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tal value' is 4. 639 A. While our results show a
marked improvement over the older values, there
are still significant discrepancies with experi-
ment, and revisions of our table may prove desir-
able after more data is obtained on A"J3' C, com-

pounds. It is worth noting that the cases Q = + 1
correspond to donor or acceptor impurities, so
that further study of this question may supply val-
uable insight into the strain fields surrounding
electrically active impurities in semiconductors.
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The phonon dispersion curves for CsCl, CsBr, and CsI have been obtained using a rigid-ion
model with an appropriate effective ionic charge. The five model parameters for each crystal
are obtained from three elastic constants and the two long-wavelength optic-mode frequencies,
reliable data for which exist for all three crystals. Our results are in agreement with those of
more elaborate models. The phonon density of states and the Debye characteristic tempera-
tures are also calculated. A Born-Mayer-type potential is used to calculate long-wavelength
LO and TO mode frequencies as functions of pressure from pressure dependence of bulk modu-
lus. The result for TO of CsBr agrees well with a recent experimental determination. Next,
using the values of the elastic constants and LO and TO frequencies at various pressures,
co-versus-k curves in selected directions are generated as functions of pressure. Mode
Griineisen parameters are then calculated as functions of k. Finally, the Gruneisen constant
and the volume coefficient of thermal expansion are obtained as functions of temperature. They
agree very well with avail. able experimental data.

I. INTRODUCTION

The lattice dynamics of crystals having the
CsCl structure was first worked out by Ganesan
and Srinivasan. ' They used the results from the
lattice dynamics to predict the temperature varia-

tion of the Gruneisen constant. Their calculations
were based on a Born-Mayer-type potential incor-
porating an x "-type repulsive term and a formal
ionic charge of unity. This treatment is thus essen-
tially similar to the one first introduced by Keller-
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mann for crystals having the NaCl structure. To
obtain a reasonable value of the Gruneisen constant,
Ganesan and Srinivasan varied n as a parameter.
They did not attempt to obtain phonon dispersion
curves or frequency distribution functions. Sub-
sequently, a rigid-ion model was used by Krish-
namurthy ' to obtain the phonon density of states
for CsI and CsBr. Karo and Hardy' studied the
lattice dynamics of CsC1, CsBr, and CsI utilizing
three different models, a rigid-ion model of the
Kellermann type, the polarizable-dipole model,
and the deformation-dipole model. They concluded,
on the basis of experimental data for specific heat,
that the deformation-dipole model produced the
most favorable comparison. This work was closely
followed by two shell-model calculations '7 on
CsC1, CsBr, and CsI. To date no neutron scattering
measurements have been done on either CsC1,
CsBr, or CsI, thus it is not possible to evaluate
the relative merits of the various lattice dynamical
calculations on a direct comparison basis. Recently,
Dotsch and Mitra have studied the spectra of U

centers (H and D substitutional impurities) in
CsCl, CsBr, and CsI. The structure of the side-
bands associated with the local mode spectra of U

centers in CsCl and CsBr agree fairly well with
the calculated phonon density of states obtained by
the deformation-dipole model.

The purpose of the present paper is to develop
a reasonably realistic lattice dynamical model
which can be readily adapted to the determination
of the pressure dependence of lattice dynamics, or
in particular, which will permit one to obtain the
mode Griineisen parameters y, (k) = —din~, (k)/
d lnV for all i' s and 0's, where the former denotes
the branch number and the latter the phonon wave
vector. e and V stand for phonon frequency and
the crystal volume. This restricts us to models
for which all the parameters are or can be avail-
able as functions of volume. Thus some lattice
dynamical models, inc].uding the shell model, have
to be excluded.

In the past the mode Gruneisen parameters and
the thermal-expansion coefficient of certain
crystals have been obtained using more elaborate
lattice dynamical models. ' But usually the pa-
rameters used have been obtained by curve-fitting
techniques, using not only extensive phonon data
measured by neutron scattering, but also thermal-
expansion data which the models purport to predict.
We use essentially a rigid-ion model with an ap-
propriate effective ionic charge, ensuring a proper
LO- TO splitting. This model has been fairly suc-
cessfully used for certain zinc-blende-type
crystals. "The criteria governing their applicabil-
ity have also been discussed. ' The model may,
however, be somewhat approximate for certain

crystals as far as phonon dispersion is concerned. ' '

Nevertheless, for CsC1, CsBr, and CsI such con-
siderations are only academic since no neutron
scattering data exist.

The present lattice dynamical model utilizes the
two long-wavelength optic-mode phonon frequencies
and the three elastic constants as input data for
the determination of the five model parameters.
The phonon dispersion, phonon density of states,
and the specific heat of CsC1, CsBr, and CsI are
calculated using this model. Next the pressure
dependence of the model parameters is obtained
from pressure derivatives of the five input data.
Of these, the pressure dependence of the elastic
constants of all the three crystals is known ex-
perimentally, whereas the pressure dependence of
the Brillouin-zone-center optic-phonon frequencies
is determined from the values of the corresponding
mode Griineisen parameters obtained from a
Born-Mayer-type potential. Next, the lattice dy-
namical calculations are performed at a higher
pressure which gives for each crystal the mode
Graneisen parameters for the six phonon branches
as functions of the wave vector. Finally, the
Griineisen constant and the coefficient of thermal
expansion are evaluated as functions of tempera-
ture. The latter will be shown to agree well with
available experimental data.

II. LATTICE DYNAMICS

Under the harmonic approximation the system
of equations of motion for the rigid-ion model
are expressible as

M uPu =(R +Z CZ)u
The matrices R and C represent the short-range
and Coulomb interactions, respectively, M and Z
are diagonal matrices representing the particle
masses and the charge number, and u is a
column matrix representing the particle displace-
ments. The normal-mode frequency is designated
by cu.

The condition for a nontrivial set of solutions
for the displacements u reduces to the following
secular equation for the normal-mode frequencies:

lM~' —R-zczl=o
For the short-range interactions the application of
the symmetry properties of the cesium chloride
structure considerably simplifies the number of
independent force constants. There are two inde-
pendent force constants n and P for the first-neigh-
bor cation-anion interactions. In order to complete-
ly describe the second-neighbor anion-anion and
cation-cation interactions there are a total of four
force constants.

For second-nearest neighbors the anion-anion
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R„„(KK')= —Sn coswq, coswq, cosmq, , (3)

R~(KK') = 8P sinmq„sinmq, cosmq, ,

where

q =ak

and a represents the lattice constant. The remain-
ing short-range interaction terms in the R matrix
are generated by a cyclic permutationof the coordi-
nate indices in Eq. (3) along with the Hermitian
property of the R matrix.

The expressions for the Coulomb coupling co-
efficients for ke 0 can be generated following the
technique of Kellermann and inparticular have been
given for the cesium chloride structure by Ganesan
and Srinivasan. ' For the special case of k =0, the
only nonzero Coulomb coupling coefficients are

C„„(ICK')= ( Sm/3)( e e ~ /v, )

(4)

C„(ICK') =C„(KIC') =(-4~/3)( e, e ./v. ),

where v, is the volume of the unit cell and e~
= re and e~. =- ze are the effective ionic charge
on the ions.

Taking account of the contribution to the elastic
constants C«, C», and C44 due to the Coulomb
coupling coefficients evaluated by Ganesan and

Srinivasan, ' it can be shown that the following ex-
pressions result for the elastic constants:

C„=(1/a)(2n+ 2q + 5. 62 e e /av, )

C&2 = (1/a)(4P —25 —2n —5. 5e~z'/av, )

and

C44 = (1/a) (2 n+ 25 —2. 83 e e /av, )

The equations relating the LO and TO mode fre-
quencies at the zone center to the force-constant
parameters are obtained by solving the secular
equation at k = 0 and are given as

(o T o = (I/ p )[Sn —4 me'z'/Sv. ]

(oLo = (I/ p ) 18n + 8we'e'/Sv. ]

and cation-cation interactions are assumed to be
equal, reducing the number of second-neighbor
force constants to two, 5 and &~. Interactions be-
tween third and higher neighbors are neglected in
this work. Following standard techniques' the
following expression for the short-range interaction
terms in the B matrix are obtained:

R„„(KK)= —2q cos2'�„—25(cos2wq, + cos 2', )

+ 8m +2q+45,
R„,(KK) = O,

where p. is the reduced mass.
The simultaneous solution of the three elastic

constant equations and the two zone-center equa-
tions enables us to obtain explicit expressions
for n, p, g, 6, and z. This also guarantees an
exact agreement at k =0 for the LOand TObranches.
The experimental values of the elastic constants
of CsCl. , CsBr, and CsI were determined by Chang,
Barsch, and Miller. "The zone-center frequencies
utilized were determined by Jones et a/. "The
values of the zone-center frequencies and the elas-
tic constants are summarized in Table I. The
values of the force constants and the charge num-
bers obtained from the solution of Eqs. (5) and

(6) are presented in Table II. It may be noted that
the z values obtained by this model compare well
with the Szigeti effective chargeof 0. 85e, 0. 78e,
and 0. 67e for CsCl, CsBr, and CsI, respectively.

The phonon dispersion is calculated in various
symmetry directions for CsCl, CsBr, and CsI,
and is presented in Fig. 1. Our calculated phonon
dispersion with a five-force-parameter model
agrees qualitatively with Karo and Hardy's de-
formation-dipole model' calculation and the shell-
model calculation of Srivastava and Dayal. It may
be mentioned here that Karo and Hardy's rigid-
ion model and deformation-dipole model do not
give the correct splitting of LO and TO modes at
k=0.

The frequency distribution function g(~) was
calculated for a mesh of 1000 points in the first
Brillouin zone. Due to the symmetry properties of
the Brillouin zone, one need only consider the
determination of the eigenfrequencies at 56 non-
equivalent points in the k space defined as

~=(qx~ qv~ qs)

where

0. 5&q, ~q, & q, &0.

This type of sampling gave a total of 6000 frequen-
cies from which histograms of g(v) for CsCl,
CsBr, and CsI were plotted. The resulting histo-
grams with frequency sampling widths of ~~
=0.1x10' sec ' are presented in Fig. 2. The cal-
culated frequency distribution qualitatively agrees
with previous calculated results. "

In the case of CsCl the frequency distribution
function was also calculated for a mesh of 8000
points in the first Brillouin zone. This type of
sampling gave a total of 48000 frequencies from
which a resulting curve was plotted as shown in

Fig. 3. In the case of CsCl the possibility of a
narrow gap around 83 cm ' is thus suggested by
our model. A gap mode due to Na as a substitutional
impurity in CsCl has indeed been observed' at
about 83 cm '.
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TABLE I. Elastic constants~ and the Brillouin-zone-center optic-mode frequencies" of CsC1, CsBr, and CsI.

Compound

CsC1

CsBr

CsI

Pressure

STP
4. 5 kbar

STP
9 kbar
STP

9 kbar

C()
10"dyn/cm'

3.683
3.963
3.077
3.607
2.462
3.015

C(2
10"dyn/cm'

0.893
1.107
0.827
l. 236
0.659
1.076

C44
10"dyn/cm'

0.817
0.962
0.760
1.061
0.644
0.950

("Lp
(cm"')

165
171.9
112
122.5
85
93

MTP
(cm-')

99
108.2
73
86. 1
62
71

'Prom Ref. 15.
'STP values are from Ref. 16; values at higher pressures are calculated by the method outlined in this paper.

The calculated Debye characteristic temperatures
as a function of temperature are shown in Fig. 4
and compared to available experimental values. ' '"
Considering the simplicity of the present lattice
dynamical model, the agreement may be regarded
surprisingly good. It may also be pointed out that
in this comparison no anharmonic corrections were
made which become operative at higher tempera-
tures.

III. LATTICE DYNAMICS AT DIFFERENT PRESSURES

The calculation of the lattice dynamics at differ-
ent pressures is rather straightforward if the
pressure dependence of both the elastic constants
and the zone-center frequencies are known. In the
case of the cesium halides, only data on the pres-
sure dependence of the elastic constants are known. "
To date, data on the pressure dependence of the
zone-center mode frequencies exist only for the
traverse optic mode of CsBr. These are there-
fore obtained using a Born-Mayer-type potential,
which is known to predict~"" the zone-center optic-
mode Gruneisen parameters of alkali halides rather
well. It is realized, however, that the use of a
central potential for this purpose is certainly a
lower approximation compared with the lattice dy-
namical model used here. But for the zone-center
modes of alkali halides at least, such an approxi-
mation has in the past been demonstrated ' to
work well.

Adapting to the CsCl structure the relations
given by Mitra for the NaCl structure, one may

write for ~TO and ~«
o(zr, /p —2) e'z' P3~e'z'

3&(& P, 2'vp P

n„(ro/p 2) e'z—' v S~e'z'
(8)

and

&@To = 8Bro/v3 p —v3me z /2ro y.

Ngo = 8'Bro/ &3M + P3ze z /ro p

(io)

For not too large values of pressure the k-0
LO and TO mode frequencies may now be obtained
as functions of pressure according to

d~TO
+Tp(P& +Tp(P) +

and
dI p

COLO(p) (Ogp(p) +P

where ~T«» and (d«(» represent the quantities
at a pressure P and ~To(Q) and cu««& the same
quantities at the ambient pressure. Since both 8

where a~ is the Madelung constant, rp is the near-
neighbor distance, and p is a Born-Mayer potential
constant. Since for the CsCl structure the bulk

modulus 8 and p are related in the following
manner

&u(ro/p 2)e'z'—
(9)

8 3r,' 1

one may rewrite Eg. (8) as

TABLE II. Rigid-ion-model force constants and the effective ionic charge for CsCl, CsBr, and CsI.

Compound

CsCl

CsBr

CsI

Pressure

STP
4.5 kbar

STP
9 kbar
STP
9 kbar

10~ dyn/cm

3.223
3.646
2. 850
3.664
2. 383
2. 991

P
103 dyn/cm

4. 142
4.551
3.463
4. 274
2. 560
3.406

103 dyn/cm

0.153
—0.050
—0.047
—0.337
—0.369
—0. 184

n
10 dyn/cm

2. 555
2. 281
2. 740
2. 878
3.566
4. 410

0.830

0.760

0.651
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FIG. 1. Phonon dispersion relations for CsC1, CsBr,
and CsI in selected symmetry directions in the first
Brillouin zone. f is the reduced wave-vector coordinate
defined as ak. The critical points are defined as
1"=—(0, 0, 0), X=—(0.5, 0, 0), R= (0.5, 0.5, 0.5), and
m-=(0.5, 0.5, 0).

u (10"sec-')

FIG. 2. Calculated phonon density of states g(cu) of
CsCl, CsBr, and CsI as functions of frequency. Histo-
grams are calculated for a frequency interval of 0.1
&&10~3 sec ~.

and r, are known as functions of pressure, "d~Tp /
dP and d+Lo /dP can be obtained readily from Eq.
(10) provided it is assumed that the charge number
z remains constant with pressure for the pressure
range considered. The latter assumption was also
made in the calculations on the NaCl structure
hand also appears to be experimentally evident.

The calculated values of the zone-center frequen-
cies at a higher pressure along with the values of
elastic constants are presented in Table I. It is to
be noted that agreement between the calculated
long-wavelength TO mode frequency for CsBr and
the experimentally measured value is quite good.
The predicted shift for a pressure of 9 kbar is 13
cm while the experimental value' is 11+2 cm '.
Furthermore, the experimental data on CsBr show
a linear variation of &To with P up to a pressure
range of 30 kbar in accordance with the assumed
linear dependence in Eq. (11).

The results derived from Eq. (10) are valid for
the Born-Mayer potential assumed for the long-

l200-

3 800-

400-

0 . .-P''
0 0.6 l.2 l.8 24 5.0

~ (l0" sec-')

FIG. 3. Phonon density of states for CsC1 calculated
with a frequency interval of 0.03X10' sec '.
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l70-
!60-
l50p

g WOp
l30

l50.-

l40-
l30-

)'

n l20

zone is given by
din~;(k)

d lnU

In terms of the bulk modulus and the pressure de-
pendence of the phonon frequencies, the Gruneisen
parameter can be expressed as

y,. = (B/(o) (n, (u/ap) r

It is then possible to obtain the variation of the
Qraneisen parameter as a function of wave vector
k. Figure 5 presents the wave-vector dependence
of y, in the (&00) and (t'gf) directions for CsC1,
CsBr, and CsI, respectively, where g is the re-
duced eave-vector coordinate. The crosses and
circles in the figures represent the long-wave-
length limit of the mode Griineisen parameter for
the LA and TA modes calculated from the contin-

4.0

FIG. 4. Debye characteristic temperature of CsCl,
CsBr, and CsI as functions of temperature. Sources of
experimental points are as follows: Circles (Ref. 18);
crosses (Ref. 19).

I.Q-

LO

LA

wavelength optic modes and need not be confused
with the results of Eq. (6) which are for a more
elaborate model that assumes noncentral forces
and are used here for the calculation of lattice dy-
namics. It may be emphasized that the use of Eqs.
(8) or (10) for the calculation of the volume depen-
dence of the long-wavelength LQ and TO mode
frequencies are justified to the extent that such a
treatment was found quite satisfactory for LiF,
NaF, KC1, and KBr for which data exist~'*~~ and
also for wT of CsBr as indicated above.

VVith the use of the high-pressure data for the
elastic constants and zone-center frequencies the
calculation of the phonon dispersion at a higher
pressure is performed in a manner analogous to
the treatment at standard pressure. Table II pre-
sents the values of the force constants at a higher
pressul e.

5.0

I.O

0

TA

{1,0,0) (f', &,x) R

IV. MODE GRUNEISEN PARAMETERS, GRUNEISEN
CONSTANT„AND LINEAR THERMAL-EXPANSION

COEFFICIENT FOR CsC1, CsBr, AND CsI

The Gruneisen parameter for the phonon frequen-
cy of the sth branch at a point k in the Brillouin

FIG. G. Mode Gruneisen parameters for CsCl, CsBr,
and CsI as functions of reduced wave vector in g'00j and
g'fg] directions. Long-wavelength values of AT+ and

ALA calculated for the continuum model are indicated by
crosses (coming from I$00J direction) and circles (com-
ing from g ff] direction) .
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I

I I I I I
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2,0-,'

I,8-
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10 30 KO IOO 200 300
T ('K)

FIG. 6. Gruneisen constant of CsCl, CsBr, and CsI
as functions of temperature. Crosses indicate low-
temperature limits calculated by the method of Ref. 27.

uum case.
The Griineisen constant defined as y =—p,y,.C,./

LC& was calculated using the calculated frequency
distribution functions for CsCl, CsBr, and CsI. It
is expressible as

P J
y(T)= Z &~ y„c,—,'(a, -a

i =1 /=i

P
E h, C; —,'(a; —a;,),
i=l (i4)

where a; =$&u;/kT and C, is the Einstein specific-
heat function. A;; is the height of the distribution
function between ur; l and &,. y&, is the individual
mode Gruneisen parameter of the jth frequency in
the ith interval, J is the number of frequencies in
the ith interval, and I' is the number of frequency
intervals.

The variation of the Gruneisen constant with
temperature is presented in Fig. 6 for CsCl, CsBr,
and CsI. The crosses in the figure indicate the

5.0

0.0
oooo

~ &.0

O
2.0

I.O

0 I I I i I

0 50 IOO 150 200 250 500
T {'K)

FIG. 7. Linear thermal-expansion coefficient of CsCl
as a function of temperature. Experimental data from
Bailey and Yates {Ref. 30) are indicated by circles.

low-temperature limit of the Gruneisen constant
from a relationship given by Daniels.

A formal calculation of the Gruneisen constant
as a function of temperature using results of lat-
tice dynamics was first attempted by Barron, '
who showed that y, even in some simple crystals
may be expected to exhibit considerable tempera-
ture dependence at low temperatures (T & Hn). Al-
though the individual mode Gruneisen parameters
varied widely in their values, y of the CsC1-type
crystals appears to be almost independent of tem-
perature except for a small bump at very low tem-
peratures. Thus the three crystals considered
here appear to constitute a type of nearly perfect
"Gruneisen solids, " the condition for the existence
of which was given by Blackman. Ganesan and
Srinivasan' also recognized that y may be indepen-
dent of T for the CsC1 structure when a certain
value of the exponent e was chosen for the repul-
sive term in the Born-Mayer-type potential they
used.

Once y is known, the linear thermal-expansion
coefficient is obtained by the relation

~(T) =y(T)C.(T)/»~. (l5)
where C„ is the specific heat at constant volume.
The variation of the linear thermal-expansion co-
efficient with temperature was calculated from Eq.
(i5) using calculated values of y and C„as obtained
from the present lattice dynamical calculation. In
particular, the specific heat was obtained using
the relation developed by Vetelino and Mitra. "The
results are presented in Figs. 7-9, and are com-
pared with available experimental data. ' It may
be remembered that the calculated values are ob-
tained using only elastic constants, their pressure
derivatives and the long-wavelength optic-mode
frequencies. The calculated curves not only give
the right trends of temperature dependence, even
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5.0

4.0

5.0 pO 4 0+
00

O h

~ 3.0

D= 2.0

~ 50

Q= 2.0

I.O

0 t

0 50 IOO l50 200 250 300
T(K}

0 l I

0 50 l00 l50 200 250 300
T (K)

FIG. 8. Linear thermal-expansion coefficient of CsBr
as a function of temperature. Experimental data are
from X —White (Bef. 31);Q —Krishman and Srinivasan
(Ref. 31) & —Bailey and Yates (Bef. 30).

FIG. 9. Linear thermal-expansion coefficient of CsI
as a function of temperature. Experimental data are
from Ref. 32.9 —James and Yates D- Bymer and

Hambling; &- Johnson, Agron, and Bredig; T —Pathak
and Pandya; Q- Baxter and Wallace.

the absolute values of the coefficient of thermal
expansion agree remarkably well. This is partic-
ularly so for CsBr.

Note added fn proof. Recently, R. P. Lowndes
[Phys. Rev. B 1, 2V54 (1970)j has experimentally
determined the long wavelength y« for CsBr and
CsI. His values are 0. 63 and 0. 68, respectively.
These are somewhat smaller than the values cal-
culated from dB/dP in this paper (see Fig. 5). In-
stead of using dB/dP, if one used directly the Born
Mayer potential constantia/p (Ref. 24, p. 26), one
obtains yTo = 3. 2 and y~o = 1.2 for both CsBr and
CsI. This QTp ls in excellent agreement with the
experimental value for CsBr as given in Ref. 20.

But yLo is still somewhat higher than that obtained
by Lowndes. However, it is worth mentioning here
that the over-all agreement of n versus T is not
very sensitive to the choice of k = 0, y, and y
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Processes of defect creation by nonionizing radiation were studied by applying thermolumi-
nescence methods. KBr crystals were irradiated at 80 K by monochromatic uv light in the
region of 1800-2300 A. Shapes of glow curves were found to differ from those obtained after
g coloration. Excitation spectra of the various glow peaks as well as dose dependence of their
intensities were invest;igated. The excitation spectrum showed maxima at the n band and on
the long-wavelength tail of the fundamental absorption. Most of the glow peaks showed a linear
dose dependence. The mechanism proposed by Pooley and by Hersh is extended to the case of
defect creation by irradiation into a perturbed exciton state and excitation of thermolumines-
cence. An expression for the number of the defects created by the uv irradiation is derived
as a function of the radiation dose. This expression takes into account the absorption coeffi-
cient of the crystal and, therefore, the penetration depth of the exciting monochromatic light.
Experimental results were found to be in good agreement with those predicted by the model.

I. INTRODUCTION

Color-center formation in alkali halide crystals
by uv radiation has been investigated by various
authors. ' Several models have been suggested to
explain defect generation by ionizing and nonioniz-
ing radiation; an excitonic mechanism for the
creation of I' centers in alkali halides has been
proposed independently by Hersh and by Pooley. ~

This mechanism is now extended in order to take
in account creation of defects by irradiation into
a perturbed exciton state, and to explain excitation
of therm"luminescence (TL) by uv irradiation.

In most previous experimental investigations,
crystals were irradiated with polychromatic uv

light, since the low intensities of the uv light
sources and the relatively low sensitivity of absorp-
tion methods did not permit the use of monochro-
matic uv light. The use of monochromatic light
appears to be of advantage in the study of the en-
ergies connected with the creation of defects and

the processes involved.
In the present work, TL methods have been ap-

plied to study the processes of defect formation by
nonionizing radiation. The relatively high sensi-
tivity of TL compared with optical-absorption mea-
surements enabled us to use monochromatic uv

light for excitation, The excitation spectra of the
main glow peaks revealed information concerning
defects which were undetectable by other means
under similar excitation conditions.

II. THEORETICAL MODEL

We start from the model which has been given
by Pooley and by Hersh for the creation of defects
in alkali halides by irradiation into the fundamental
absorption bands. We consider def ect generation
by uv light in the case of irradiation into the edge
of the fundamental absorption as well as into the
n band. We take into account the penetration depth
of the exciting uv light depending on the absorption
coefficient of the crystal.


