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A table of additive covalent radii for tetrahedrally coordinated crystals is obtained by simple
quantum-mechanical considerations using the bond lengths of the four diamond-type crystals and

only two free parameters. The 39 bond lengths so obtained agree with experiment with an rms
error of less than 1%. The extension of these considerations to other crystal structures and to
molecules is considered. These radii should be useful for estimating lattice distortions pro-
duced by isoelectronic impurities.

1. INTRODUCTION

As soon as x-ray data on crystal structures be-
gan to accumulate, ' various authors proposed that
interatomic distances d(AB) could be regarded as
approximately the sums of atomic radii x„and x~,

d(AB) =r„+vs.
Relations such as (1.1) a.re consistent with the
historical notion of atoms as indivisible particles
which were presumed to be hard spheres indepen-
dent of their environment. Theories of interatom-
ic spacing have since attracted considerable in-
terest and excellent reviews are available in the
books by Pauling and by Slater. 3

Slater points out that if one is willing to toler-
ate errors as large as 10-20%, then any inter-
atomic spacing can be calculated without employ-
ing any free parameters. One may take tabulated
Hartree- Fock-Slater solutions for the electronic
structure of the free neutral atoms and assume that
the atomic radii are the radii of the charge-den-
sity maxima of the outermost electrons. The as-
sumption here is that the covalent bond length is
determined by the maximal overlap of the unper-
turbed valence wave functions and that ionic and
other effects on interatomic distances may be ne-
glected.

However, the opposite approach of introducing
large numbers of free parameters in order to im-

prove the accuracy of the calculated values has
been the more popular. Typically, one introduc-
es as a free parameter the atomic radius of each
element and then varies these to give the best sta-
tistical fit to the class of materials under consid-
eration. More sophisticated theories2 take ac-
count of variations in environment associated with
the covalent, ionic, or metallic nature of the
bonding of each atom to its nearest neighbors as
implied by coordination numbers and classical
valence concepts. Such refinements introduce
several free parameters for each element consid-
ered. While trends among these parameters are
usually discernible, it is not always clear whether
these arise because of necessity or convenience.

In this paper we attempt to clarify this situation
somewhat by first restricting ourselves to the
class of tetrahedrally coordinated crystals having
the chemical formula A"B' ". (These crystals
have the diamond, zinc-blende, and wurtzite
structures. ) Within this restricted class, we de-
velop explicit formulas for the interatomic spac-
ings which produce rms errors of less than 1%
Our formulas use a minimum number of free pa-
rameters and have a clear physical interpretation.

Many discussions of bond length have been car-
ried out for molecules, where multiple m bonds and
lone pairs produce large variations in bond lengths.
In cubic crystals, on the other hand, these molec-
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ular effects are largely absent. The tetrahedrally
coordinated atoms we consider have no lone pairs
or m bonds, and each atom is predominantly in an

sj -hybridized state. Variations in bond length
are therefore associated primarily with variations
in core size. The latter can be treated either
using Slater's rules for the radii of atomic shellss
or by examining core wave functions derived in
free-atom Hartree-Fock-Slater calculations.
Either way provides a quantum-mechanical basis
for our theory, but we prefer using Slater's rules
because of their algebraic simplicity as well as
functional uniformity.

The plan of this paper follows. In Sec. 2 we re-
view some empirical trends among atomic radii.
In Sec. 3 we develop our explicit formulas for the
tetrahedral covalent radii. In Sec. 4 a statistical
comparison is made with Pauling's predictions and
with experiment. In Sec. 5 we consider the rela-
tion of the tetrahedral radii to those obtaining in
structures of higher coordination by treating the
less ionic compounds which form crystals in the
sixfold coordinated rock-salt structure. In Sec.
6 some recent experimental results on tetrahedral
bond lengths in cage molecules are discussed. It
is shown that crystalline tetrahedral radii are not
simply related to molecular radii, because of lone-
pair effects in the latter which are absent in the
former.

2, TRENDS IN EMPIRICAL COVALENT RADII

The most striking trend in the Pauling-Huggins
table of covalent radii '6 and most other such tables
is that the proposed radii of the elements decrease
as one goes across the Periodic Table from left to
right, i. e. , with increasing core charge or valence
number. Thus the radius of Mg is supposed to be
40%% larger than that of Cl and that of Be 65'%%uo larger
than F. A. priori, this is rather surprising because
the atoms of greater valence are usually consid-
ered to be larger than those of lesser valence in
the same row. The crystal-structure diagrams of

Wyckoff and others follow this convention. Of
course, the quantum-mechanical wave functions do
not def ine a unique radius for the atoms. The Hartree-
Fock-Slater calculations for the free atoms4 do
show that the charge-density maximum of the outer-
most electrons moves inwards with increasing va-
lence, so that by the Slater criterion for the cova-
lent bond, this trend in the empirical radii is con-
sistent with the quantum-mechanical calculations.
However, one may note that by the Slater criterion,
one calculates the nearest-neighbor distar. e in di-
amond to be 1.20 A, whereas the observed value is
l. 54 A. Thus one has a 22%%uq error in what is gen-
erally considered to be the prototypical covalent

bond. Thus this bond length is fixed at a point sub-
stantially greater than the maximal overlap of the
unperturbed wave functions. On the other hand, if
we assume that the radius of the atom is deter-
mined by the point at which the total charge den-
sity falls to some fixed value, then the free-atom
calculations show that the atoms get larger with
increasing valence —not smaller.

We will thus seek some other explanation of the
empirical trends in nearest-neighbor distances.
When one considers the nearest-neighbor distance
of all compounds in the diamond, zinc-blende, and
wurtzite structures made up of elements from a
given row or pair of rows of the Periodic Table,
one finds these to be nearly constant in most
cases. The typical variation from the mean value
is about l%%uo with larger deviations observed in a
few cases (most notably the Be salts) for reasons
to be discussed shortly. The deviations from the
value observed in Ge for GaAs, ZnSe, and Cuar
are —0. 1, +0. 2, and+ 1. 6%%uo, respectively, and the
deviations from the (geometric) mean of the values
for Ge and Sn for GaSb, InAs, ZnTe, CdSe, and
Cul are +1.0, —0. 4, +0. 5, +0. 3, and —0. 3%%ug, re-
spectively. This observation was utilized to de-
fine a new set of covalent radii to be used to cal-
culate electronegativity differences according to
the dielectric definition. ' There the radii were
taken to be constant at the value observed in the
group-IV element for the entire row., they were
assumed to be independent of valence. The as-
sumption there was that the bond length is deter-
mined by the eight valence electrons of the pair,
independent of the atomic cores involved. This is,
thus, the opposite extreme of the hard-sphere addi-.

tive-radii picture.
To obtain more precise bond lengths we will now

modify this valence-electron bonding model some-
what. We assume that as long as the core-electron
radii are sufficiently small (this condition will be
quantified shortly), the bond length will be deter-
mined by the sp'-hybridized valence electrons, in-
dependent of the valence of the atoms involved.
However, as Anderson' has noted, the wave func-
tions of the valence electrons of a given atom must
be orthogonalized, not only to the core states of
that same atom, but also to the core states of
neighboring atoms when brought together to form
a crystal. The effective pseudopotential is thus
repulsive in the region of the neighbor's core and
a repulsive interaction between the atoms develops
if they are brought so close together that substan-
tial overlap between the valence electrons on atom
A. and the core electrons on atom 8 develops. If
the lattice contraction is not stopped by the va-
lence-bonding effects before this occurs, then the
nearest-neighbor distance is limited by this core
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repulsion to be larger than the value expected from
valence-bonding effects alone. Thus the reason
that empirical analysis of lattice constants implies
that the additive radius of Mg is larger than that
of Cl is not because the spatial extent of the va-
lence wave functions of the free neutral Mg atom
is greater than that of the free neutral Cl atom
(this simply is not so), but because the spatial ex-
tent of the 2s and 2p cores of Mg is greater than
those same cores in Cl.

Before we give an explicit formula for the inter-
atomic distances based on the above considerations
in Sec. 3, we note that another discernible trend
in the empirical radii tables is that the values for
a given atom tend to increase with coordination
number. Pauling treats this effect at length and

proposes some quite plausible prescriptions for the
trends. In this paper we shall avoid trying to cal-
culate the relation of the additive radii from one
environment to another. Instead we will consider
all cases for which data are available for a given
situation —such as the tetrahedrally coordinated
A 9 "crystals —and fix the parameters of our
model for each coordination class independently.

We further note that in the tetrahedrally coordi-
nated crystals which are our primary interest, the
ratio of the second-nearest-neighbor distance to
the nearest-neighbor distance is 2v 2/ V 3 = 1.63.
This ratio is large enough so that the covalent
radii (by either Pauling's table or the one we shall
propose) of the second-nearest neighbors never
overlap. Thus, in contrast to the situation in some
other structures, such as the more ionic oxides,
we will neglect to consider any second-nearest-
neighbor interaction for this class.

3. CALCULATION OF ADDITIVE RADII

Although we emphatically reject the hard-sphere
model as an explanation for the observed inter-
atomic distances, we will continue to use the ad-
ditive-radii notation with the explicit understand-
ing that their only significance is that by (1.1)
they give the nearest-neighbor distances in the
crystal. We do this solely for simplicity and con-
venience.

First let us note that the radius of the core elec-
tronic shells is no better defined by quantum-me-
chanical calculations than is the radius of the va-
lence electrons. Therefore, in order to quantify
our notion of the size of the core shell, we may
fall back to the Bohr orbit model of the atom and
use Slater's rules' for the effective charge seen by
electrons in the various shells.

Therefore, the effective radius of the outermost
core s or P shell as seen by the sp3-hybridized
bonding electrons is assumed to be

r, = R(n) /Z„, . (3. 1)

r(n, Z) =r„(n),

r(n, Z) =r„(n)+(r, -O 4r„), .

r, - 0. 4r, (3.3)

O. 4r„&r, . (3.4)

According to (3. 3) and (3. 4), there are two re-
gimes to be considered. When r, is sufficiently
small, the covalent radius is a function of n alone,
and is therefore constant in each row when Z„~ ex-
ceeds a certain minimum value which makes r,
~0.4r„. Larger values of r, increase r, as de-
scribed by (3. 4). The coefficient 0. 4 is our sec-
cond adjustable parameter. It has been estima-
ted by consideration of compounds containing ele-
ments of the first two rows of the Periodic Table.
There is no expansion in the elements belonging to
the third and fourth rows. In Sec. 5, we will dis-
cuss evidence that this parameter should be 0. 25
instead of 0. 4 for the 3d transition-metal ele-
ments, as well as Ca. This would not affect the
values in Tables I and II.

To complete our model we utilize the observed
values of the nearest-neighbor distance in the dia-
mond-type crystals of the group-IV elements C,
Si, Ge, and Sn to determine the values of the ef-
fective additive radii in the absence of any core ef-
fect. We denote these four parameters by r„(n), n
= 1-4 f the four rows from C to Sn. The values
thus determined are 0. 672, 1.127, 1.225, and
1.405@0, respectively. Note that for C and Si, the
additive radii (equal to one-half the nearest-neigh-
bor distance), 0. 772 and 1.176 A, are greater than
r„(1)and r„(2) because of the effect of the size of
their cores, while for Ge and Sn the cores are
much smaller due to the filled d levels, and r is
equal to r„. In Table I we show the values of Z,«,
r„and r for Z = 1—7 and n = 1-4.

Here Z,« is the effective charge for this outer-
most s or p core state as given by Slater. Hence-
forth all mention of Z,«will be with the under-
standing that we refer to that shell. (Note that sp'
electrons do not feel a repulsive pseudopotential
due to d-core shells. ) n is the principal quantum
number of that shell and R(n) is a parameter. We
shall fix R(n) for one particular n and then assume
it varies according to the Bohr formula

R(n) =n [Z (C)/Z (EV) ] 4. Oa . (3 2)

Here Z„,(C) denotes the effective charge for C,
5. 7 electrons, and Z„,(IV) denotes the effective
charge for the group-IV element in whichever row
of the Periodic Table the element in question be-
longs. Z,« is 9. 85 for Si, 20. 75 for Ge, and 22. 25
for Sn. The constant 4. Oao is our choice for the
one adjustable parameter introduced so far.

In terms of r, the covalent radius of an atom
from row n of valence Z,« is
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TABLE I. Tetrahedral covalent radii. For each element the effective charge Zef f seen by electrons in the outer-
most s or p core shell as calculated according to Slater's rules (Ref. 5) is shown together with the corresponding core
radius ~, and the tetrahedral covalent radius. The underlined values of the tetrahedral radii are those which have been
affected by the core. (See Secs. 3 and 4. )

Be

3.70
0. 572
0.975

Element

jeff

B

4. 70
0.450
0. 853

5.70
0.371
0.774

6.70
0.316
0.719

0
7.70
0.275
0.678

8.70
0.243
0.672

7. 85
0.625
1.301

Ca

8.75
0. 598
1.333

10.25
0.846
l. 689

Cu

17.75
0.295
1.225

19.25
0.451
1,405

Zn

18.75
0.279
1,225

20. 25
0, 428
1,405

8. 85
0. 554
1.230

Ga

19.75
0.265
1,225

21.25
0. 408
1.405

Si

9.85
0.497
1.173

20. 75
0.252
1,225

22. 25
0, 390
1.405

10.85
0.452
1.128

As

21.75
0.241
1.225

23.25
0.373
1.405

ll. 85
0.413
1,127

Se

22. 75
0, 230
l.225

Te

24. 25
0.358
1,405

C1

12.85
0, 381
1.127

23.75
O. 220
1,225

25.25
0, 344
1.405

It is interesting to note that because r„(n) is fixed
by the bond lengths of g. ~up-IV crystals, our mod-

el, in effect, replaces the 24 parameters used by

Pauling to describe n=1-4 and Z=1-3 and 5—7

by just two parameters. If these two parameters
can reproduce the bond lengths of 35 zine-blende
and wurtzite crystals with high accuracy, then one
can conclude that the core model is not inconsis-
tent with a quantum description of the nature of
crystalline covalent radii.

4. COMPARISON WITH EXPERIMENT AND WITH
PAULING-HUGGINS'S VALUES

In Table II we compare the observed values of
the nearest-neighbor distances in the tetrahedrally
coordinated AB crystals with the values predicted
according to (1.1) using the Pauling-Huggins tetra-
hedral covalent radii and using the radii we cal-
culate (Table I). Hcwever, special note must be
taken of cases such as SiC. The radii of Si and C
are uniquely determined by observation of diamond-
type C and Si crystals. However, the nearest-
neighbor distance in SiC, 1.8827 A, is significantly
less than the sum of these radii, 1.9480 A. Paul-
ing's explanation of this and several similar cases
is that the difference between the sum of the radii
and the nearest-neighbor distance must be due to
the partial ionic character of the bond. "'

Although an appeal to ionic character would be
useful for SiC, more ionic crystals such as ZnS do
not exhibit such an effect. We therefore propose
a different explanation. In our model, both Si and

d(A, B)= ~„(A)+~„(B)+5x, ,

where

(4. 1)

C have radii which are larger than the values that
would obtain in the absence of the core-valence
electron repulsion discussed in Sec. 3. We assume
that this effect is diminished when the valence
electrons of the atoms forming the crystal have
different principal quantum numbers.

We know of no quantum-mechanical explanation
for this diminution. The following mechanism has
some appeal, however. Consider the specific case
of SiC, where bonds are formed between 2s2p -hy-
bridized C orbitals and 3s3p -hybridized Si orbit-
als. When the bonding electron is centered on C
it avoids the C core, which increases the C radius
by approximately 0. 10 A (Table I). Suppose when
it moves to the neighborhood of Si the bonding or-
bital "remembers" that it has already increased its
natural "size" by 0. 1 A. Then it may require little
extra kinetic energy to avoid the Si core, which in
pure Si increases its radius by only 0. 05 A. An-
other possible explanation for this "memory" effect
is that the core energies are quite different, being
about three times as great for the 1s electrons of
C as for the 2s and 2p electrons of Si.

Whatever the microscopic mechanism, we find
that when atoms belonging to different rows are
combined, we can calculate bond lengths quite
well by simply deleting the smaller of the two
core-effect expansion parameters x, —0. 4x„. That

is, we have
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Compound

Bn
BeO
A1P
MgS
GaAs
ZnSe
CuBr

InSb
CdTe
AgI
SiC
BP
BeS
AlN

GaN
ZnO
CuF
BAs
BeSe
InN
BeTe

A1As
MgSe
GaP
ZnS
CuC1
InP
Cds

A1Sb

Mg Te
GaSb
ZnTe
CUI

InAs
CdSe

obs

1.565
1.649
2. 360
2.410
2. 441
2. 454
2. 464

2. 805
2. 806
2. 807
1.883
1.965
2. 100
l. 8g2

1.944
1, 973
1.843
2. 069
2. 195
2. 154
2. 399

2. 451
2. 533
2.360
2. 342
2. 341
2, 541
2. 532

2. 656
2. 762
2. 649
2. 637
2. 617
2. 614
2. 633

dcalc

(A)

I.572
1.653
2. 358
2. 428
2. 450
2.450
2.450

2. 810
2. 810
2, 810
1.901
1.980
2. 102
1.g02

1.944
1.903
1.897
2. 078
2.200
2. 124
2. 380

2. 455
2. 526
2. 353
2. 352
2.352
2. 533
2. 532

2. 635
2. 706
2. 630
2.630
2, 630
2. 630
2. 630

dPau ling-Huggins

1.58
1, 72
2. 36
2. 44
2.45
2.45
2.46

2. 80
2. 80
2.80
1.94
1.98
2. 10
1.96

1.96
1.97
1.99
2. 06
2.20
2. 14
2. 38

2. 44
2. 54
2.32
2. 35
2. 34
2. 54
2. 52

2. 62
2. 72
2. 62
2. 63
2. 63
2. 62
2, 62

J. F. Black and S. M. Ku, J. Electrochem. Soc.
113, 249 (1966); J. Whittaker, Solid State Electron. ~8

644 (1965).

gy, = greater of

[r,(A) —0. 4r„(A), r,(a) —0. 4r„(B)] .

Thus for SiC, we add the radius of C, including the
effect of the core, to the r„ for the Si row, r„(2),
to obtain 1.901 A, in reasonable agreement with
the observed value 1.883 A for the zinc-blende
form. This prescription has been used to correct

TABLE II. Comparison of predicted nearest-neighbor
distances to experiment. All experimental values are
taken from Wyckoff (Ref. 7), except for MgS, MgSe, and
ZnO. The MgS and MgSe values are due to Mittendorf
(Ref. 13). The ZnO value is due to S. C. Abrahams and
and J. L. Bernstein tActa Cryst. (to be published)]. When
a compound occurs in both the zinc-blende and wurtzite
forms, the value shown is that of the more stable. low-
temperature form.

all our predicted bond lengths for which both radii
are expanded by core effects (Table II).

The rms error in our predictions of the bond
lengths of all the tetrahedrally coordinated AB
crystals is 0. 96%, as compared to 1.76'%% for the
predictions according to the Pauling-Huggins co-
valent radii. The fact that the Pauling-Huggins
radii give a larger rms error results from sever-
al facts. Pauling and Huggins did not restrict
themselves to these crystals, and included large
numbers of molecules when fixing their parame-
ters. They also did not have as accurate data
when they made their survey. With one parame-
ter for each atom at their disposal they could not
do worse than we do in fitting the same class of
bond lengths. Indeed we could improve our pre-
dictions by introducing a few more parameters,
e. g. , a scaling factor for the core correction for
the first row of the Periodic Table 10%%uo smaller
than that used for the other rows. In view of the
good agreement already achieved we regard such
refinements as marginal, and they will not be an-
alyzed here.

5. ADDITIVE RADII FOR COORDINATION
GREATER THAN FOUR

We shall now consider the relationship between
our tetravalent radii and the interatomic spacing
that obtain in crystals having some coordination
number greater than four. Let us consider the
case that the coordination number is six. As be-
fore, we restrict our considerations to A"B " type
crystals so as to eliminate spurious effects. Thus
we investigate the rock-salt crystals.

Now our radii are covalent radii and the proto-
typical rock-salt crystals are the ionic alkali ha-
lides, which are quite different in their physical
properties, binding, etc. , so we would not expect
our investigations of covalent bonding to be appli-
cable to the study of these crystals. However, it
has recently been noted that the transition from
"covalent" to "ionic" behavior of many crystalline
properties does not occur at the point where the
crystal structure changes from wurtzite or zinc
blende to rock salt, 78% Phillips ionicity, but at
a much higher ionicity. For instance, the index
of refraction of the rock-salt crystal MgO de-,
creases when subjected to hydrostatic pressure,
as is the case with all diamond, zinc-blende, and
wurtzite compounds, . whereas in the alkali halides
the index of refraction increases with pressure.
MgS and MgSe are found to be metastable in the
wurtzite structure as well as stable in the rock
salt. Furthermore, Kunz has shown that only
for those alkali halides which are 94% or more
ionic (on the Phillips scale) are the free-ion wave
functions acceptable basis functions for the va.-.
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lence-bond states of the crystal. Thus full ionic
behavior is only achieved in crystals of the Rb and

K halides and their alloys. The less ionic, rock-
salt crystals share some of the properties of
wurtzite and zinc-blende crystals. The Li and Na

halides are intermediate between covalent and ion-
ic in their behavior.

We begin by considering AgBr and AgC1. Be-
cause both of these are crystals involving atoms
of comparable covalent radii, which have no core-
expansion effect, and both have a relatively low

ionicity (85 and 86%) for rock-salt-type crystals,
we feel they are the proper place to begin. The
average of the ratio of the observed nearest-neigh-
bor distance to the sum of the tetrahedral covalent
radii is 1.0966. Thus we assume that, for all
cases, the octahedral covalent radii are 9. 66%

larger than the tetrahedral radii. We keep our
calculation of the core sizes exactly as before and

continue to assume that the radius is extended by

an amount (r, —0.4r„) when the r, &0. 4r„. The
octahedral covalent radii thus obtained are shown

in Table III. In Table IV we compare the nearest-
neighbor distances predicted using these radii w.'th

experiment.
We note in Table IV that many bond lengths are

predicted with surprisingly great accuracy —for
the Mg salts we have a 0. 84% rms error. How-

ever, several discrepancies are also evident. We

first note that while the value of MgO is very ac-
curate, those for CaO, SrO, and CdO are all much

too low. We recall from Table II that a similar
occurrence obtains with the tetrahedral radius of

0; BeO is predicted very accurately in our model,
but the value for ZnO is much too low. We sus-
pect that this discrepancy is due to an interaction
between the 2s 0 electron and the d states in Zn,

Ca, Cd, and Sr. In any event, if we increase the
assumed tetravalent radius of 0 so as to obtain a

Compound

MgS
CaSe
SrTe
MgO
CaO
CdO
SnO

AgF
MgSe
CaSe
SnS
AgCl
Ca Te
SnSe
AgBr

obs

2. 602
2. 950
3o 230
2. 106
2.405
2. 346
2. 580

2.460
2. 726
2. 845
3.010
2.774
3.173
3.115
2. 887

dcalc

(A)

2. 603
2.747
3.312
2. 104
2. 141
2. 278
2. 508

2. 278
2. 710
2. 640
3.007
2. 777
2. 945
3.114
2. 884

(2. 947)

(2. 215) (2.415)
(2. 352)
{2.582)

(2. 840)

(3.145)

dzachkriasen

2. 55
2. 96
3.32
2. 11
2. 40

2. 56

2. 67
2. 84
3.00

3.16
3.12

nearest-neighbor distance of l. 97 A in ZnO, the
corresponding octahedral radius of 0 would be
0. 811 A instead of 0. 737 A. We would then pre-
dict the values shown in parentheses in Table IV.
The new values for CdO and SrO agree very well
with experiment, but the value for CaO is still

0
about 0. 2 A too small. However, we note that the
values for CaS, CaSe, and CaTe are also all 0. 2

A too small. Clearly, our octahedral covalent ra-
dius for Ca is approximately 0. 2 A too small. It
is not clear to us why Ca deviates from our model
while Sr does not, but it seems to have a consis-

TABLE IV. Comparison of predicted nearest-neigh-
bor distances to experiment. All experimental values
are taken from Wyckoff (Ref. 7). In the column headed

d~&~, we show our calculated values and, in parentheses,
our calculated values corrected for spurious effects in
0 and Ca compounds as described in Sec. 5. In the
column headed d2,~~&~„, we show the values calculated
using Zachariasen's table of ionic radii.

TABLE III. Octahedral covalent radii. Values calculated as described in Sec. 5. As in Table I, the underlined

radii have been affected by the core. The value for 0 shown in parentheses is that which seems to obtain due to d-

state effects when 0 is bonded to a. 3rd or 4th row element (see Sec. 5). The value for Ca shown in parentheses is
what we find to be the correct value (Sec. 5).

Be

l.014

Mg
1.367

Ca
1.404

(1.604)

Sr
1.771

Element
(A)

Cu
1.343

Ag
1.541

Cd
1.541

B

0.892

Al
1.296

Ga
1.343

ln
l.541

0.813

Si
1.239

Ge
1.343

Sn
1.541

N

0.758

P
l. 236

As
1.343

sb
1.541

0
0.737

( 0.811)

s
1.236

Se
1.343

Te
1.541

0.737

C
1.236

Br
1.343

l. 541
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tent octahedral radius of about 1.604 A as opposed
to. the predicted value of 1.404 A.

We suspect that the fault lies with our assump-
tion that the scaling factor for the core correction
(3. 3) is a constant (40%%uo), independent of the row of
the Periodic Table to which the element belongs.
We have already noted that we could improve the
agreement between theory and experiment for the
tetrahedral radii (Table II), if we used slightly dif-
ferent values for the scaling factor for the first
and second rows. (Of course, one would expect
that we could fit data better with three free param-
eters than with two. ) If we assume that the scaling
factor for the 3d transition-metal elements, to
which we add Ca, is 25% instead of 4(P/p, then we
would calculate the observed octahedral covalent
radius for Ca. As Ca does not occur in a wurtzite
or zinc-blende structure, this speculation can not
be investigated directly. The 25%%uo sca.ling factor
would not affect the radii listed in Table I. It
would, however, change the predicted value of tet-
rahedral radius of Mn from 1.225 to 1.299 A.
MnS and MnSe occur in the zinc-blende structure,
but were not included in Table II because Mn is a
transition metal and we wished to avoid the spur-
ious effects of a partially filled d band. However,
because the d band in Mn is exactly one-half filled
and symmetric, one would expect Mn to exhibit the
simplest behavior of all transition metals. With

o

a radius 1.299 A we would calculate for MnS and
MnSe d = 2. 426 and 2. 524 A, respectively, in ex-
cellent agreement with the observed values 2. 425
and 2. 520 A.

Finally, we note that the value for AgF is also
too small. Presumably the same effect that oc-
curs in the oxides occurs in the fluorides also.

The nearest-neighbor distances we would calcu-
late using our octahedral covalent radii for the in-
termediate and ionic rock-salt crystals are all
substantially smaller than the observed values. In
order to treat these crystals accurately one must
consider ionic effects or use tables of ionic radii.
One can conclude, however, that in the ionicity
range 0. 78 &f; &0. 89, modified covalent radii may
predict the lattice constants as accurately as con-
ventional ionic radii. For the purpose of compar-
ison we include in Table IV the values calculated
using Zachariasen's table of ionic radii. '

6. APPLICATIONS AND CONCLUSIONS

The covalent radii described here are suitable
for discussing bond lengths in A B crystals.
Probably the reader is already aware of the fact
that even tetrahedrally coordinated atoms exhibit
different apparent radii in molecules than in crys-
tals because of lone-pair effects.

A good illustration of this fact is contained in

some recent molecular work. Studies of the
molecules P4O~ and P4O~O, which have tetrahedral
cage structures, have produced an estimate of the
P-0 single bond length of l. 66 A, compared to the
value 1.76 A predicted by Pauling's tetrahedral
radii and the value l. 80 A predicted by our radii.
Note, however, that these molecules contain an
average of 5. V electrons per atom, and less than
four bonds per atom, leaving more than three un-
bonded electrons per atom in "lone-pair" states.
These lead to appreciable shortening of the molec-
ular bond lengths compared to crystal bond lengths
where there are no lone pairs.

While the present radii have no obvious molec-
ular applications, we believe that the radii should
be useful for estimating lattice distortions produ-
ced by neutral substitutional impurities (isoelec-
tronic impurities) such as N in GaP.

From our point of view, the most significant as-
pect of the present work is the high precision ob-
tained with two free parameters in fitting the bond
lengths of 39 tetrahedrally coordinated crystals.
We believe that our 1'%%uo accuracy implies that the
"core-expansion" mechanism is genuinely impor-
tant in determining lattice constants for this fami-
ly of crystals.

7. POSTSCRIPT

After completion of this paper, two additional
developments occurred that appear to indicate that
the present analysis of atomic radii from a quan-
tum-mechanical viewpoint is justified: (a) In an-
alyzing the heats of formation of tetrahedrally co-
ordinated A"8 "crystals we found' an explana-
tion for the anomalously small lattice constant of
the Hg salts. This explanation is of interest be-
cause it exhibits an explicit effect of the details of
the energy band structure on the lattice constant.
Conversely, one can conclude from that analysis
that band-structure effects are negligible for com-
pounds of lighter elements considered here, which
apparently leaves our explanation of core effects
as the only one available. (b) We have explicitly
restricted our analysis to atom pairs sharing eight
valence electrons. Suppose a pair of atoms share
8 + Q valence electrons in a tetrahedrally coordi-
nated structure, with Q =+1. An example of such
a structure is ZnSiP2, with SiP bonds with Q =+ 1
and ZnP bonds corresponding to Q = —1.

One can imagine expanding Eq. (1.1) in powers
of Q, retaining terms only to first order in Q.
These turn out to be small and the magnitude of
the coefficient should be about the same in ZnP and
SiP bonds. This means that D = d (SiP) + d (Znp)
should be given fairly accurately by our radii for-
mulas. In fact, we predict D=4. 654 A, Pauling

0
and Huggins predict 4. 68 A, and the experimen-
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tal value' is 4. 639 A. While our results show a
marked improvement over the older values, there
are still significant discrepancies with experi-
ment, and revisions of our table may prove desir-
able after more data is obtained on A"J3' C, com-

pounds. It is worth noting that the cases Q = + 1
correspond to donor or acceptor impurities, so
that further study of this question may supply val-
uable insight into the strain fields surrounding
electrically active impurities in semiconductors.
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Lattice Dynamics, Mode Gruneisen Parameters, and Coefficient
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The phonon dispersion curves for CsCl, CsBr, and CsI have been obtained using a rigid-ion
model with an appropriate effective ionic charge. The five model parameters for each crystal
are obtained from three elastic constants and the two long-wavelength optic-mode frequencies,
reliable data for which exist for all three crystals. Our results are in agreement with those of
more elaborate models. The phonon density of states and the Debye characteristic tempera-
tures are also calculated. A Born-Mayer-type potential is used to calculate long-wavelength
LO and TO mode frequencies as functions of pressure from pressure dependence of bulk modu-
lus. The result for TO of CsBr agrees well with a recent experimental determination. Next,
using the values of the elastic constants and LO and TO frequencies at various pressures,
co-versus-k curves in selected directions are generated as functions of pressure. Mode
Griineisen parameters are then calculated as functions of k. Finally, the Gruneisen constant
and the volume coefficient of thermal expansion are obtained as functions of temperature. They
agree very well with avail. able experimental data.

I. INTRODUCTION

The lattice dynamics of crystals having the
CsCl structure was first worked out by Ganesan
and Srinivasan. ' They used the results from the
lattice dynamics to predict the temperature varia-

tion of the Gruneisen constant. Their calculations
were based on a Born-Mayer-type potential incor-
porating an x "-type repulsive term and a formal
ionic charge of unity. This treatment is thus essen-
tially similar to the one first introduced by Keller-


