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The magnetization and specific heat are calculated on the basis of a Heisenberg model which
is thought to be appropriate for the description of the magnetic properties of four insulating
copper salts. The calculation includes first- and second-neighbor interactions and is based
on a quasimagnon approximation which goes beyond the Hartree-Fock theory. The low-temper-
ature expansions are exact to order T4, and the results obtained for the transition temperature
are consistent with those obtained from the high-temperature series-expansion theory. Good
agreement between theory and experiment is obtained over most of the temperature range
T&T .

INTRODUCTION

The Heisenberg model of magnetism is a phe-
nomenlogical model based on the concept of local-
ized spins interacting by means of an exchange
mechanism. The discovery and subsequent study
of the four copper salts Cu(NH4)C14 2H&O,

CuKgC14' 2H20, CuRb2C14' 2H20, and

Cu(NH&)IBr4 2H30 has made it possible to test
the ability of the Heisenberg model to predict the
magnetic properties of insulators. These copper
salts are spin-one-half isotropic ferromagnets
with the ferromagnetic ions positioned approxi-
mately on a body-centered-cubic (bcc) lattice.
The transition temperature T, of each of these
salts is high enough so that measurements of the
magnetization and specific heat can be obtained
above and below T„but low enough so that pho-
non effects can be neglected. The relatively low

T, would make neutron-scattering experiments
rather difficult but not impossible to do.

Measurements of the magnetization and specific
heat have been obtained by Miedema et al.'
They indicated that their low-temperature results
could be fitted reasonably well to the low-tem-
perature Heisenberg theory with nearest-neigh-
bor interactions. In an attempt to extend the ex-
pression for the specific heat to higher tempera-
ture they used an expression which was incorrect
because of a double counting of the Hartree-Fock
magnon-magnon interaction energy.

Wood and Dalton subsequently pointed out the
necessity of including second-neighbor interac-
tions because of the bcc magnetic structure.
Their work showed that it was possible to obtain

much better agreement between the experimental
and theoretical predictions of certain critical
constants if second-neighbor interactions were
included. They did not attempt to incorporate the
effects of magnon-magnon interactions in their
analysis of the low-temperature behavior of the
salts.

The first attempt at incorporating the effects
of the magnon-magnon interaction was done by
I oly, who used the Hartree-Fock result with
first- and second-neighbor interactions. The
magnetization and specific heat were found to be
double valued and the magnetization remained
nonzero at all temperatures. Loly used a value
of T, obtained from high-temperature series ex-
pansions to plot his results as a function of T/T,
and found that he could get reasonable agree-
ment with the experiments up to about 8(P/q of the
transition temperature. It was also pointed out
that there was some slight dependence of the re-
sults on the ratio of second-to-first-neighbor
exchange.

There are several problems connected with the
use of the Hartree -Fock theory. First, it does
not reproduce the correct low-temperature con-
tributions to thermodynamic quantities made by the
magnon-magnon interaction. Second, it is neces-
sary to go outside the Hartree -Fock theory in or-
der to obtain a value of the transition temperature
so that the results can be obtained as functions of
T/T, .

It is the purpose of this paper to go beyond the
Hartree-Fock theory and to obtain expressions for
the magnetization and the specific heat for arbi-
trary T & T, which include the effects of first- and
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second-neighbor interactions and which reproduce
the exact leading temperature terms contributed
by the magnon-magnon interaction. These results
are then to be compared with the experimental re-
sults obtained by Miedema et at. for the copper
salts.

The calculations are based on the Green's-func-
tion formalism, and the single-spin Green's func-
tion is discussed in the first section. Identities
relating the magnetization and the specific heat to
the single-spin Green's function are used to es-
tablish approximate formulas for these quantities
for arbitrary T & T, in the second section. The
third section contains the exact low-temperature
expansions, and fourth section gives the results of
the extrapolation to higher temperature. The con-
tents of the paper are summarized in the last sec-
tion. Because of the length and complexity of the
equations involved, much of the intermediate work
has been omitted.

SPIN GREEN'S FUNCTION

The Hamiltonian which is thought to describe
these copper salts is the one appropriate for an
isotropic bcc spin-one-half ferromagnet with first-
and second-neighbor interactions

H =gp, hZ" S"-Z" E-Z-SI . S" " (i)
The first term is the Zeeman energy due to the
external field h, and the second term represents
the exchange interaction. The double sum in (1)
runs first over the neighbors of j, 5 being the
neighbor vector, and then over the lattice positions
j. The J& are the exchange constants which are
assumed to depend only on the magnitude of $:

J& =J, for nearest neighbors,

=xJ& for second neighbors,

particle Green's function and the T matrix for
Dyson's magnon-magnon interaction. ' The same
analysis can be carried through in terms of the T-
matrix approximation for the boson Green's func-
tion. The result is that the leading temperature
terms of ZD and A are given by the analytic con-
tinuation (z,- z) of

Z, (q; z„)= ——Z G,(k; z., )
IT, v'

xT; ~ i (-,
' (k-q), —,'(k —q); z„+z„.), (7)

A(q; z,) = z Z GI(k; zv~)
I'~v»

xT-, „-(-,' (k-q), p; z„+z„.)gz, I-, (k; z„+z,.),
(8)

respectively, where

P = 1/kzT, z, = zv/(- iP), v = even integer,

and N is the number of lattice sites. The function
8 is the space-time transform of iG~(j; f)G,(j '; f).
The equation for T is

Tg(k, k'; z) =vg(k, k')+(1/ N)Z f Ti(tk, p; z)

xBg(p; z)vg(p, k'), (io)

where vg(k, k') =J(-,' K+k)+J'(-,' K —k)

—J(k+k') -Z(k -k') (ll)
is Dyson's ideal magnon-magnon interaction. The
results given above constitute what will be called
the T-matrix approximation for t" &.

GENERAL RESULTS

The magnetization M and the specific heat C
can be calculated from G& by means of the iden-
tities (S = —,')

M= I. —(1/2') 2& f p(q; &d)f(Id)dId, (1.2)
= 0 otherwise (2)

The constant x is the ratio of second-to-first-
neighbor exchange.

The quantities of interest in this paper can be
calculated from the spin Green's function ((S'(f);
S (f'))). The space-time transform of this
Green's function has been calculated within a T-
matrix formalism and was found to have the form

d (R)
dT N

(K) 1 f'
=&o+2 N ZgJ 2[(o+Z'(q)]

w Oo

x f((o)p(q; (o)A&,

f(~)=(e'" —1) ',

(13)

G,(q; z) = /ii[fzE'(q) -Z(q; z)],
where M is the relative magnetization and

&'(q) =gpa+z(o) -z(q),
J(q) =5 1 J'f e'

Z(q; z) = [z -Z'(q)] &(q; z)+Zv(q; z).

(3)

(4)

(5)

(6)

p(q; (o) =ilim [GI(q; Id+a) -G, (q; (o -iz)]. (16)
w P

The expression given in Eq. (3) can be rewitten
in the form

G,(q; z)

Expressions for A and Z& were developed in Ref.
5 in terms of the zero-temperature boson single-

[z -Z'(q)](M —1+a(q, z) }+(i-M) Z, (q, z)
[z -8'(q) —&(q; z)] [z -Z'(q)- Zv(q, z)]



J. F. COOKE

1
z -E'(q)-Z, (q;z)

' (IV)

The first term on the right-hand side of (1V) con-
tains the main contributions of the kinematic in-
teraction. There are also kinematic terms in the
last term coming from the G,'s appearing in (10)
and (7). It is straightforward to prove by direct
substitution that the kinematic terms contribute
nothing to the magnetization or the specific heat
to order T . This is a generalization of a similar
result found for nearest-neighbor interactions.
With the kinematic terms neglected, the last term
in (17) reduces to the T-matrix approximation of
the single-particle Green's function G~, calcu-
lated with respect to Dyson's ideal spin-wave
Hamiltonian, and K~ reduces to the self-energy of
these ideal spin waves.

If it is assumed that the kinematic terms con-
tinue to play a minor role in the calculation of C
and M as the temperature is increased, then the
only relevant term in (17) is the last term, which
ls

Gg&(q; z) =1/[z -E (q) —Zn(q; z)], (18)

where from here on ZD represents the self-ener-
gy for Dyson's ideal spin waves which is given by
(10) and (7) with G, replaced by GD. Then, ne-
glecting the kinematic terms, Eq. (14) can be
written in the form

(X) 1
=E()+ Z~ f(("I (q; ar)

co-E q -ZD q;co

([(d -E'(q) -Zn(q;co)j'+ [I'(q; co) j')

+ Ze f f(u))[z'(q)+! ):,(t); ~)]p, (t); w)a~,
(19)

where

(20)lim Zn(q; (d+ i6) = ZL)(q; (d) 7i I'(q; (d)
6 0

and pa is the spectral function for GD.
At low temperatures the width of the spectral

function I' is small and the last term in (19) dom-
inates. It also follows that p~ can be evaluated
within a quasiparticle approximation. As the
temperature, I.' increases and these approximations
would eventually become invalid. There is some
indication, however, that for the ferromagnet with

nearest-neighbor interactions I' remains suffi-
ciently small so that the quasiparticle approxima-
tion could be valid up to at least —,

' T, . The in-
clusion of second-neighbor interactions should not

affect this result appreciably. Moreover, since
I' does not contribute anything to the leading tem-
perature terms of M or C and since it cannot be

expressed in a simple analytical form it seems
appropriate as a first approximation to neglect it
entirely, in which case

pD(q; (d) =2v5((d —E(q)),
where E(q)=E (q)+Z~(q; E(q))

(21)

(22)

is the quasimagnon energy. The last term in
(22) represents the magnon-magnon interaction en-
ergy. Substitution of (10), with G, replaced by

Gn, into (7) gives the leading terms

z~(q; z) =z~(q)+zz(q; z), (28)

where

z (q) =~ ~gf(E(p) )

' [~(q) +~(p) -~(p+q) -~(0)], (24)

Zz(q' z)= —
z +f(E(p))N yp

Ta.r(k(p -q), &; z+E'(p))
z+E'(p) -E'(z(p+q)+k)-E'(l(p+q) -&) '

(25)

In deriving (25) all temperature terms except for
f(E(q) ) have been neglected T. he term Zz is
generated by multiple scattering terms in the T-
matrix theory. If Zz is neglected in (23), Z~ re-
duces to the Hartree-Fock energy.

As a result of the rather long list of approxima-
tions made above, (12) and (14) reduce to

~ =E +/ ~If(E(q))[E'(q)+-'Z (q; E(q))], (26)

M =1 —(2/N)Z&f(E(q)) . (27)

The average energy of the system is then the
statistical average of the quasimagnon energy
where the —,

' in (26) corrects for the double count-
ing of the magnon-magnon interaction energy. If
the multiple scattering term Zz is neglected, (25)
and (27) reduce to the self-consistent Hartree-
Fock results investigated by Loly.

z.(q; E(q) ) =~,(w)' 2-~(-;)e(z)
x [g(z)]'~ + ~ ~ ~, (28)

LOW-TEMPERATURE PROPERTIES

The low-temperature magnetization and specific
heat can be obtained by expanding (26) and (27)
in powers of the temperature. In order to obtain
results which are exact up to order T, it is only
necessary to know the leading temperature and
momentum term of the magnon-magnon interaction
energy. An exact expression for this quantity can
be obtained by expanding the result given in the
Appendix by (AV) in powers of thetemperature and
momentum. Then



223

v {x)= 3ke T/16vv J,(1+x) v = 3X 2 '~ ',

q(x) = 4 Z A, „-=1+-,' x+S(x),

&& f~(x)]"' [(1+-',x)/(1+x)]+a4t v'v'w, '

,( s) (,(„))7&2(1+@ax+Ix'k
(1")'

where the A„'s are defined in the Appendix (All)
and f(m) is the Riemann zeta function. The term
given in (28) will generate the exact lowest-order
contribution to M and C resulting from magnon-
magnon interactions.

The quantity Q(x) is a generalization of the Q
defined by Dyson for the nearest-neighbor intex-
action, and it is trivial to show that Q(x = 0) re-
duces to Dyson's result. The first two terms on
the right-hand side of (30) represent the Hartree-
Fock results, and the remaining terms are cor-
rections due to multiple scattexing processes.
The ratio

Z(x) = q(x)/(1+-', x} (31)

&/& = —", 0(-'.) (~(x)]"'+~vvf(')

1.50

1.40

is plotted in Fig. 3. as a function of x. This curve
indicates that the multiple scattering terms are
almost half as big as the Hartree-Pock term and
that their relative importance seems to decrease
slowly with increasing x. On the basis of this re-
sult it might be expected that the Hartree-Pock
approximation would improve with increasing
range of the interaction. This is appaxently the
CRse, since the HRx'tx'ee -Fock approximation CRn

produce exact results for the infinite-range inter-
act1on."

Substitution of (28) into (26) and (2V) gives M and
C correct to order T . The results are

m =1 —2g(-', ) f~(x)]"'--,' vs(-', ) (~(x)}"'
2v'~,'—v'g(~3) &~(x)&"'

—6v~(x)t(-', ) g(-,') P(x)'}'+ ", (32)

+ 30vvg(x) [g(-', )] 3 (v(x)}'+ ~ ~ ~, (33)

(34)

The extrapolation of the results for M and C to
arbitrary temperatures is made on the basis of
Eqs. (22), (23), (26), and (2V). That is, all kine-
matic terms are neglected, and the remaining
terms are treated within a quasiparticle approxi-
mation, where the lifetimes of the quasiparticle
states are neglected.

The quantities Z(q) and Zn are to be calculated
self-consistently by means of Eqs. (22) —(25).
This set of equations can be formally solved, but
because of Z2 the result is too complicated to
work with numerically. An approximation for Z&
which can be used to evaluate (26) and (2V) is ob-
tained in the Appendix in terms of f(Z(q) ). The
result is given by (AV)

Z, {q;Z{q) )= -Z, Za„i„(T)e„(q), (35)

where from (A13)

I. (T) =(1/~) Z& f(Z(q))~. (q) . (36)

The quantities A„and &„ are defined in the Appen-
dix. Equations (35) and (22) should not be used as
a self-consistent set of equations to solve for
Z(q), since this would greatly amplify the errors
inherent in (35).

The appx'oximation that has been used here is to
retain Z2 only to first order when calculating f(Z
x (q) ). That is, (35) is substituted into (22) and
the terms generated by Za are neglected in the
temperature factors I„(T). The result is

f(Z(q) )=f(J, Z K„(r)~„(q)), (3V)

where K„(T)= 1 -A, I,(T), n = 1

=x-&,I,{V), m=2

The 7 terms represent the leading contribution to
M and C from the magnon-magnon interaction.
The remaining terms were first given by Wood
and Dalton and are generated by the noninteracting
magnon energy Z (q).

EXTRAPOLATION TO HIGHER T

0.1 0.2

FIG. 1. The ratio of Q(g) to the Hartree-Fock pre-
diction for Q(gI, showing the relative importance of
multiple scattering processes as a function of the ratio
of second- to first-neighbor exchange.

A„i„(r), n = 3, 4-

I„(r)= (1/X) Z, f(Z, (q) ) e„(q),

Z, (q) = Z, Z K„(T)&„(q) . (40)
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In order to simplify the results, the identity

Z'(q) = Z, e,(q)+xZ, e,(q) (41)

has been used. The term Eq(q) is simply the Har-
tree -Fock energy.

Substitution of these results into (26), (2V), and

(13) gives

1.2
0 X=0,1

~ X=0.2
~ X=0.3

0

k

(42)

(43)
O
U

O
UJ
0
V)

1.0

0.8

s= r~
—I

b c c LATTICE

k
0

8=kaT/Jg (45)

were found to vary linearly with x according to

l„(T)=&z~f(z, zz„(T)e.(i))c„(e. (44)
n=l

These results can be shown to reduce to the exact
low-temperature theory given in the previous sec-
tion, and also they reduce to the Hartree-Fock
theory investigated by Loly if the terms generated
by Zz are neglected.

When these results were evaluated on a compu-
ter, it was found that the relative magnetization
was double valued, but that at most only one value
of M for each temperature was positive. The tem-
perature at which I became zero was taken as the
transition temperature T, . The specific heat was
found to increase with temperature and apparently
to diverge at the same T, as that found from the
magnetization curves. The calculations were
made for various values of x in the range 0 & x
&0. 3 since it was felt that if x& 0. 3 higher-neigh-
bor interactions should be taken into account. The
numerical results for

IB

O 0.6
4

0
0

0.4

0.2

0
k

ao0
0 0.2 0.4 0.6 0.8 1,0

yc ' RELATIVE TEMPERATURE

FIG. 3. Theoretical specific-heat curve for a bcc
lattice for three values of x, indicating the insensitivity
of C to x.

8, (x) = 8,(x = 0) [1 + x]

8, (x = 0) = 2. 64 .
The value of 8,(x= 0) is somewhat higher than that
predicted by high-temperature series expansions
(2. 52 —2. 55), but the dependence of 8, on x is in
excellent agreement with the result found by Wood
and Dalton, 3 namely,

1.0 ~ ~

0
8, (x) =8,(x=0) [1+0.99x]. (47)

z' 0.8
O
I-
N
I-
hJz'

0.6
cf
x
UJ

I-
cf

0.4

X = 0,1

~ X=0.2
i X = 0.3

S='r
b c c LATTICE

0 ~ ~

0~

Og

The results of the calculations for M and C are
shown in Figs. 2 and 3, respectively. These
functions are plotted with respect to 8/8, = T/T, ,
where 8, is obtained from (46), for various
choices of x. Clearly, the results are essentially'
independent of x. An indication of why this is the
case can be seen from Eqs. (32) and (33). The
major x dependence is incorporated in the func-
tion r(x), which from (29), (45), and (46) is

l- O

z z
0.2

38(x) 38,(x = 0) T
T x

16m v(1+x) 16vv T,

0.2 0.4 0.6 0.8 1.0

Trr RELATIVE TEMPERATURE

FIG. 2. Theoretical magnetization curve for a bcc
lattice for three values of x, indicating the insensitivity
of M(T) /M(0) to x.

Thus if M or C is plotted as a function of T/T, ,
most of the x dependence is missing. This is con-
sistent with the experimental results obtained by
Miedema et al. ' for the copper salts. It also
proves that if Mand C are written as functions of
8/8, , there are essentially no adjustable param-
eters in the theory.
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1.0

O

N

4J

(9

LLI

LLI

0.8

0.6

0.4

EXPERIMENT
THEORY
S= /2

I

b c c LATTICE

+ o

0.2

CuK2CI4 ~ 2H20

0.2 0.4 0.6 0-8 1.0

A comparison of the theoretical and experimen-
tal results for M and C is given in Figs. 4 and 5,
respectively. The agreement is rather good con-
sidering the number of approximations that have
been made. It should be pointed out here that for
T/T, & 0. 85 the expression used for C amounts to
the difference between two very large quantities
and, therefore, the accuracy of values for C in
this temperature range is probably not too good.

T/, RELATIVE TEMPERATURE
C

I IG. 4. The relative magnetization of CuK2C14 ~ 2H~ 0
compared with theory.

Heisenberg model is indeed a good model for mag-
netic insulators. These results indicate that if
M (or C) is considered as a function of 8/8, = T/T, ,
the result is essentially independent of x. This
agrees with the experimental findings, and also
indicates that the values of J, and x do not nec-
essarily have to be the same for each of the cop-
per salts. 3

The inclusion of the terms beyond the Hartree-
Fock theory treated by Loly allows one to obtain
rigorous expressions for the leading terms con-
tributed by the magnon-magnon interaction to the
specific heat and the magnetization. The leading
temperature term in the momentum expansion of
the magnon energy can also be evaluated rigor-
ously. The numerical results obtained here seem
to be in reasonable agreement with the Hartree-
Fock theory for T/T, & 0. 9, except for the slight
variation of the Hartree- Fock results with x.
Above this temperature the results for positive M
and C become double valued in the Hartree-Fock
theory but remain single valued in the theory pre-
sented here, which explains why this theory pre-
dicts a transition temperature and the Hartree-
Fock theory does not.

Finally, it should be pointed out that the theo-
retical fits obtained in the last section do not de-

1,4

CONCLUSIONS

Before considering any interpretation of the
results obtained in this paper, it is important to
emphasize the fact that Eqs. (42) and (43) repre-
sent approximations to the actual behavior of M
and C predicted by the Heisenberg model. The ac-
curacy of these equations is certainly open to
question. It is true that the approximations which
were used to obtain these results are valid at low
temperatures, and the low-temperature expan-
sions of (42) and (43), given by (32) and (33), are
exact or order T . It is also true that the value
of 8,(x= 0) and the variation of 8, with x are in
good agreement with the high-temperature expan-
sion results for the ferromagnet. This, of
course, does not imply that the detailed behavior
of M or C is correctly predicted near T„but it
does indicate that the temperature extrapolation
represented by (42) and (43) is not totally mean-
ingless.

If one accepts that these expressions are rea-
sonably good for arbitrary T& T„ then the results
of the last section are further evidence that the

1.2

1,0

~ EXP ER I MENT
THEORY

S ='/p
b c c LATTICE

4Jz 0.8o
U

o
IJJ
Q
V)

0.6

o~

Cu K2 Cl+ ~ 2H2

Cu (NHy)2 Cl~ ~ 2H20

Cu Rb2 CI~ ~ 2 H20

C u (NH&) 2 8 r4 ~ 2 H20

0.4

0.2

0.2 0.4 0.6 0.8
T/T, RELATIVE TEMPERATURE

C

1.0

F&G. 5. The specific heat of the four copper salts com-
pared with theory.
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pend on any adjustable parameter, and they do
not contain any of the contributions from the kine-
matic interaction, lifetimes of the quasimagnon
states, or the magnon-magnon bound states.
Presumably these contributions remain small
over most of the temperature range T& T, .
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APPENDIX

Expressions for Z2 and Z& are obtained in this
Appendix. The leading temperature terms for
Z& can be obtained by substituting the identity

Gv(q; z)=(I/») f [p (q; )/(z-~)]d~ (Al)

into (7), after replacing G, by Gn, and then using
(21). The result is

Zn(q; E(q)+is)= —Zf(E(p))

&& [~(p)+~(q) -~(P+q) -~(0)]+~ ~ f(E(P) )N gj",

TI,z(-,
' (p-q), k; E (q)+E (p)+i@)vs, z(k, z(p-q) )

E'(q) +E'(p) -E'(z (p+ q) + k) -E'(z (p+ q) - k)+ is (A2)

where the T matrix is given by (10) with

~g(k; z) =1/[z-E (—,
' K+k) -E (—,

' K-k)] . (A3)

The T-matrix equation can be solved but the re-
sult is too complicated to treat numerically. An

approximation which greatly simplifies the result
and also leads to the correct low-temperature re-
sults for C and M is based on the matrix 8, which
enters into the solution for the T matrix:

venient to let (g ) represent the set of nearest
neighbors and (q) represent the set of second
neighbors. Then let

D($, $') =a, if $ =(', D(f, q') =az if q=g',

=b, if =b2 u g~q',

D($, j)=bs, D($, 0) = —,
' n„D(g, 0)= —,'n2, (AS)

I'1=a, —b1,

B (f, $) =D(j, $) —cos-', (p + q) $ D(ri, 0)

D(n, t)=- ~' ~
(A4) Bi=3[ s-in'] &z=4[hs- ~ nz]

R =1+x8,+ g2.

(A9)

cos k. q cos k
E'(q)+E'(p) -E'(-.' (p+q)+k) -E'(-,' (p+q) —k)+is

(A5)

where g and ( represent neighbor vectors. The
approximation mentioned above is to neglect the

p and q dependence of I3. This has the effect of
discarding the effects produced by the magnon-

magnon bound states. This also allows us to drop
the & dependence since the resulting expression
for D, given by

E'(q) =J,[Z; e'~ 'I+xZz e'~ '"J. (A10)

Then,

1
A =—

1 4

the quantities A„are defined by

Qp ~Q 1
1-Z, ' 3 41+ Q1+ +2xQ1R

x 2 3 xl 2

3

The quantities a and I' are generalizations of the
n and l defined by Dyson for the nearest-neighbor
interaction, and they are functions of x since

2J, ~ cosk gcosTc ~ $
E'(a)

converges in three dimensions.
The result for Z& then becomes

(AS) Q Q2+2xg R x ~-—
2 4

1e 1 l" n e I
A, = —~ —— ' +xg, R —'- —i ——,(A11)3 6 4 4 1 P 3 4

(A7)
4

Zv(q E(q))= -J, Z A„I„(T)z„(q) .
n=1

In defining the various terms in (A7), it is con-
2 a n2 1 1 1

A =—xR ~+—+—a g+—8'+—g4 3 4 3 2 1 2 4 2 3 1
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1+~ 391+2+492+1

e„by e,(q) = Z «(1 —e'~ '),
e,( q) =Z q (1 —e' ' "),

c,(q)=Z sin —q' &'
2

1 . 1
e,(q) = —Z sin —q ~

&

l)f

and I„(T) by

I

1 n

In

(A12)

I„(T)= (1/~) Z, f(Z(q) ) e„(q), (A13)

Z, (q) =-,' I,(T)e,(q) +-,' xI,(T)e,(q) .
Then

(A14)

~2(q; &(q))=( &-!)Ii(T)~&(q)+(&2 ~3+)
4

xI2(T)ez(q)+Q A„I„(T)c„(q). (A15)
ii=3

where E(q) is given by (22).
According to the prescription given in the text,

Za(q) is the non-Hartree-Fock part of (A7), which
from (40) can be written in the form
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