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Theoretical expressions are presented for the frequency ~ versus the wave vector k result-
ing from the interaction between the electromagnetic field and an undamped vibrating diatomic
ionic crystal with orthorhombic symmetry. The rigorous treatment using retarded electromag-
netic fields shows that the resultant vibrations consist of a mixture of electromagnetic waves
and mechanical lattice vibrations, as shown previously for cubic lattices in Huang's classic
paper. Our treatment is applicable to biaxial crystals with orthorhombic symmetry. A sys-
tematic method for evaluating all cases is illustrated. It is noted that a theory for biaxial
crystals with monoclinic and triclinic symmetries is complicated by the fact that the principal
axes of physical properties are not simply oriented to the crystal axes.

INTRODUCTION

Prior to 1951, lattice vibrations invariably
were calculated assuming only electrostatic in-
teractions between ions. One principal result
was the derivation of a relationship between the
frequencies of the longitudinal and transverse op-
tical waves, called the Lyddane-Sachs-Teller re-
lationship. ' Further theoretical advances resulted
from the appearance of Huang's classic treatment
of the interaction between the lattice vibrations of
a diatomic ionic crystal and a retarded electro-
magnetic field described by the complete set of
Maxwell's equations. His detailed interpretation
of the results emphasized two points: (a) The re-
sultant vibrations consist of a mixture of electro-
magnetic waves and mechanical lattice vibrations,
and (b) the optical waves just below the infrared
dispersion frequency consist mainly of the me-
chanical transverse lattice vibrations. His cal-
culations were limited to cubic crystals.

When anisotropic crystals are considered, it is
found that the frequency of a vibration depends
upon the orientation of the wave vector. Poulet's
brief calculations' suggested this behavior. More
extensive calculations were carried out by Merten'
and by Loudon for uniaxial crystals, using the
Huang model. Merten limited his treatment to the
electrostatic field case, while Loudon used the
entire set of Maxwell's equations. Loudon also
obtained approximate &-versus -k expressions
for right-angle Raman scattering for special lim-
iting cases. The biaxial crystal was not examined.

Barker has examined lattice vibration as in
Huang's theory, but considers vibrational damping
as well. This leads to the consideration of line-
widths and to a modification of the &-versus-0

curves. For simplicity, however, only the un-
damped case will be considered here.

or
(4) 4~b"'b" &

& = 1+4mb + (g)—

This result is compared with the dispersion for-
mula

1-(~/~0)' '

where +0 is the infrared dispersion frequency.

(4)

BRIEF RESUME OF HUANG S THEORY

Huang's treatment for cubic crystals is reviewed
briefly here. The equation of motion for the lattice
vibrations is given by

~0

W=b~ i W+b~ iE (1)

P=b W+b E (2)

where W = displacement between the negative and
positive ions from the equilibrium positions multi-
plied by the square root of the ratio of the reduced
mass of the two types of ions to the volume per
ion pair, E =macroscopic electric field (as used
in Maxwell s equation), P =dielectric polarization
due to the generalized displacement W and the
electronic polarization of the diatomic complex
due to the electric field E, and b' '-=constant sca-
lar factors, with b' '=b"'.

Assuming plane-wave solutions for W, E, and

P, with spatial and time dependence given by
expi(k r —&uf), a.n expression is derived for the
dielectric constant & in terms of the b' 's:

e =1+4m P/E

2068



FREQUENCY VERSUS WAVE VECTOR FOR ~ ~ ~ 206S

402 (e0/4 ~) ~2 —~42

for the longitudinal optical wave (LO) and

b2 2/40? (~0+2 ~~ 2)/(402 ~2)

(6)

for the transverse optical wave (TO). The 40 given
by (6) is defined as the LO wave frequency &0'.

Equation (6) is the Lyddane-Sachs-Teller relation-
ship; Eq. (7) is a quadratic equation in &u yielding
two values of & .

The curves for (6) and (f) are shown in Fig. 1.
The LO wave frequency given by (6) is nondegen-
erate. Each branch of the TO wave is doubly de-
generate in frequency, although the degeneracy is
not given by (7). The TO branches curve where
the vibrations consist of a, mixture of electromag-
netic waves and mechanical lattice vibrations.

THEORY FOR BIAXIAL CRYSTALS WITH ORTHO-
RHOMBIC SYMMETRY

The lattice vibrations and polarization equations
for anisotropic crystals can be written in any rec-

q. (7), TO

Comparison of (2) and (4) indicates that

b = —4)p
(1) 2

b (21 b(3) [(~0 4~)/4 ]4/2 ~
b"' = (~" —1)/4v,

where & =- static dielectric constant and &"=- high-
frequency dielectric constant, where frequency is
high relative to p.

When the effect of retarded fields is considered,
the complete set of Maxwell's equations is used
in conjunction with (1) and (2). For plane-wave
solutions Maxwell's equation results in

k(k P) -(~'/c') PE= —4m— 5
k — /'c

where k is the wave vector.
Solution of (1), (2), and (5) results in

tangular coordinates as
3

W,.= Q b",,'W, +b',.',.'E, , (8)

3

P4 Qb 4-—) Wy+ b;;» Eg

P]=5) W')+b ) E] (9')

where i =1, 2, 3. The b';& ' coefficient is written
simply as b(& '.

Plane-wave solutions for (8') and (9') are now
assumed, with spatial and time dependence given
by expi(k r —~t). W, is then replaced by —~'W, .
Solving for P, in terms of E„we have

P, =[b4 '+b4 bI '/(-b ' —&u )]E4 . (10)

The dielectric constant along the ith coordinate
is then given by

g4
—1-?47ybI4 +47?b 'b4 /(-b & 40 )

This result is compared with the dispersion for-
mula for the ith coordinate:

p 4O

1-(~/~ )' '

where i = 1, 2, 3. These equations correspond
to (1) and (2) for the cubic crystal. W„E;, and
P, are now components of the ion-displacement
(from equilibrium) vector, the electric field vec-
tor, and the polarization vector, respectively, in
the rectangular coordinates. The b&& 's are the
second-rank tensors representing the physical
properties connecting the components of the vec-
tors W, E, and P.

If. all of the physical properties have the same
unique set of principal axes, Eqs. (8) and (9) can
be written along the principal axes in the diagonal
form (i.e. , only diagonal components of the trans-
formed b',

&
's are nonzero). The W„E„and P4

components will also be described in the princi-
pal-axes coordinates. Neglecting new symbols
for the new principal-axes coordinates, the trans-
formed equations are written in diagonal form:

gf=b(i) N +b(2)E (8')

3

O ~~
Z
Ld~ 4l
CF

K
4.

(6), L o

E q. (7), TO

Then

(JO
g

(1) 2

bI4'= b',"= [(~' - ~",)/4v]"'40

b',"= (4"; —1)/44?,

(is)

NAVEVECTOR MAGNtTUDE, |t

FIG. 1. + versus k given by (6) and (7) for a cubic
system, for small values of k.

where &=-the characteristic lattice vibrational
frequency in the ith direction in the absence of the
long-range electric field component, e, =- static
dielectric constant in the ith direction, and &",

=- high-frequency dielectric constant in the ith di-
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k,.(I P) - (~'/c') P,
v k2 —&2/c2 (14)

for i =1, 2, 3. k, is the ith component of the wave
vector %. E& from (10) is substituted for E, in

(14). The following expression for P& in terms of
k, results:

(d
(Wf —W ) —

I 2 (KEW( —E )) Pl [( ) )ck

—(«', (0', —«", &u2)] -f (k ~ P), i=1, 2, 3 . (15)

These are the three basic equations.
If each of the coefficients of P, is nonzero, P;

can be written as

((d» —& ) —(«(dq —«q (0 ) k.
(R2 —~2) —(R2/C2k2) («0 %2 —«~ R2) k2

3=1,2, 3 . (15)

Multiplying both sides by k; and summing on i re-
sults in

3 3 (0)2 (d2) («0 0)2 «~ (02)

(~2 ~2) (~2/C2k2)(«0 ~2 «~ (d2)

& ~ (k P)
k

However, Pk, P;=(k P). In general, k P40;
then

rection.
It can be shown by energy-density consideration

that b,' ' is equal to b& ', as has been described
by Huang for the cubic crystal and by Merten for
the anisotropic crystal (using a dyadic formulation).

The validity of describing the lattice vibration
and polarization equation in the diagonal forms
(8') and (9') depends on the assumption that all the
physical properties b™'s.have the same principal
axes. Equations (13) show that the b "s are
functions of the dielectric constants at two differ-
ent frequencies and of the characteristic vibration-
al frequencies. This suggests that the dielectric
constants at the two different frequencies and the
characteristic frequencies also must be diagonal
along the same principal axis in order for the as-
sumption to hold that the b

&&

' 's can be diagonalized
simultaneously. This can occur in biaxial crys-
tals with orthorhombic symmetry, ' but not in bi-
axial crystals with monoclinic or triclinic sym-
metry.

A third set of three equations is given by Max-
well's equation. Assuming plane-wave solutions,
the component equations corresponding to (5) are
given by

, ((02, —(u2) —((d2/C2k2)(«0, (d', —«,"(d') k'

Each of the denominators (i. e. , for each value of

i) must be nonzero. k;/k = cos(t) ~, the direction
cosines of the wave vector k. Note that Pk2=k'

was used above. Equations (15) and (17) are used

extensively later, where examples for various ori-
entations of the wave vector k are illustrated.

It is noted immediately that ~2= c k satisfies
(17). This is a root of (17). The remaining five
roots for (0 are obtained by multiplying out (17).
This results in

(
CO~» —I fifth-degree polynomial in &' = 0ck

The first factor gives the & =c k' root which, of

course, is the frequency-velocity relation for wave

propagation in vacuum. We thus disregard this
solution. The second factor set to zero gives the

desired five &-versus-k branches.

SYMMETRY CONSIDERATIONS AND POLARIZATION
DIRECTIONS

Some insight on the polarization directions of
the lattice vibration is gained from the k =0
group-theoretical analysis. There are three sym-
metry classes belonging to the orthorhombic sys-
tem: (i) the mm2 or C2 „class; (ii) the 222 or
D2 class; (iii) the mmm or D,„class. The vibra-
tional motion of the two-ion molecules located in
an orthorhombic environment yields the following
results: (a) the m3)32 or C2„class: The reducible
optical vibration I;,b is decomposable into three
irreducible representations of C,„, i. e. , I"„,„

A$ (x3) +B,(x,) +B,(x,) . There are three infrared-
active optical vibrational modes; one is polarized
along the x& axis, another along the x~ axis, and
the third along the x, axis. (b) The 222 or D2
class: There are two infrared-active optical vi-
brational modes. If the ions in equilibrium lie
along one of the crystalline axes, the polarization
directions of the two infrared-active modes are
along the other two crystalline axes. This is also
described as follows: If the ions, for example,
lie along the x3 axis in equilibrium, then I;,b

=A+B2(x2)+B3(x,). The A mode is not infrared
active (but is Raman active). (c) The mmm or
D» class: There are no infrared-active modes
for our crystal model. The three optical vibra-
tions are Raman active, however. In this case
l"„)b——B3g+ Bzg +A~.

The components P; of the polarization vector P
along the orthorhombic crystalline coordinates
will constitute the basis for the description of the
examples given below. This choice occurs natur-
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ally because the polarization directions of the in-
frared vibrational modes are directed along the
crystalline axes in this approximation. In addi-
tion, the characteristic vibrational frequencies and
dielectric constants are also directly identified
with the crystalline axial direction.

The above description for the orthorhombic case
is compared with that for the cubic crystal where
all directions are equivalent; three mutually per-
pendicular polarization components are chosen
such that two components are perpendicular to the
wave vector k and the third component parallel to
k. The first two components lead to doubly de-
generate TO waves, and the third component leads
to the I.O wave. The choice of polarization com-
ponents is also compared with the uniaxial case
where two mutually perpendicular polarization
components are taken to lie in the x&xz plane, the
plane being perpendicular to the x, or crystalline
c axis. One of these components is oriented to be
perpendicular to the general wave vector k; this
gives the TO wave. The third component is taken
to be along the x, or c axis.

EXAMPLES OF USE OF EQS. (15) AND (17) FOR ORTHO-
RHOMBIC BIAXIAL, UNIAXIAL, AND CUBIC CRYSTALS
FOR VARIOUS ORIENTATIONS OF WAVE VECTOR k

+-versus-0 expressions are obtained for three
different orientations of the wave vector k for the
orthorhombic crystal. The three orientations
are sufficient to illustrate all possible cases.
The uniaxial and cubic cases are obtained by con-
sidering special polarization component directions
as described above; these cases are also described
here.

Case I. Orthorhombic Biaxial Crystal (General k and
F with Nonzero Components)

k= (k„ks, ks), P= (P„Ps, Ps). The components
are given in the x&, x&, x, coordinate system. This
is shown in Fig. 2. [In the following discussion
when a vector component is meant~ the component
will be writtenas a vector (i.e. , k, or P;). Oth-
erwise k, or P, are scalar quantities. ]

The general solution of (17) is used because
none of the k& components is zero. The direction
cosines of k are given by cosP& = (k;/k); then (17)
is written as

( ', — ') —(e', ', —e, )
(td —(d ) —(td'/csks} (&a &da —&" td )

(ada —Cd ) —(es (ds —Es (d )
(&d, —td ) —(td /c k ) (eatds —&a & )

(td,' —td') —(»', td,
' —e,"td')

(td' —&d'} —( '/ 'ks) (e td' —e" td')

k)

x,

FIG. 2. Geometry of the orthorhombic case I for a
general orientation of R, i.e. , each k& component is
nonzero.

Because cos Q, + cos Qa+ cos $, = 1, only two an-
gles are necessary to orient k. For a given value
of k where no k; component is zero, (18) is a
sixth-degree equation in (d, yielding six solutions
for ~ . One of the roots is =c k, as discussed
above. This root is discarded.

A transverse lattice wave is defined as that in
which the wave vector k is perpendicular to a
component P; of the polarization vector P. There
is no P& component in the x„x2, x, coordinate
system perpendicular to k (because k;40 for any
i' s); hence no TO wave is observed. It is noted
that the "purely electromagnetic" wave for large
& and k has the wave vector k perpendicular to
D, the electric displacement vector, but not per-
pendicular to a component of P for this case.

The fifth-degree equation obtained from (18)
yields five &-versus-k branches. As an example
we have indicated a particular set of solutions in
Fig. 3. The long-range electric forces have been
assumed to be greater than the short-range aniso-
tropy forces, so that the &'s are grouped together
as are the &'s at k =0. In addition, it has been
arbitrarily assumed that et /et » ea /es» cs /es, so
that the e,'s are arranged as indicated in Fig. 3.

It is noted that all five branches interact strong-
ly for small k values. All of the branches con-
sist of mixed electromagnetic and mechanical vi-
brations for these k values. These waves are
neither longitudinal nor transverse in the k J. P;
sense.

Case II. Orthorhombic Biaxial Crystal (k in a Plane Formed
by Two of the Principal Axes)

One of the k; components is zero (e.g. , k, = O);
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above. It is noted that the waves are neither lon-
gitudinal nor transverse (in the k II P, or the k
1 P, sense). For large-k values two of the roots
give the frequencies of the mechanical lattice
vibrations; the other root gives the frequency of
the purely electromagnetic wave. The results are
shown graphically in Fig. 5. The three branches
obtained from (20) interfere or interact with each
other in the region of small-k values where the
waves are mixtures of electromagnetic and mech-
anical vibrations. The interaction manifests it-
self in the "repulsion" or "attraction" of the
branches.

It is noted that the two transverse waves obtained
from (19) do not interfere with the three waves
obtained from (20); the two equations are indepen-
dent of each other. This is shown more clearly in
Fig. 6; here the dielectric constants were as-
sumed to be different from those for the TO wave
of Fig. 5 so that the upper branch is lowered.
Level crossings of the To branches given by (19)
with the three branches given by (20) are shown.

Case m. Orthorhombic Biaxial Crystal (k along One
of the Principal Axes)

FIG. 3. ~ versus k for small-k values for general k
orientation. Orthorhombic case I. Parameter values
used: e( =2, e2 —-3, e3 =4, e) ——18, ep ——12, e3 -—6, 20 0 0

-1.3~,, ~,-1.6~, .

then k is in the x~, plane. k= (0, k2, k,), and P
= (P„P„P,). This case is shown in Fig. 4.

Because k, = 0, the coefficient of P, in (15) must
be zero: ((u', —(u') —((u'/c'k2)(e', (u', —eP(u') = 0 (21)

When two of the k, components are zero, we
have, for example, k = (0, 0, k, ), P = (P„P„P,).
The orientation of the vectors of case III is shown
ln Flg. 7.

k&=0 and k&=0; the coefficients of Pj and P& are
then set equal to zero in (15):

(&u', —&u') —(&u'/c'k')(e', ~', —ep &u') = 0 (19) and

This gives the frequencies of the transverse waves.
The component P& of the dielectric polarization
vector is along x& and is perpendicular to k.
Equation (19) yields two of the transverse solu-
tions. The "purely electromagnetic" waves for
large and k are also "transverse" in the kl P&

component sense; in this case, P, II E, II D, .
The k, = 0 component resulted in (19), which

gave two values for frequency versus k. The other
three frequencies are given by (17) (noting that
the i=1 term vanishes because k, =0):

(~2 ~2) ( 8/ 2k2) (go 2 ~ 2) 0 (22)

(~2 ~) (~2~2 e2 ~) 2

(M2 —N2) —((02/C2k2)(eo R2 —e~ R2) cos ~2

cos' = 1 20+ (~2 ~2) (~2/ 2k2)(co~2 eto~2) os 43

Because cosQ, = 0, cos'Pz = sin'Q~. Equation (20)
is a quartic equation in & and gives the other
three branches of the &-versus-k curves. The
fourth solution is the ~ =c k root, discussed

FIG. 4. Geometry of the orthorhombic case II
where % lies in the x2x3 plane.
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Equation (21) gives the transverse solutions for
ki P„and (22) gives the transverse solutions for
k j.P2. Each equation again yields two solutions.
The fifth root is given by (17) because k, &0:

5.0

((d& —(0 ) —(6& (d& —6& (0 )
(~2 ~2) (~2/c 2kR) (eo ~3 e ~ ~2)

(23)

40

&d = (d& (6&/E& ) —= (d&

The longitudinal frequency is defined by the sym-
bol , '. For this case k is parallel to P3. Equa-
tion (23) is the well-known Lyddane-Sachs-Teller
relationship between the Lo and TO frequencies,
cited previously. The three sets of branches are
noninteracting and the branches may cross when
sets of parameters other than those for Fig. 8
are used.

Cases I-III describe all possible cases for the
biaxial orthorhombic crystal. The &-versus-k
values for case I require the solution of a fifth-
degree equation. All solutions are real, so that
the computations are relatively simple. We now

describe the use of (15) and (17) for the uniaxial
and cubic crystals as special cases.

a/3
3.0

Oz
8

2.0

I.O

0
0 IO

Eq. ( I 9)
TO

I I I I I I I I I

2.0 3.0 4.0 5.0 6.0
WAVEVECTORi

I

I I I

7.0 e.O

FIG. 6. Sameas Fig. 5exceptthat e1 and e&werechanged
in order to illustrate that the two transverse branches
do cross the other three branches e&

——2, e&
——4.5. The

crossing occurs because (19) is independent of (20).

5,0

Case IV. Uniaxial Crystal Application of Eqs. (15)
and (17)

4.0

3.0

R
4J

2.0
R
4.

I.O

For the uniaxial case any direction in the x, x2
plane is equivalent for macroscopic physical
properties or the electromagnetic field vectors.
For a given arbitrary k vector, we can then select
an axis Ox, in the x1x2 plane such that Ox, l k.
Then let Oxb be an axis in the x, x, plane perpen-
dicular to Ox, . In the x„x„x,coordinates the
k and P vectors are written as

k = (0, k„, ki), P = (P„Pi, Pi)

This case is shown in Fig. 9.
In (15) and (17) the indices now run from f

=a, 5, 3. Because any direction in the x1x2 plane
or the x,x, plane is equivalent,

0 I

0 I.O 2.0 3.0 4.0 5.0 6.0 7.0 8.0
WAVE VECTOR,

Itc
CQ

)

FIG. 5. & versus k for small-k values for k in the
xqx3 plane. Orthorhombic case II. Parameter values
same as for Fig. 3. ~", =2, ep =3, ~", =4, e, =18, e,0 0

=12, c3=6, (A)o=1. 3cu1, ~3=1.6M). The branches do not
cross because of the particular parameter values chosen.
4~=43

P 0 0 0+1 2 a » ~1 ~2 ~a ~bi ~1 ~2 ~a ~b

Because k, =0, the coefficient of P, in (15) is set
to zero (i = 1 is replaced by i =a):

(~'. —~') —(~'/c'k')(eg 4&', —eg ~') = 0 (24)

This corresponds to the transverse wave where
kJ. P, . There are two solutions to (24). The other
three frequencies are given by (17) (where f = 2 is



2074 C. K. ASAWA

k~- - k

four roots. Three of the solutions give three
&-versus-k branches. The other solution is the
& =ck root. Because k is inclined at an arbitrary
angle with respect to P, and P„ the waves are
neither longitudinal nor transverse. Typical &-
versus-k curves for the uniaxial case are given
by Loudon.

X,

FIG. 7. Geometry of the orthorhombic case III where
k is along the x3 axis.

replaced by i = b). Then

(~2 ~2) (~2/ 2b2) (e0 ~2 e~ ~2)

(&03 —&d ) —(e3 &d3 —e3 (d ) I

(~2 ~2) (~2/c 2b2)(e0 ~2 e
~ ~2) 43

because cos p, = smp3 and ~,= ~„c,= e„e,p p ao

This is a quartic equation in , yielding

Case V. Uniaxial Crystal (k Perpendicular to the

x3 or c Axis)

A@en k lies in the x, x~ or x, x~ plane, denote k
by k= (0, k0, 0). Write 5 as P= (P„P3, P3) (shown
in Fig. 10). Then in (15) the coefficients of P, and

P3 are set equal to zero, yielding

(~2 ~2) (~2/c2b2) (e0 ~2 e~~2) 0

and

(&d3 —(0 ) —((0 /c I3 ) (e3 (03 —E3 (d ) = 0 . (27)

These are the two sets of transverse waves with
two solutions each.

The other solution is the longitudinal solution
obtained from (17) evaluated with i =b the only non-
vanishing term:

(~3 —& ) —(&0 ~3 —&0 & )
(~3 —(0 ) —(~ /C 0 )(63 (d3 —K3 (0 )

or

5.0
The second factor set equal to zero gives the

longitudinal solution for this k-vector orientation:

~2 (e0/e ) ~2 —~ l2

4.0

5.0 ~

R
t2J

Cf
UJ
K
t2.

Eq.(2&) L 0

Case VI. Uniaxial Crystal (k along x3 Axis in

x~ xy x3 Coordinate System)

k= (0, 0, k3), P= (P„P„P,). This is illustrated

Eq. (22) T 0

i.o

0
0

I I

I.O 2.0 3.0 4Q 5.0 6.0 7.0 8.0
WAVEVECTOR, ~

kc
I

Xb

Xg

FIG. 8. & versus k for small-k values for 0 along the

xs axis. Orthorhombic case III. Same parameters as
for Figs. 3 and 5. The three sets of branches may cross
with other choices of parameters.

XO

FIG. 9. Special polarization component directions
with respect to a general k vector. Uniaxial case IV.
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Xb

which are perpendicular to k, e.g. , Ox, and Ox~.
Replace i = 1, 2, 3 by i =c, d, e in (15) and (17).
We have k = (0, 0, k,), P = (P„P2, P,).

Since k, =k„=O, the coefficients of P, and P~ in
(15) are zero. This results in the transverse
waves

(002 ~2) (~2/C2k2) (~0 ~2 ~» ~2) p

and

(&a'„- &u') —(&o'/c'k') (e', &u', —e, &u') = 0

This describes the two cases where k j I', and
k~p~. In the cubic crystal &,= &g=&„&q=6.g
= e'„c,"= e„=e,". Then (32) and (33) are degen-
erate, i.e. , the &-versus-k values for the trans-
verse waves are doubly degenerate.

Because k, &0, Eq. (1V) gives

~2 (20/~'» ) ~2 —~l2 (34)

FIG. 10. Special polarization component directions
for k in the x~x2 plane. Uniaxial case V.

((g2 ~2) (~2/c2k2)(~0 ~2 ~
» ~2) 0 (30)

These transverse waves are degenerate because
(da +y~ &a In~ and &a = e~ A pair of doubly de-
generate transverse -wave solutions are obtained
from (29) and (30).

The other solution is obtained from (17) because
k3 +0.

((d 2
—QP) —(22 QP2 —e2 (d )

(~2 2) ( 2/ 2k2)(~0 ~2 ~ ~2)

in Fig. 11. Note that the x„x& coordinates are
equivalent to the x&, x2 coordinates (i.e. , either
pair yields the same set of equations). Because
k, =k„=p, the coefficients of P, and P, in (15}are
set equal to zero:

(~2 ~2} (~2/c2k2) (g0 ~2 ~ ~2) p

and

This is the frequency of the longitudinal wave, as
can be seen in Fig. 12, where kll P,. Equations
(32) and (33) and Eq. (34) are precisely the same
as (V) and (6), respectively, for the cubic-crystal
case.

APPLICATION TO RIGHT-ANGLE RAMAN SCATTERING

Phonons causing right-angle Raman scattering
have wave-vector magnitudes of approximately
lkt=3&&10 cm and frequency & of the order of
2~10 sec '. Thus we can write ck»+. These
phonons are located near the right-hand edge of
Figs. 1, 3, 5, 6, and 8 and consist dominantly of

or

(~'/c'k' —1)(22 ~2 —22 ~') = 0 .

The second factor set to zero gives the longitudinal
frequency along the x, axis: Xg

~2 (~0/2'» ) ~2 —~l2 (31)

Case VII. Cubic

All directions are equivalent for macroscopic
physical properties and the electromagnetic field
vectors.

The polarization vectors can be written in terms
of any two mutually perpendicular directions

XO
Xb

FIG. 11. Special polarization component directions
for k along the x3 direction. Uniaxial case VI.
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vanish in (15) and (17). Equation (15) becomes

('»» —»d )&»=[(~» -~ ) —(~»&» —~»»d )]

&&(k»/k ) (k' P), i= 1, 2, 3

and (17) becomes

(35)

(E» (0 ~ —f2 CO )
»=i, 2,3 (~» ~ )

(36)

Xg

FIG. 12. Special polarization component direction
with respect to the general k vector. Cubic case VII.

These equations are evaluated in the same manner
as in cases I-VII. Equation (36) is now only cubic
in &, simplifying the calculation somewhat. The
direction cosines of the wave vector k are given
by cosg» = (k,/k). As the orientation of k is changed
in an orthorhombic crystal, the solutions of (35)
and (36) manifest how the frequency of the observed
Raman line changes.

Equation (36) is a third-degree equation in»d .
If we let the solution be „» and &,', we obtain
a modified Lyddane-Sachs-Teller relation for the
orthorhombic case:

mechanical lattice vibrations and a very small
mixture of electromagnetic radiation. The fre-
quencies for these cases can be calculated by
letting the terms containing the factors (»d /c k )

& i COS pi+ &2 COS $2+ &i COS $3
2 2 2 0 2 0 2 0 2

Ri Rp (Op 6i Cos Qi + 6g COS Pi+ ti COS $3

Other relationships are easily obtained. The
sum of the solutions is given by

2 2 2 I ~l +1+~i (+2 +&3)] COS $1+[E2N2 + 6p (%1+Vi)] COS 42+ [63 R3+ ES (%1+%2)] COS Q3
COg+ Ct)g + (d~ ——

COS Qi+ E2 COS Qp+ E,
"Cos'Q'p

A third relation for an orthorhombic crystal is finally obtained:

(36)

(dg (dg+ COg (0~+ COg (0~

[& i »dp 3+&»»L»i(&2+»d3)) COS yi+[&p»di »d3+&2(»di+»d3)] COS $2+[&3»di»d2+&3»di(»di+»dp)] COS $9
COS Qi+ tp COS Qp+6i COS $3

. (39)

SUMMARY AND CONCLUSIONS

The (d-versus-k relationship for a diatomic
ionic orthorhombic crystal has been derived and
is given by (15) and (17). As Huang has done for
cubic crystals and Loudon for the uniaxial case,
a retarded electromagnetic field, using the com-
plete set of Maxwell's equations, has been used to
interact with the vibrating lattice. The resultant
vibration field was found to consist of a mixture
of the electromagnetic radiation field and the lat-
tice vibration field, as expected. In general, the
frequency & was found to be dependent upon the
orientation (as well as the magnitude) of the wave
vector k with respect to the crystal axes. The
orientation is given by two angles.

Three cases illustrating special k-vector direc-

tions have been considered; these three cases
describe all possible situations for these ortho-
rhombic crystals. It has been shown that all five
-versus-k branches are explicitly given by the
equations. Typical cases were computed and
graphically illustrated. The -versus-k equations
for uniaxial and cubic crystals have been obtained
as special cases. Expressions are given for the
change in the right-angle Raman scattering fre-
quencies with k-vector orientation change in or-
thorhombic crystals given.
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The lifetime of the excited I" center at 4. 2'K and the changes in the radiative lifetime in-
duced by an applied electric field and by increasing temperature have been measured in KCl,
KF, and NaF with sufficient precision to test recent models for the relaxed excited states.
The quantities measured were the luminescent decay time v' (using a pulse sampling technique),
the relative luminescent yield q (using conventional techniques), and the emission-line-shape
function. Changes in lifetime were measured for [100] applied dc fields of 0-140 kV/cm at
4.2'K. These changes were of the form «j&=-PI', where I" is the field in kV/cm, and P is
(5.8+0.5) &&10 in KCl, {4.0+0.3) X10 in KF, and (3.0+0.3) &10 in NaF. Lifetime and

yield were measured from 4. 2 to 150'K with approximately 1% precision. In KCl and KF,
these data are used to demonstrate that the only two decay modes from. the relaxed excited
states are emission and thermal ionization, so that the radiative lifetime is v/q. In NaF,
another decay mode during relaxation appears to complicate the results, but the radiative
lifetime can be extracted using additional data reported by Podini. In all three cases, the
radiative lifetime decreases as the temperature increases. Both the electric field and the
temperature effects on the radiative lifetime are quantitatively consistent with the mixed-
state model recently proposed by Bogan in which the lowest emitting state is presumed to be
2s-like, with a large admixture of 2p states. Values for the characteristic parameters, the
mixing parameter 0, , and the level separation QE) are determined from these data and agree
with values determined in a different manner by Bogan.

I. INTRODUCTION

The F center in alkali halides consists of an
electron trapped at a single halogen vacancy. Its
presence in. a crystal is characterized by several
broad optical-absorption bands in or near the
visible spectrum. Excitation in any of these ab-
sorption bands, at sufficiently lorn temperatures,
leads to a single broad emission band. Although
the I' center has been, studied for many decades,
it is only very recently that an understanding of
the states responsible for this emission is emerg-
1ng.

Swank and Brown mere the first to measure
the decay time of the E-center luminescence.
They found that the radiative lifetime of the ex-
cited center (F ) was approximately two orders
of magnitude longer than the value to be expected
from the oscillator strength in absorption. Of
the various explanations which they proposed for
this discrepancy, the diffuse p-state model gained

wide a,cceptance as a result of the work of Fomler.
He was able to show that the i 4 (2P-like) state
of I"*would become more diffuse as the surround-
ing ions adjusted to the change in charge distribu-
tion following the optical excitation. This mould
reduce the matrix element for emission to the
ground state. Using plausible values for an effec-
tive dielectric constant ln a semicontlnuum model,
he mas able to predict the right order of magnitude
of the decay time,

However, the recent work of Bogan4 and of
Kuhnert could not be explained by the diffuse p-
state model. Both these authors studied the Stark
effect on the relaxed excited state of the I" center
by analyzing the electric-field-induced linear po-
larization of the luminescence. Their results im-
plied that the luminescent state of I' has a con-
siderable amount of 2s character. Whether the
relaxed excited state consisted of completely de-
generate 2s-2p states, as assumed by Kuhnert,
or of stxongly mixed but not degenerate states,


