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Orthohydrogen and Parahydrogen on Orthohydrogen Concentration
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The dependence on orthohydrogen (o-H&) concentration c of the thermal conductivity of
solid mixtures of o-H2 and parahydrogen (p-H~) is calculated in the single-mode relaxation-
time approximation. The contribution of the phonon-phonon and phonon-boundary scattering
to the relaxation time is determined phenomenologically from the experimental data on pure
P-H2 due to Bohn and Mate. The phonon —o-H2 scattering is calculated from the statistical
model of o-H2 in p-H~. The effect of zero-point motion is found to enhance interaction be-
tween the o-H& and phonons substantially. Our results are compared with experimental
data, and qualitative agreement is obtained.

I. INTRODUCTION

There has been a revival of interest in solid mix-
tures of orthohydrogen and parahydrogen following
experimental and theoretical work by Hatton and
Rollin, ' Hill and Ricketson, and Nakamura. Mix-
tures of parahydrogen and very low concentrations
of orthohydrogen have also received a considerable
amount of attention, with numerous properties be-
ing measured. In particular, the thermal conduc-
tivity E of P-H2 containing a few percent o-H2 im-
purities has been measured earlier by Hill and
Schneidmesser and recently by Bohn and Mate at
temperatures T &6 'K. We report in the present
work a calculation of K in this temperature and
concentration region,

The phonon scattering processes which are of
interest to us here are boundary scattering, im-
purity (o-H2) scattering, and various phonon-pho-
non effects. We shall combine these contributions
within the familiar single-mode relaxation-time ap-
proximation as described in the review article by
Carruthers. '

The contributions of the three scattering process-
es will be determined as follows: We are pri-
marily interested in the effect of the o-H2 impuri-
ties and so simply use the experimental results on
nearly pure specimens of p-Hz to determine the
boundary and phonon-phonon scattering phenomeno-
logically. The phonon lifetime for phonon —o-H~
scattering I,"», is found by employing the Hamil-
tonian of Ref. 3. The o-H2 correlation functions
needed to evaluate the scattering cross section are
taken from Refs. 8 and 9. Because of the light
mass of solid H„He', and He, the usual lattice
dynamics is not applicable. Attempts' '" have
been made to include this "quantum crystal" effect
in the calculation of the thermal conductivity on the
basis of Nosanow's theory. '~ This effect is also
included in our computation as is done in the spirit

of Refs. 10 and 11.
I"», is evaluated in Sec. II; Sec. III contains the

calculation of K and a discussion of the results.
Section IV is a summary.

II. IMPURITY-PHONON SCATTERING

A. Hamiltonian

We are interested in computing the effect of
o-H& on lattice conduction in the solid crystal of
P-H2. The interaction responsible for the phonon-
o-H2 scattering is the difference of interactions be-
tween the pair P-H~+P-H, and the pair p-H2+o-H2.
The strength and the form of this interaction have
not been accurately determined. Nakamura dis-
cussed this problem and wrote the interaction as

( —I'r; —r, I

V exp-
)=1 j P

a ' - (r; —r, )
3 Jq ~' ~' —2

j r& —rj I I r& —r&l

where

V'8 ' '= —1.4x10 ' erg

and

c„=0.88x10 '6 erg;

r,. is the position of the ith o-H~ and r,. that of its
jth P-Hp nearest neighbor. The equilibrium value
of I r& —r& [ =a = 3. 75 A and ajp-20. ' The sum on
i is over all o-H~ impurities while that on j is over
the p-H~ nearest neighbors of each impurity. J,. is
the angular momentum operator of the ith o-H~.
The sum on j in Eq. (1) is zero in a hexagonal
close-packed structure when all atoms are at their
equilibrium positions. However, when they are
displaced from equilibrium positions for various
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reasons, the average is nonzero and the Hamilto-
nian(1) contributestothe energy of the system. ' It
has also been directly measured.

Next, we consider the interaction between two
O-H3 molecules located at positions r; and r~, such
that the molecules's axes are oriented at the angles
n, ( = 8, , Q, ) and n~ relative to the polar axes which
we take as the direction of c axis. This is the
electric quadrupole-quadrupole interaction' "
a„=,'s e,—(a/~r,„ i )'(-'p v)v'

x g c(224m') F, (n, ) F, '" {n,„)F",{n„),(2)

where c,= 3. Vx10 "erg and Q,, exyresses the ori-
entation of r& —r~ relative to the e axis of the hcy
structure; the C's are Clebsch-Gordan coefficients
and the F's, spherical harmonics.

In calculations of the specific heat and nuclear
magnetic relaxation times we need {H„,), the aver-
age of II„, over the nearest neighbors, which is
almost zero because of the crystal symmetry and
the angular dependence of Eg. (1), as mentioned
earlier. In the calculation of the thermal conduc-
tivity, {H,'„',) is needed, Here, H,'( is the second
derivative of B» in the expansion of lattice vibra-
tion. The comylicated angular factor introduced
in a,",, makes

(&,",,)» [(a/p)'/6 x 5]{ff,'„'),
where the factor (a/p) /6x 5 is introduced by taking
the second derivative of H„t and H,„. In addition,
we deal with systems having low concentration of
0-H~ which will further reduce the effect of H;~.
Thus the scattering of a pair of O-H2 is neglected.
H&~ does play an important role, however, in that
it introduces correlations between o- H~ molecules
and thus gives rise to phonon-O-H3 scattering
which is different from the usual static impurity
scattering with regard to both concentration and
momentum dependence.

We begin the evaluation of the yhonon-impurity
(o-H~) interaction by expanding H„, in terms of the
operators A „- and A.g, which create and destroy
phonons of wave vector k. (In this section we in-
clude the polarization index in the specification of
phonon momentum. ) Also, we transform into a
coordinate system such that the z axis is parallel
to the crystal's c axis, thus obtaining, e.g. ,

&(r; —r, ) = P„D„' (n;~)S";~, (3)

+2 —]/2 [ek'k u& Pg) I ]
2M

and jth molecules from their equilibrium positions;
M is the crystal mass; D„ is the rotation-operator
matrix element from the direction of r& —r& to that
of the z axis; and c ~ is the nth component of the
phonon (unit) polarization vector.

The expansion of H„, to second order in the dis-
placement of the molecules from equilibrium will
contain zeroth, first, and second derivatives with
resyect to intermolecular distance. ' Each of these
derivatives brings a factor of a/p= 20 into the in-
teraction relative to the derivatives corresyonding
to angular distortion of the lattice and so in lowest
order we may keep only terms involving second
derivatives with respect to intermolecular distance.
In this approximation we find

where

s= ve-'"/p', z, =(sz,'-2),

The J, are the usual raising and Lowering opera-
tors 2, = (8 + iJ,) and 'all operators 7 refer to the
specific index i.

The average represented by g~ is taken as
(12/4v) f dn,

&
in Eq, (5). For example, we cite

2 l 1 m m~~g &00D~Dom S~~~~g

xkk ((dpgpi) Ap Ag, i Cf, ef +H. C.

B. Quantum Crystal Effect

The molecular mass of hydrogen is small, Lead-
ing to large quantum-mechanical zero-point motion
of the molecules around their equilibrium lattice
positions. Consequently, it is not a valid approxi-
mation to evaluate the various interactions between
molecules as though they were fixed at the lattice
sites. Bather, an average over the zero-point
motion should be introduced. Noolandi and Van
Kranendonk, and Harris gave such a treatment of
interactions in solid hydrogen, based upon the
quantum crystal theory of Nosanow. ' Nosanow
found that molecules behave as though they inter-
acted via an effective potential v,«(%) which is ob-
tained by averaging the bare interaction v(r ):

and 5(r, —rj) is the m'th component of the differ-
ence of the instantaneous disylacements of the ith = fdr, dr, (P(~ r, -%,~)@'(~ r, -%, ~)f'(r„) V(r„)
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x
~ f dry drk ~(Iran- &il) e'(lrk- &a l)f'(rik)] ',

where P and f are from the trial wave function for
the quantum crystal )&:

g = II Q( l r; —R',
l ) I1f(r;,) .

r& is the position of the ith molecule and R, its
equilibrium position, r;& = r& —r& . The functions
P and f were taken to be of the form

f (r) = exp{-K[ (o/r)'k —(o/r)6]]

&f&(r) = (A/~)v' exp( ——,
' Ark) .

Nosanow determined the parameters A and K by
minimizing the ground-state energy, finding Aa
=46. 5 and k=0. 2406, where a is the nearest-
neighbor distance.

Following Harris, we perform the average of
the interaction Hamiltonian Hl„t. The angular de-
pendence of the interaction is not changed by this
procedure, and so the net effect is that the aver-
aged interaction is some constant multiple of the
bare interaction evaluated at the nearest-neighbor
distance (v) = $ v(R, ).

To calculate the phonon coupling, we really need
the second derivatives of B,„,. There is some
question whether it is more nearly correct to take
the second derivative before or after performing
the zero-point-motion average. "

For its first term, or valence part of 8,„, , it
turns out that if the derivatives are performed
after averaging, the result is some three times
smaller than for the other procedure. Following
Refs. 10 and 11, we perform the average after
taking the second derivative. The result is that
for the valence part, („=2. 8; while for the second
term, or dispersion part of Hl, t, (& = 1.5.

C. Phonon Lifetime

As a result of the averaging performed in Sec.
II B, Eq. (5) should be written with a new coupling
constant 7' = $„c;

@nf (+k+k') kk ' Ak Ak '
f,n=0, 1, 2 k k

by completing the various summations and aver-
ages; E« is a time-dependent operator because of
both nuclear magneti. c field effects and the inter-
action H;I, between o-H2 molecules. The magnetic
energy is far smaller than the thermal energies of
interest here and may be neglected; however, the
interaction H;, provides internal energy levels for
the o-H2 and so gives rise to important inelastic
scattering of phonons.

The transition probability of phonons for the pro-
cess k-k ' is given by the golden rule

&„( ) f 2
e'"&„(&) .

~oo

(Io)

The correlation functions J„are"

J,(f) =(J,'(f), J,'(o)) =-.'exp(-o. 4. 53l e'f/a l"'),

J,=&J,(f)J, (f), J,(o)J, (o)&

=-'exp(- o. 7. IO
l
e'f/a l' '),

where e' = 1.89' 10 ' erg, and c is the fractional
o-Hk concentration. The brackets in Eq. (11) indi-
cate the average over all states of angular momen-
tum. Of course, the high-temperature approxima-
tion is implicitly assumed. Also, co~ is the energy
of a phonon of wave vector 0 (and polarization X).
Note that if correlations were neglected, J„(t)would
be constant and J„(sr) = 5(ru), so that Eq. (9) would be
the usual expression for scattering by static im-
purities.

Direct evaluation of the sums in Eq. (5) gives
the averages

T„=f dn„, lc„", f' .

Retaining only leading terms, we find

Tg = 3 &(k5 ) cos 8 k, Tk = 7I' (k5 ) (1 +cos Hk. )

where 8, is the angle between k and the crystal
c axis.

The result for the impurity scattered phonon
lifetime is thus

k' dk'I' k~ o(k) = (3/7r)k(k k)kv, $/157pppg /p' ok''p g

{3 (k5) cos ek I9 Js(~k ~k') ( k ~k')]

+ 4v(35)'(I+cos 8, ) Jk((ok —u)„.))

I'" ~ «) =(2'/@) l&~'I f'„df' v"(I')la & l', (s)

and the inverse lifetime of a phonon in state k is in
the limit of large t ':
r»', (I') = —g „a»,(I) = [~,. (k k )'/151 —2

x Z fdk J, (&k ~k') (~k~k')
f1=1k 2

(9)
Here n; is the impurity number density while rn is
the total mass density and J„(&o) is the correlation
function of operators E„. They can be expressed
in terms of
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III. THERMAL CONDUCTIVITY

Following Carruthers, we treat the thermal con-
ductivity in the single-mode relaxation-time ap-
proximation:

scope of this work. Furthermore, it is not clear
how all these contributions can properly be includ-
ed. Instead, we simply introduce a term into

I '(x, l):

A=(2v) ' P f d k S, C,„((e, ) cos 8 I"(kX),

(13)

where C,„(&o) is the heat capacity per normal mode,

C,„((o)=ks(P&(e)'c ""(c ""—1) ' (14)

A"= Sk, S'n(r/8, )'

I'(k, A. ) is the phonon lifetime, S„ is the phonon ve-
locity, and P =k~ T, k~ being the Boltzmann con-
stant. For lack of more detailed information, we
assume a linear dispersion relation &» =S„k,
which should be a valid assumption for 0 «kD, the
Debye wave number. We are interested mainly in
such phonons, since we are considering T «8~,
where 8D is the Debye temperature; AD and 8D are
related by hkDS =438~, where S is some suitable
average of the velocities of transverse and longitu-
dinal phonons. This S is evaluated by analyzing
the T' part of the low-temperature specific heat of
solid parahydrogen; such an analysis' gives S
= l. 3x10' em/sec. Also, kD may be found from
the molecular number density n of solid parahy-
drogen since kn = (6w'n)~'; combining these results
we find 8D =114'K.

Combining Eqs. (13) and (14) and defining x
=KSk/ks T, we have

(17)

of the approximate form that one expects for Um-
klapp scattering and then fit this term to the high-
T and low-c experimental data. There is no par-
ticular reason for not including a normal-scatter-
ing term also; it is just that the term (17) is suf-
ficient for our purposes.

Finally, there is also the impurity scattering
contribution as given in Eq. (11); by introducing
some dimensionless variables, we may rewrite it
as

(„(24)'(r)' ( /s(' *c

j.

&&
x dx'{cos 8, [9j,(x —x') —46(x x')]

g 3(1+cos'8,) Ja(x - x')) (18)

where

J', (x) =(2/3v) f dy cosxy e

and Jz is the same as J, with 0. 492 replacing 0. 321
in the exponent. Also, x =k/kD, x' =k'/kD, and

y =(JDt, (oz( =Skn) is the Debye frequency. With
the help of the identity

X f"x4dxe" 1
(e" —1)' 2 d cos8„~ cos8, I"(x, X). (16)

0 -1

f dy cosxye ""' = 7(5(x)
0

+ f dy cosxy [exp(ny'~') —1] (2o)

In order to arrive at Eq. (14) we had to approxi-
mate S), by S for all three phonon polarizations.

The inverse lifetime 1/I'(k, X) is made up of three
additive contributions. First, at very small T and

c, the effective mean free path of the phonons will
be limited only by the boundaries of the sample,
thus giving a constant contribution which we write
as

we may arrive at a final expression for I',h' o(k):

x D {cos'8f[x'+ 3xf,(x, c)]

I"~ '=S/L (16)
+ ~(1 +cos 8(", )[x +xI2 (x, e)]],t (21)

where L is a length of the order of the size of sam-
ples. In general, L may be much less because of
complicated polycrystal structures.

Next, in the high-temperature region, phonon-
phonon scattering' will be important. Both normal
and Umklapp process can occur; however, theo-
retical treatment of such scattering is beyond the

where

I~(x, c) = —
JI dy [exp( —0. 321cy'~' —1]

0

x {3y '(1 —2y 2) cos(1 —x)y +y '(1 —6y ~)
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x sin(l —x)y + Gy cosxy) (22) IO
t I I

and I2 is the same as I, exceyt that 0. 492 replaces
0, 321 in the exponent.

This form is convenient because, upon evaluating
I~ and I, numerically, it turns out that, to about
2% accuracy, they are proportional to c for c
& 0. 10 and, consequently, they are proportional to
each other. For small x, I, and I2 are well repre-
sented by I2= 0. 046Vc(1+3x) and I, =0. 654Iz. There
is no point in including higher-order corrections
in x as they would be of the same order as the ig-
nored deviations from a linear phonon-dispersion
relation.

We note that Eq. (21) contains the usual cx' or
ck terms corresponding to static scattering bythe
impurities; however, it also contains terms which
for small k are proportional to c x and will give
rise to thermal conductivity K- T c

The total inverse phonon lifetime is thus

0

O

C3

O. i

S.0

(23)

This expression is substituted into Eq. (15) and
the integration completed numerically for various
T and c. The parameters A.„=2. 2x10'~ and 8„
= Hn/2. 2 in Ecl. (23) are determined from the data
at T near 6 'K. Also, L is chosen to fit the data
from the purest sample at T=- l. 5 'K. This gives
L =d/17 where d is the diameter of the sample.
Finally, the parameter 7 which determines the
magnitude of I'p„' 0 is chosen to give the best over-
all fit" of theory to experiment at all o-H~ concen-
trations. The value obtained is a factor of 3 larger
than that found from the theoretical numbers fol-
lowing Eg. (1), a discrepancy which is reasonable
in view of the large uncertainty in V and a/p. The
theoretical curves in Fig. 1 are computed with
these fixed parameters. A comparison of the theo-
ry with experimental data is given in Ref. 6.

The value L seems to be rather small compared
with the sample dimension. We refer the discus-
sion of experimental concern to the companion pa-
per.

We note that the strong concentration dependence
of K, which is computed on the basis of theory ex-
plaining NMR experiments, is observed experi-
mentally. However, there might be a discrepancy
between theory and experiment with regard to the
temperature dependence in this region. The theory
predicts essentially a T' dependence, whereas the
experiments show stronger temperature dependence
in the region 1.4 & T + 2. 4 at all concentrations
rather than only in the zero-concentration limit
where a T' dependence should arise because of
boundary scattering. If this discrepancy persists
in the low-temyerature region, it indicates that

O.OI I

2
I I I

6 8 lO

T( K)

FIG. 1. Theoretical curves of thermal conductivity
of various concentrations of orthohydrogen in parahydro-
gen.

IV. SUMMARY

The contributions of phonon-boundary and pho-
non-phonon scattering were determined yhenomeno-
logically by analysis of the experimental measure-
ments. The scattering by the o-H~ impurities, on
the other hand, was calculated by expanding the

boundary scattering is related to c in a complicat-
ed way. It is difficult to understand the strong con-
centration dependence of the measured thermal
conductivity unless there is some connection be-
tween the o-H~ concentration and the formation of
boundaries. One way to clarify the situation would
be to check the reproducibility of the data with
other samples; effects associated with the pres-
ence of boundaries would vary from sample to sam-
ple. We also should mention in this connection
similar difficulty in the thermal conductivity of KI
with U centers. ~o
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valence part of the 0-H~-p-H~ interaction in terms
of phonon creation and annihilation operators for
small displacements of the molecules from their
equilibrium positions. The final expression for
the scattering cross section involves 0-H2 angular
momentum correlation functions which have been
previously evaluated. The thermal conductivity
was then found by combining the three scattering
effects listed above within the single-mode relaxa-
tion-time approximation. Comparison of the cal-

culated K with measurements shows general quali-
tative agreement. A possible discrepancy in the
temperature dependence remains to be clarified in
the low-temperature region.
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