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The temperature dependence of the velocity of sound in X-cut and BC-cut natural quartz
crystals has been measured in the range 4 to 75'K. Measurements were made at frequen-
cies of 35, 100, and 1000 MHz. By assuming that at these frequencies the velocity is fre-
quency independent at 4 K, these results can be used to obtain the frequency dependence of
the velocity at higher temperatures. At temperatures below 20 K, or above about 65 K,
there is no velocity dispersion in the frequency range studied, to within the experimental un-
certainty. In the temperature range between 20 and about 65'K, the velocity is greater at
1000 MHz than at the lower frequencies, both for the X-cut and the BC-cut crystals. These
results are compared with theories of velocity dispersion due to interaction with thermal
phonons, and qualitative agreement is obtained.

I. INTRODUCTION

The classical theory of thermoelasticity pre-
dicts that low-frequency sound waves propagate
adiabatically through a crystal. ' The phase ve-
locity s isa solution of the equation

detl r -l p, s'I =O (i)

where I is the unit 3&&3 matrix, p~is the density
at the temperature T, and I" is a 3&& 3 matrix with
components

I',„=KqK,C;~y, /K

where K is the wave vector of the sound wave,
C'z~& are the adiabatic elastic constants, and sum-
mation over repeated subscripts is assumed.
I ow-frequency waves propagate adiabatically be-
cause the time v„ taken for heat conduction to
equalize the temperatures of the compressed and

rarefied regions of the wave, is long compared to
7'0, the period of the wave. It is straightforward
to show that

r, &C/K

where X is the sound wavelength, C the specific
heat per unit volume, and v the thermal conduc-
tivity. Since r, varies as 0 2 (0= angular fre-
quency), and ro goes as 0, at low frequencies r,
& v'0 and the propagation is adiabatic. At suffi-
ciently high frequencies, on the other hand, 7,
& v'0 and so there is enough time for temperature
differences to be equalized and the motion is iso-
thermal. , The velocity is then determined by the
isothermal elastic constants, i.e. , s is still given
by Eq. (l) but with C„'8„, replacing C„'8„,in7.

It has recently been pointed out3& 4 that the pre-
diction of thermoelasticity theory that waves of
high frequency should have an isothermal velocity
is incorrect. Thermoelasticity assumes that lo-

cal thermodynamic equilibrium always exists
throughout the crystal in which the wave propa-
gates. For a dielectric crystal, this assumption
is valid only if the stress due to the sound wave
varies slowly in the time it takes the thermal pho-
non system to come to equilibrium after it is dis-
turbed. Hence, for local thermodynamic equilib-
rium to exist it is necessary that the condition vo
» v'&h be satisfied, where vth is an average thermal
phonon lifetime. If one uses the approximate re-
lationship for the thermal conductivity

K = 3C (8) rth

where (s) is an average velocity of the thermal
phonons, it can be shown from Eq. (S) that it is
not possible to have isothermal propagation (ro
) r, ) while at the same time maintaining local ther-
modynamic equilibrium (ro»r, „). Hence, the
thermoelasticity approach breaks d own before
high enough frequencies are reached for the prop-
agation to be isothermal.

The results of the microscopic theory are that
low-frequency waves, for which Q7,„«1, have
the adiabatic velocity and that waves of high fre-
quency satisfying the condition Q7'&h» 1 have a
velocity different from the isothermal velocity.
This new velocity is called the zero-sound velocity
so, whereas the adiabatic velocity is referred to
as the first-sound velocity s, . The result of a
previous theoretical calculation of the difference
of these velocities is given in Sec. III.

There is little experimental evidence with which
to compare the microscopic theory. Svensson
and Buyers' have observed a difference in the
temperature dependence of sound velocities in
potassium bromide, as measured by neutron scat-
tering and by ultrasonic techniques. The neutron
experiments involve sound waves (phonons) of
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frequency -10 Hz and should satisfy the condi-
tion for having the zero-sound velocity. The ul-
trasonic experiments were performed at a fre-
quency of 9 MHz and should therefore measure the
first-sound velocity. Svensson and Buyers were
able to show that the temperature dependenees of
these two velocities were not the same, at least
for some of the modes they studied. Their results
were in reasonable agreement with theory.

Another test of the theory is provided by Abra-
ham et al. ~ who measured the velocity of sound
in liquid helium 4 at frequencies between 12 and
84 MHz in the temperature range 0.1-0.5 'K.
The velocity was found to decxease with increasing
frequency, which indicates that the zero-sound
velocity is less than the velocity of first sound.
For helium, theoretical expressions for the dif-
ference in velocity between first and zero sound
have been derived by Khalatnikov, ' Pethick and
ter Haar, Kwok et al. , and Disatnik. How-
ever, all these theories predict that zero sound
should have a grate~ velocity than first sound, in
direct disagreement with the experiments of
Abraham et al.

Because of the rather limited experimental re-
sults and the discrepancy between experiment and
theory in the case of liquid helium, measurements
on other materials seem desirable. %e have
therefore investigated the velocity of first and
zero sound in quartz for longitudinal and for shear
waves. %e describe these measurements in Sec.
II, and in Sec. III compare these with theory.

II. EXPERIMENTAL MEASUREMENTS

In solids at room temperature, a typical ther-
mal phonon lif ctime ~,„is of the order of 10 "see.
To make measurements in the zero-sound region
at this temperature mould therefore require fre-
quencies of the order of 10 Hz, but the attenua-
tion at these frequencies would prohibit velocity
measurements by the conventional pulse-echo
technique. However, if lower frequencies are
used to reduce the attenuation, the condition Q7,„
&1 for zero sound cannot be satisfied unless 7&h

is increased by lowering the temperature. This
has the disadvantage that the expected velocity
difference between first and zero sound decreases
rapidly with decreasing temperature. As a com-
promise, it was decided to make measurements
at 1000 MHz to obtain the zero-sound velocity
and at 35 and 100 MHz for the first-sound velocity.
Measurements were made on single-crystal quartz
because of the ease of generation of sound in this
material, and also because the attenuation has al-
ready been studied in detail. &

' The general
principle of the measurement technique was to
determine the temperature dependence of the ve-
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FIG. l. Block diagram of system used for measur-
ing velocity changes at low frequencies by the echo-
overlap method. The operation of the system is de-
scribed in the text.

loeityfrom4 K to about V5 'K at a frequency of
1000 MHz and at a lower frequency (& 100MHz).
At 4 'K, the thermal phonon lifetime is of the or-
der of 10 sec and so both the 1000 MHz and the
lower-frequency waves should propagate with the
zero-sound velocity. %hen the temperature is
increased, v, „decreases and near some tempera-
ture T, the sound wave of lower frequency makes
a transition to the first-sound velocity. The wave
of higher frequency makes the corresponding
transition at a temperature T2 & T&. At ternpera-
tures less than T&, or greater than T~, the velocity
of both waves should be the same, but between
Tj and T2 the difference in velocities of the two
waves is equal to the difference in velocity of first
and zero sound.

Low-Frequency Measurements

For measurements at 35 and 100 MHz, an echo-
overlap method similar to that developed by Papa-
dakis was used. A block diagram of the elec-
tronics is shown in Fig. 1. The output of the fre-
quency synthesizer triggers the oscilloscope
directly. The output frequency divided by 1000 is
used to trigger both the rf pulse generator and a
delaying circuit which provides two pulses, each
about 5 p, see wide, which strobe the oscilloscope.
The rf pulse generator produces pulses of car-
rier frequency 35 or 100 MHz and duration-1 csee,
which are used to drive the quartz crystal. The
echoes from the sample are amplified and are dis-
played, unrectified, on the oscilloscope. If the
frequency of the synthesizer is set to the recipro-
cal of the transit time of the sound wave in the
crystal, all the echoes will appear superimposed
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r(T) —~(0) = [v(0) —v(T)]/v'(0) (5)

If the lengths of the crystal at 4. 2 a.nd at T 'K
are l(0) and l(T), respectively, and if s(0) and
s(T) are the velocities at these temperatures, we
have

r(T) —t(0) = 2[l(T)/s(T) —l(0)/s(0)] (6)

Since the fractional changes in length and velocity
are very sma, ll, we can combine Eqs. (5) and (6)
to give

s(T) —s(0) l (T) —l(0) v(T) —v(0)
s (0) l (0) t (0)

The temperature dependence of the velocity of
100-MHz longitudinal waves was measured in an
X-cut quartz sample 1 cm diam and 2 cm long.
As a check, measurements were also made at
35 MHz, using another electronic system developed
in this laboratory by Chick. This system works
by "brute force" in the sense that it starts an ac-
curate clock when the rf generator is turned on,
and the clock runs until it is turned off by a select-
ed cycle from a returning echo. The reproduc-
ibility of the data obtained by each method was
about + 2 ppm, and within this error the velocity
changes obtained by both methods agreed through-
out the temperature range studied. Figure 2

shows the results obtained for longitudinal waves
by combining the data taken on two helium runs by
Papadakis's method and four runs using Chick's
apparatus. The error bars represent the stan-
dard deviation of the mean. The change in length
of the crystal due to thermal expansion has not
been taken into account in calculating the results
shown in Fig. 2, because the length change is
probably not known as accurately as the change in
transit time.

The velocity of 35-MHz shear waves was mea-

on the oscilloscope. By reducing the intensity of
the oscilloscope beam and suitably adjusting the
delay of the strobe pulses, it is possible to make
only two selected echoes visible. The frequency
of the synthesizer is then adjusted to bring two
cycles (one from ea, ch echo) into exact alignment.
Let v(0) be the frequency of the synthesizer when
the crystal is at 4. 2 K. At a higher temperature
T, the transit time in the sample will change from
v(0), its value at 4. 2 'K, to some new value 7'(T),
and to bring the two cycles back into coincidence
it is necessary to change the frequency of the
synthesizer to v(T). Then we have

~(T) = I/~(T), r(0) = I/~(0) .
Since the fractional change in frequency is small,
we have to a good approximation
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FIG. 2. Fractional velocity change [s(T) —s(0) ]/s(0)
as a function of temperature for longitudinal waves in
X-cut quartz. The error bars represent the standard
deviation of the mean for the combined values of data
taken on two different samples at 35 and 100 MHz.

sured in a BC-cut quartz cylinder 0.8 cm diam
and 2 cm long using Papadakis's method only. In

Fig. 3, the data from three runs on BC-cut quartz
are shown. The change in length of the crystal
has not been included in calculating these results.
The standard deviation of the mean in this case is
generally about 2 parts in 10 and is too small to
be shown on the graph. In these experiments, the
sample temperature was measured with a germa-
nium resistance thermometer. The accuracy of

the sample temperature is estimated to be+0. 2 'K.

Measurements at 1 GHz

A block diagram of the apparatus is shown in
Fig. 4. The transmitter produces 1-GHz pulses
approximately 1 p, sec long and of peak power about
200 W. The repetition rate is 200 sec-'. These
are fed to a resistive divider and half the energy
then goes via a variable attenuator E to a reentrant
cavity C, in the cryostat. This cavity is used to
excite ultrasonic waves in a quartz crystal Q& by
a method similar to that used by Bommel and
Dransfeld. ' The remaining energy from the
transmitter is fed via a "trombone" variable-de-
lay line D to a second reentrant cavity Cz at room
temperature, the temperature of this cavity being
held constant to +0.05 'K. This cavity is used to
excite waves in a quartz crystal Q2 of the same
orientation and dimensions as the crystal Q, in the
low-temperature cavity. The electrical signals
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FIG. 3. Fractional velocity change [gg')- 8(O)]/g(o)
as a function of temperature for 35-MHE shear waves in
BC-cut quartz.

produced by the returning acoustic echoes from the
samples in both cavities are then recombined, and
displayed on an oscilloscope after amplification
and detection in the usual way.

The experimental procedure was as follows.
Liquid helium was transferred into the low-tem-
perature cryostat and as soon as the temperature
of cavity Cj stabilized at 4. 2 'K the transmitter
frequency was adjusted to match the frequency of
the cavity. The tuning stubs 8& were then adjust;ed
so that the impedance looking towards the cavity
from point A was 50 Q. Cavity C~ was then tuned
so that its frequency also matched that of the
transmitter, and the tuning stubs Sa were adjusted
so that the impedance was 50 Q towards the cavity
at point B. The trombone D was now adjusted to
maximize the amplitude of the first combined echo.
The temperature of the cavity C& and crystal Q&

was then raised slowly and the trombone settings
I,(T) and I z(T) that maximized the first and sec-
ond combined echoes were recorded at each tem-
perature. If the corresponding lengths of the
trombone at 4.a K are denoted by I,(0) and I z(0),
the extra time delay introduced by the trombone
for the first combined echo at temperature T is

&t~ g
= a[I g(T) -I g(0))/c, (g)

where c is the speed of light. The factor of 2 oc-
curs because the signal passes through the trom-
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FIG. 4. Block diagram of system used for measuring
velocity changes at 1 GHz. The operation of the system.
is described in the text.

bone twice. On raising the temperature from 4.2

to T K, the time taken for the sound wave to trav-
el through the crystal and back increases by an
amount

~t, ,= 2[t(T)/s(T) -t(O)/s(O)], (9)

where s(T) and s(0) are the phase velocities at
temperature E and at 4.2'K, respectively, and

t(T) and t(0) are the lengths of the crystal at these
temperatures. The time taken for an echo to re-
turn may also include some other time delay Ato

which will change with temperature but which is
independent of whether the first or second echo
is considered. We discuss contributions to &0
below. Since I &(T) is always such that the first
echoes returning from both samples are in phase,

&tD, i = ~C, ~+ ~tO (lo)

For the second combined echo we have the corre-
sponding result

~tD~ 2 ~cy 3+ ~tO P

where htD, 2 is defined analogously to ND &, and

Atc 2 is equal to twice ~c &
since the second echo

travels twice as far through the crystal. If we

eliminate ufo from Eqs. (10) and (11) and assume
that the fractional velocity change is very small,
it follows that

[s(T) —s(O)]/s(O) =[t(T) —t(O)]/t(O)

+[s(0)/«(0)][I (T) -I (o) -I (T)+I (o)] ~

Measurements were made on the first and second
echoes as described above, and also on the second
and third echoes. The ultrasonic attenuation of
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the room-temperature sample was such that the
fourth and higher echoes were too low in amplitude
to be useful for reliable measurements.

In the first few runs, helium gas at a pressure
of approximately 1 atm was maintained in the low-
temperature cavity. This was to prevent ioniza-
tion occurring in the cavity during the operation of
the transmitter and also to give good thermal con-
tact between the crystal and cavity. However, it
was found that since the density, and hence the
dielectric constant, of the helium varied consid-
erably with temperature, particularly below 10 'K,
the resonant frequency of the cavity became tem-
perature dependent. This detuning of the cavity
led to a large Mp corresponding to several cm of
delay on the trombone. Although the method de-
scribed above eliminates the effect of Dtp, we took
the precaution in later runs of reducing the helium
pressure to approximately 50-mm Hg. This was
still high enough to prevent arcing but htp was re-
duced to a few-millimeter movement of the trom-
bone at most.

The variable attenuator E was adjusted during
the run so that the amplitudes of the echoes from
the room-temperature and low-temperature cav-
ities were of roughly the same magnitude. Any
phase shift occurring in this attenuator will con-
tribute to htp but will not affect the measurement
of the velocity change. The main source of error
in the experiment was the determination of the
position of the trombone for maximum echo am-
plitude. Two methods were used. One was simply
to view the echo on an oscilloscope and to deter-
mine by eye when the maximum amplitude was
reached. The other was to use an electronic
pulse-height measuring device. ' Both methods
led to comparable uncertainties in determining the
trombone position for maximum amplitude. These
uncertainties were usually about a 2 mm and led
to an error of approximately a4 parts in 10 in
the determination of the temperature dependence
of the velocity of sound. Sample temperature was
measured with the same thermometer as in the
low-frequency measurements.

Velocity measurements were made for longitu-
dinal waves in an X-cut quartz sample which was
0.795 cm diam and 0.952 cm long. Shear wave
measurements were performed in the same BC
sample that was used at low frequencies. The er-
ror in these high-frequency measurements, ex-
pressed as standard deviation of the mean, was
between 2 and 5 parts in 10 . The fractional ve-
locity difference defined by

hs(T)/s&f(0) -=[stoop(T) —s&f(T)]/six(0)

where syppp(T) and s„(T) are, respectively, the
velocities at 1000 MHz and at low frequencies,

was then calculated. This is shown in Fig. 5 for
longitudinal and shear waves.

III. COMPARISON WITH THEORY

In Ref. 4, the following result was derived
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FIG. 5. Fractional velocity difference [s~ooo{T)
syg{P)/s{0) as a function of temperature for longitu-

dinal waves in X-cut quartz and for shear waves in BC-
cut quartz. s(0), the velocity at 4'K, is assumed inde-
pendent of frequency.

2v'Ts„(K J)
[e„(KJ)K, C„",„,o.'„,]' . (12)

ApC

In this equation, s„(KZ) is the phase velocity in
the harmonic approximation of a sound wave with
wave vector K, frequency Q, polarization J, and
polarization vector e(KJ). 0 p(kj) is the deriva-
tive with respect to Lagrangian strain g z of the
frequency &u(kj) of a thermal phonon with wave vec-
tor k and polarization j n(k. j) and v(kj) are the
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Bose -Einstein distribution function and the group
velocity for this phonon. C»& and &~& are com-
ponents of the elastic constants in the harmonic
approximation and components of the thermal ex-
pansion tensor. P is I/kjjT, C is the specific
heat, p is the density, and V is the volume of the
crystal. In order to make a comparison between
experiment and theory, Eq. (12) can be put into
more convenient form as follows. %e introduce
the Gruneisen tensor with components

~.,(kj)=-n. ,(kj)/ (») . (13

We then define an effective Gruneisen constant
y, (kj) describing the coupling between the phonon
kj and the strain due to the sound wave:

y, (kj) = e.(KZ)~,y.,(kj) . (14)
E' is a unit vector in the direction of K. The first
term on the right-hand side of Eq. (12) can now be
written as

CT y.'(kj)

[j ir -(ic ')/ (Kz)] &&

where we have introduced the notation that the
average of some function of kj is defined by

«f(ki) » = & f(ki) '(ki)~(ki)[~(k j) + I]/
fg

5 ~'(kj)n(kj)[s(k~)+ I],

+(&1".(kj))) -&6".(kj))&' (22)

It is always true that

&(~.'(kj)&& & (&y.(k~)&&' . (23)

Moreover, for a longitudinal sound wave one nor-
mally expects that for all thermal phonons

R' v(kj) & s„(KJ)

it follows from Eq. (22) that for longitudina, l waves
zero sound must have a greater velocity than first
sound. %e now compare the theory with the ex-
perimental results in quartz.

Temperature Dependence of As(T)

The maximum difference in velocity As(T) be-
tween high- and low-frequency waves is expected
to occur in the temperature range where Q7',„
&1 for the 1000-MHz wave and Qr, „&1for the low-
frequency wave. In this temperature range, we
expect /) s(T) = so-s&. To find where this range
shouM be, we have computed the average thermal
phonon lifetime r,» a,s defined by Eq (4). . For a,
we used the conductivity in the X direction as
measured in this laboratory by McCurdy, and for
C used the data of %estrum. ' For the average
phonon velocity in Eq. (4), we took (s& =4. 5&10
cm sec-i. Qrtb was calcul ted as a function of
temperature for the sound-wave frequencies used
in the experiments and the result is shown in Fig.
6. For waves with frequency 35, 100, and 1000

and we have used the result

C= (Pfj /VT) Q hajj (kj)n(kj)[n(kj)+1]
17j

The second term on the right-hand side of Eq. (12)
can be rewritten using

C„"By)) a/6= (Ph /VT) Z!y„))(kj)QP (kj)n(k j)[n(kj)+ 1],
(18)

which follows from Eq. (2V) of Ref. 4. Then we
find

e.(KZ)ff, C."„,n„,= C ((y,(kj))),

l

h
Cy

and so the second term in Eq. (12) becomes

-[Cr/2ps„(KZ)]((y, (kj)&)' .
lt we combine this with Eq. (15), we obtain

so si = [Cr/2psa(KZ)l y jj

(20)

O. l

l0
T4K
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v, (ij)j'j (ij)/s„(jjz)
)&1-ff v(kj}/s„(RZ)

FIG. 6. The quantity Qvt& as a function of tempera-
ture for the sound-wave frequencies used in the experi-
ments. v~& is calculated from the kinetic formula I&:

1
~th '
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MHz, we find Q7,„=1at temperatures of 18.3,
21.8, and 34. 2 'K, respectively. One therefore
expects that As(T) will be a maximum between 26
and 30 'K. Experimentally, however, for longi-
tudinal waves the maximum is at 40 'K, and is at
32 'K for shear waves. The result for longitudinal
waves is at first sight particularly surprising since
at 40 'K, Qv, „=0.52 for the 1000-MHz wave, and
so both high- and low-frequency waves should have
the first-sound velocity. However, this apparent
discrepancy between theory and experiment is
probably not too serious because our estimate of
7„„using Eq. (4) is very rough. For example, for
I(: we have used the conductivity parallel to the X
axis, whereas if we had used the conductivity par-
alleltoZ, all the Art„values would have come out
roughly a factor of 2 higher and would have agreed
better with experiment. Also, one expects 7 th to
vary considerably for thermal phonons of differing
polarization and frequency, and so it is possible
that those phonons that make the major contribution
to sp s ] may have longer lif etimes than the aver-
age. We note that even at 65 'K the longitudinal
velocity at 1000 MHz is significantly higher than
the low-frequency velocity, indicating that there
are still some thermal phonons at this temperature
for which Q7', „=1. This also is understandable if
there is a broad distribution of thermal phonon
lifetimes.

Magnitude of As(T)

The most important result is that for longitudinal
waves the velocity increases with increasing fre-
quency, in agreement with theory. The maximum
value of As(T)/s for longitudinal waves is (12.4
+2.0) &&10-P at 40 'K. At this temperature, the
specific heat ' is 17.5&&10' erg cm K '. From
Eq. (21), the value of y,«which makes sp s1
agree with the experimental M(T) at 40 'K is found

to be 0. 56. Unfortunately, there is insufficient
information available regarding the Gruneisen ten-
sor and the frequency spectrum of quartz to enable
us to make a theoretical calculation of y,«using .
Eq. (22). Some information may be obtained using
the measured third-order elastic constants of
quartz. From the form of Eq. (22), it is clear
that a large contribution to y,«will come from
longitudinal thermal phonons traveling parallel to
the sound wave, because the denominator of the
first term on the right-hand side of Eq. (22) is
small for these phonons. For a longitudinal sound
wave propagating along the X axis, we have, from
Eq. (14),

y.(kj) =y»(k) .
For longitudinal thermal phonons traveling in the
X direction, the following relation holds (from the

results of Brugger' ) if the thermal phonon wave-
length is much greater than the lattice parameter:

y11(kj) = —(c111+3cll)/2c11

where t.-» and c», are, respectively, second- and
third-order elastic constants in the Voigt notation.
Using measured values" of these elastic constants
gives y, (kj) = -0.29.

Further information on Gruneisen constants may
be obtained from thermal expansion. For a longi-
tudinal sound wave propagating in the X direction,
it follows from Eq. (19) that

((y, (kj))) =[(c„+c12)~1+c13 „]/
where &~ and &„ are thermal expansion coefficients
perpendicular and parallel to the optic axis. Us-
ing the results of White" for n~ and &„ give

((y, (kj))) =1.74, at 30'K

=1.21, at 75'K

This implies the existence of some large positive
y, (kj), probably as large as 2. Because of the
large spread in y values, our result that y,«
= 0. 56 is certainly reasonable.

For the transverse wave measurements, the
maximum value of hs (T)/s is (16.9 a 4. 2) x 10 '
and occurs near 32 K. The specific heat at this
temperature is 11.0~10 erg cm- 'K '. A cal-
culation similar to that performed for longitudinal
waves gives a result of 0.82 for y,«.

It was noted above that the temperature depen-
dence of As(T) suggests that there is a broad dis-
tribution of thermal phonon relaxation times.
This means that our experimental determination
of the magnitude of sp -s& at 40 K is probably an
underestimate, since at this temperature there
will be some phonons for which Qv, „&1 at 35 MHz
and some others for which Qv, „&1 even at 1000
MHz. It is difficult to estimate the magnitude of
this effect. The problem would be reduced if
measurements could be made with a greater differ-
ence between the low and high frequencies used.

IV. CONCLUSIONS

The velocity of sound has been measured as a
function of frequency and temperature in quartz
for longitudinal and for transverse waves. It is
found that the high-frequency (zero-sound) velocity
is greater than the low-frequency (first-sound)
velocity, in agreement with theory. The magni-
tude of the difference in velocities is also in rea-
sonable agreement with theoretical predictions.
The results suggest that there is a broad distri-
bution of thermal phonon relaxation times in
quartz.

It is noted that the theory which has been used
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here to explain the results does not agree at all
with measurements which have been made of the
velocity of sound in liquid helium. To investigate
this discrepancy, we plan to make further mea-
surements of the velocity over a wide frequency
range, both in dielectric solids and in liquid heli-
um.
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