
of relaxation rates in the one-phonon-dominated
temperature range if the elasto-optical constant
A. -I3 is known. Values of ~ are of relatively minor
importance in this paper where our primary con-
cern is with the temperature dependence of relaxa-
tion rates rather than with their absolute values.

From (21) and (22) there appears to be a rather
large number of unknown parameters in our ex-
pressions for IID~. In the combinations in which
they appear in (34) there are eight parameters.
This number can be reduced if we assume that fo,
P„, and Q, are all of the Born-Mayer form C = Xe '~'

with different X but with pa= p„=p, =0. 3 A. This is
probably not a bad assumption judging from the
Born-Mayer model for alkali-halide crystals
which shows p to be about the same for all alkali-
ion-halide-ion short-range interactions. If the N

matrix (34) is written out explicitly it is found,
using this equal-range assumption, that all of the
parameters occurring in it can be written in terms
of iL, a, P„'- P,'=-g, and $0 —Q,

'—=S. If one takes p,

from electro-optical experiments, "' takes a as
the unrelaxed host crystal lattice constant, and
takes
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which our theory can be compared have been taken
for OH in RbBr with the applied electric field in
a (100) direction, we have focused our attention on
this system. Preliminary calculations have also
been done for OH in KCl and in KBr with results
in qualitative agreement with those obtained for OH
in RbBr. Unfortunately, little is known about per-
turbation produced by an OH defect in RbBr. Esti-
mates can, however, be made. The 8+ value for
OH in RbBr in Table VI is an estimate based on
the known values (based on the assumption of pure
crystal S„—S,a values) for KC1, KBr, RbC1, and

on the observation that 8+ increases slightly on

going from KCl to KBr. For low temperatures
where one-phonon rates dominate

but at higher temperatures 8 and are needed
separately. Their relative importance will be dis-
cussed in Sec. VII.

As can be seen from Table VI, p, , does not vary
much from crystal to crystal. As emphasized in
Sec. II, however, it is p, and not p, e which enters
our theory. One assumption which one might make
would be to suppose that the local field seen by the
dipole is the Lorenz local field. If this were the
case

pe= o (so+2)p,

This assumption would give p =0. Se A (0. 437 e A

for RbBr). Mahan ' has shown that for substitu-
tional impurities the relationship between p,, and

p, is, in general, more complicated than this.
The yhonon information of HI is contained in the

Green's functions (32). We have calculated these
using eigenfrequencies and eigenvectors provided
by Schroder's breathing-shell model. We re-
place the 6 function in (32) by a rectangular "bin"
centered on that one of 100 evenly spaced frequen-
cies

&o„= (n ——,')v „/100 (n = 1, . . . , 100)

which is closest to Id(q, A). Eigenvectors and

eigenfrequencies were generated for 1686 different
q vectors in the Kellerman section, which is ~48

of the total Brillouin zone. This corresponds to
64000 q's in the entire zone. The input data used
for the breathing-shell models together with the
calculated model parameters are given in Table
VII. Core displacements have been used for the
ion disylacements u which appear in the theory.
This is consistent with our treatment of JI» in
which we have ignored electronic polarization ef-
fects.

Because of the low density of states at low fre-
quencies, the error in calculating the Green's-
function sums in that region by our method is larger

TABLE VII. Input data and model parameters for the
breathing-shell model.

m 1

m2
y

C12

c44

Gi

Z
002

6'p

A
B
A'
Bl

61
G2

F

Unit

amu
amu

10 dyn/cm
1012 dyn/cm2
1012 dyn/cm2

A-3

A-3

10' rad/sec
10'3 rad/sec
10' rad/sec

e'/2a'
e/2a3
e/2a'
e/2a3
e/2a3
e/2a3
e/2a'

RbBr
(300 'K)

Input parameters

85.47
79.909
3.427
0.3157
0.0495
0.0384
l. 797
4. 13
0.9
1.70
4. 87
2. 33

Model parameters

12.6690
—0.561 10

0.033 5
—0.412 22
754. 492 25
321.764 84
—4. 135 35

KBr
(0 K)

39.102
79.916
3.262
0.418
0.056
0.052
1.201
4. 13
0.9
2. 28
4. 58
2. 34

13.073 80
—0.957 34

0.70479
—0. 29670
662. 838 66
184.838 77
—3.41476

KCI
(0'K)

39.102
35.453
3.116
0.483 2
0.054
0.066 3
1.201
2. 974
0. 9
2. 83
4. 53
2. 16

12.815 77
—0.896 13

0.551 42
—0. 24462
489.965 53
191.292 49
—3.153 37

See Ref. 25 for details.

than the error in the standard procedure. This
standard procedure of calculating the Green's
functions uses equally spaced (d2 rather than co,

but is inconvenient for calculating the double in-
tegral over frequencies in Eq. (36). This situation
arises because the hE splittings occurring in ex-
periments correspond to rather long-wave phonons.
We have instead used a procedure in which we fit
the Green's functions at ar„ in the low-frequency
region (&u„& 0. 06ar „)to the analytical form of the
Green's functions appropriate to the long-wave
limit. Distributing one-half of the contents of each
bin over the two adjacent bins, prior to fitting to
the analytic long-wave limit forms, reduces errors
produced by accidentally very small or large num-
bers of frequencies per bin in this range and in-
creases the final results for the rates by only 10
to 20%. This is not a serious computational error
in the light of the quantitative discrepancies be-
tween our results and experiment. For the same
reason, no attempt has been made to further
smooth the histogram form for the Green's function
which our calculations yield. These histograms
were used to calculate the frequency integrals of
Eq. (36) by summation over frequency bins.

VII. RESULTS

In this section we present numerical results of
our calculations and compare them with experi-
ment. As will be seen, our theory gives a very
good qualitative account of the experimental data
but only, an approximate quantitative account.

The data of Kapphan and Luty'o have been taken
for a splitting energy 4E which is set equal to ~T
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by adjustment of the electric field which was applied
in a (100) direction. They found that this allowed
them to set

Rb Br
Q =$=-0.55xlO dyn

p =0.5eK /—o/:
where 7 is the measured quantity with negigible
error, thus simplifying the relationship between
measured relaxation times and the relaxation rates.
For higher fields and/or lower temperatures, the
concept of a single relaxation time ceases to be
meaningful.

As discussed in Sec. VII, we have varied the
parameters p, @, and to learn how sensitively
calculated rates depend on them. We compare the
rates to a "reference" rate based on assuming
&=0.5eA, C=S= —0.35~10' dyn, and 4 being
such as to fit the low-temperature rate to experi-
ment, namely, 7. 3 X10 erg. These reference
rates are shown" in Fig. 2 along with the experi-
mental points of Kapphan and Luty. Two sets of
theoretical curves are shown in Fig. 2. One is
for 4E= xT for comparison with the experimental
data. The other is for a fixed 4E. From these
curves one sees that, as anticipated, Raman two-
phonon rates are more important than summation
rates, at least by an order of magnitude. From
the first set of curves (dE= ~T) one sees that the
one-phonon rate is proportional to T over nearly
the whole range between 1 and 10 'K in agreement
with the long-wave limit Eq. (37). The summation
and Raman two-phonon rates for this case go as
T and T ', respectively, at T=10'K. The total
rate thus is proportional to T at low temperatures
going over into a T or Ts' dependence at about
10'K in approximate agreement with experiment.

Vredevoe' has exhibited curves for relaxation
rate versus T for OH in KCl with a large field in
the [111]direction. ln the two-phonon region for
4E held constant he finds a T" dependence. We
find an approximate T' dependence for constant
high field in the [100]direction. There are several
reasons for this difference. First, Vredevoe
found that for [111]fields w, , rates vanish in his
approximation for H» so that his rates are of the
wz type whereinourE~) [100]case co~«m». Thus,
we have not calculated the same case as Vredevoe
has. Also, the model we have used for HDJ differs
from that of Vredevoe in our inclusion of Born-
Mayer repulsions where Vredevoe's model omits
them. This leads in Vredevoe's treatment to
dipole-lattice interactions proportional, in the long-
wave limit, to derivatives of the strain and strain
times derivatives of the strain, respectively, for
the one- and two-phonon operators which he used
to calculate E~~ [111]Raman rates. This introduces
additional powers of T compared with our model.

Our work confirms Vredevoe's conjecture and

IO

O
0)

IO

a

Ca

IO

io'

I I I I I I

4 5 6 7 B 9IO

Temperature ('K)

FIG. 2. Reference rates for reorientation of OH in
RbBr: 8= 8 —0.35&&10 4 dyn, @=0.5 eA, 6=7.3
&& 10 erg. The solid curve is for &E = kT. The dashed
curve is for &E/v =l.88'K (applied field 16.1 kV/cm
with pe= 1.0 e A). The circled points are the experimen-
tal points of Kapphan and Luty for ~E = ~T. One-phonon
rates and two-phonon rates of the Raman and summation
types are shown separately.

our estimates at the end of Sec. V that zv, ,» ~~,
that is, that the H~~~~ contributions to two-phonon
processes dominate those from H~+z,

' for E~l (100).
The relative importance of these various contribu-
tions, according to our calculations, are shown in
Table VIII.

We now discuss the effect on the rates of varying
the parameters p. , 8, from the reference values
just discussed.

A plot of rates calculated for various values of
p, with 8, S being held at their reference values is



2210 B. G. DICK AND D. STRAUCH

TABLE VIII. Relative orders of magnitude of various
two-phonon processes for EII(100). Rb Br

I I I I I I

Process

Summation

Raman

1O'-1O'

]03 106

87) 2

104-10

10 -10

sv&, &
Raman

gg& &
Summation

10—10

~ 10
I
O
CD
th

—0.35
—0.70
— 1.05

Experiment

4.9
7.3

Q= 8, p
= 05eA

8+I
(10 dyn) (IO erg)

shown in Fig. 3. Note that smaller choices for p,

give curves in better agreement with experiment.
This is evidence supporting the assumption, dis-
cussed in Sec. VI, that the Lorentz local field cor-
rection needs to be taken into account in relating
JLI, to p, The one-phonon contribution to the rates
in the T range where it dominates are insensitive
to changes in p in accordance with results of the
long-wave limit calculation Eq. (37) which is in-
dependent of p, . The fact that there is a signifi-
cant p, dependence of rates in the two-phonon range
shows that the form of H~~ beyond its long-wave
limit is playing a role. In the long-wave limit, as
we have seen, H~~ does not depend on )LI,.

0
Ch

Q

10'

IO
I I I I I I

4 5 7 IO

Temperature ( K)

Rb Br
Q =S = -05

I I I I I I
FIG. 4. Total rates for OH in RbBr for various

values of Q+ (8=). p is held at its reference value,
0

0. 5eA; & is adjusted for each A+B to fit low-tempera-
ture curves to experiment; &E = KT.

10
I

CD
V)

I (eA)

I 0.40
2 0.45
3 050
4 055
5 060
6 0.80

Experim

0
Vl

O
I—

10

10
4 5 7 10

Temperature ( K)

FIG. 3. Total rates for the reorientation of OH in
RbBr for various values of p. ~and have their ref-
erence values ~== —0.35xlo 4 dyn; 4E=~T.

Figure 4 shows the results of varying@+6 from
the reference value while requiring g= and hold-
ing p, at its reference value. Further, the tunnel-
ing matrix element 4, for each choice of 8+, is
adjusted so that low-temperature one-phonon rates
which are proportional to lF(8+ 8) are in agree-
ment with experiment. One sees that decreasing
the magnitude of 8+ changes the theoretical
curves in a way which gives worse agreement with

experiment than the reference case. Increasing
8 + does not much alter the rates, but does re-
duce the sharpness of the transition from T to T
behavior, a transition which is quite abrupt in the
experimental curve. Further, the reference case
has a slope at higher temperatures which is more
nearly that of the experiment than either of the
other choices of 8+ .

As can be seen from Eq. (35) the one-phonon
rates are proportional to the quantity I+ 0
= (A —B)/a,. This is of course not the case for two-
phonon rates. Our reference choice g = ignores
the difference between Po and P„which we expect
to exist because of the different electron densities
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at the two ends of the OH molecule. ' We have
varied 6 and 8, holding 8 + at its reference
value, between 8 = 0 and S = 0, the results being
shown in Fig. 5. Theoretical curves are closer to
experimental curves as approaches zero. This
implies $0 = p„which Quigley and Das~9 also
found to be a feature of that repulsive interaction
which gave them calculated lattice relaxations in
better accord with experiment.

Rb Br

I I I I I I

0'++ = -0.70x 10 dyn, p=0.5eA

IO

tx (Io dyn)
—0.70
—0.525
—0.35
—O.I75
—0.0
ExperIm

IO
I

I

4 5 7 IO

Vlu. SUMMARV

In this paper we have developed a dipole-phonon
interaction Hamiltonian for (100)-type paraelectric
defects which contains both linear and quadratic
terms in lattice displacements and is not limited
to the long-wave limit. It is therefore suitable for
treating two-phonon Raman and summation pro-
cesses in phonon-assisted tunneling. We have used
time-dependent perturbation theory in second and

third order to calculate reorientation rates as-
sociated with one- and two-phonon processes in a

large (100) electric field.
We have found quite good agreement with experi-

ment for OH in RbBr. In particular, our theory
predicts the observed T and T temperature de-
pendences of rates in those temperature ranges
dominated by one- and two-phonon processes and

successfully predicts a change from T to T' de-
pendence at about 4 K. We have shown that sup

~ g

two-phonon processes dominate m~ and zv~, pro-
cesses in support of a conjecture made earlier by
Vredevoe. ' We have investigated the sensitivity of

our results to variation of the three parameters
p, , @, and , which come into our theory. We find

that certain values of these parameters give the
nearest fit to experiment. These favored values
are the following:

(i) It +8 about the same as the measured values
of this quantity for OH in RbCl, KBr, and KCl.
This is evidence favoring the view that local elas-
tic compliance constants near the defect are not
much different from those of pure host crystal.

(ii) II, = —,
'

II,,(so+ 2). This suggests that the
Lorentz local field effect is the dominant effect in
determining the relation between the microscopic
p. and the external p,

(iii) IS is small. This is evidence in support of
the view that the sides and the oxygen end of the
OH molecule repel nearest-neighbor cations with
comparable strength and the hydrogen repulsion is
stronger than either the sides or the oxygen end.

Our treatment has a number of limitations: Our
deduction of H» is limited to nearest-neighbor
interactions and ignores electronic polarization of
the lattice and the defect. In view of the rather
strong dependence of Raman rates on p, we see that
the neglect of electronic polarization may be
serious. Probably more severely limiting is our
neglect of defect perturbations on phonons in higher
order than the second. This neglect can be rem-
edied by use of existing methods of treating such
problems and we hope to take up this problem in
the future. In this connection we might remark
that H~~ can be eliminated entirely from the prob-
lem by introducing static lattice relaxations. '
H~~ and the mass defect represented by the OH

impurity then produce perturbations in the dynam-
ical matrix of the phonons which previous experi-
ence with defects has shown might lead to
significant effects which are lost in an unperturbed
phonon treatment such as ours.

Temperature ( K)
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