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The electronic band structure and optical constants of diamond are calculated using the

empirical-pseudopotential method with an additional & = 1 nonlocal term V@L(r) added to
account for the strong potential experienced by p electrons in the core region. VN&(r}

strongly affects the p-like conduction bands, and the resulting band structure yieMs a plot
of &2(~), the imaginary part of the dielectric function, which is in satisfactory agreement
with experiment. In addition, the temperature-dependent peak at 7.8 eV in the optical
spectrum, whose origin has been somewhat of a mystery, is identified with optical transi-
tions. beginning at I and extending out along the Adirection in the Brillouin zone.

INTRODUCTION

The band structure of diamond has been exten-
sively studied by several authors'" in recent
years. Vfe mill focus here on those calculations
utilizing the empirical-pseudopotential method'
(EPM) with the aim of extending these calculations.
Since good pseudopotential calculations for silicon
are presently available in the literature, it mould

seem to be possible to combine the best sets of

form factors for C and Si to determine a consistent
band structure for SiC. Furthermore, the form
factors for C can be used to determine the sym-
met;ric part of the form factors for BN and BP.
However, before proceeding directly toward these
goals, further improvement on the presently avail-
able diamond calculations is considered necessary
as the resulting band structures do not yield a
totally satisfactory fit to the experimental optical
data. In particular, the calculated &3 spectra of
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diamond do not match the measured spectra very
well, especially with respect to the line shape in
the low-energy region and the position of the main
peak.

In an attempt to correct for the above deficien-
cies, we present in this paper another calculation
of the band structure and optical properties of
diamond. However, instead of making the usual
assumption that the pseudopotential can be approxi-
mated by a local spherically symmetric potential
which is independent of the angular momentum of
the state under consideration, we have included a
nonlocal term V»(r) to account for the angular-
momentum dependence of the pseudopotential. Such
a term does indeed lead to an improved line shape
in the low-energy region and yields a main peak
whose position is in excellent agreement with ex-
periment. In addition, the band structure thus
obtained suggests a new interpretation of some of
the optical structure. We shall describe more
fully, in what follows, the details and results of these
calculations. The paper will be presented in three
sections. In Sec. I we discuss the choice of VN&(r),

and the mechanics of the calculation are briefly
described; in Sec. II the resulting energy-band
structure and optical parameters are discussed
and compared with the results of other authors;

finally, in the final section conclusions drawn from

the calculation are presented.

I. NONLOCAL ANALYSIS

In the original formulation of the pseudopotential
method, as described by Phillips and Kleinman,
instead of solving the one-electron Schrodinger
equation for a periodic crystal

[(P /2m)+ V(r)] P„«(r)=E„(k)P„«(r), (I)

where P and m are the momentum and mass of the
electron and V(r) is the crystal potential, one con-

siders instead the following model equation for a
smoothed pseudo-wave-function &f&„«(r),

[(P /2m)+ V„(r)]$„-«(r)=E„(k)P„-«(r), (2)

where V& is a nonlocal integral operator represent-
ing the sum of the usual attractive Coulomb crys-
tal V~ and a nonlocal angular-momentum-depen-
dent repulsive potential V„, which arises from the

orthogonality of the true wave functions to the
core states.

In order to solve Eq. (2), the usual procedure is
to assume the cancellation between V~ and V~ to
be almost complete, and to replace V~ by a weak

potential which is independent of angular momen-

tum. In addition, one generally approximates the

pseudopotential by a local spherically symmetric
potential, which is assumed to be expressible as a
superposition of local spherically symmetric po-

tentials centered about each ion site. With these
approximations, one can then write

where v(lr —R,.)) is the local potential centered
at R,, the position of the jth ion core, and the sum
is over all the ion cores in the crystal. The prob-
lem of determining the energy eigenvalues and
pseudo wave functions is thus reduced to solving
the somewhat simpler equation

[(p'i2m)+Z ~ v(l r —R~
l
)]y.«(') =&'(k)e «(') (4)

for the various cases of interest.
It is from this point that previous EPM calcula-

tions have proceeded. However, in the case of
diamond the agreement between the results of such
calculations and the experimental optical data is
not particularly good. This is somewhat surpris-
ing, since Eq. (4) leads to good results for Ge and

Si, which have essentially the same structure. This
suggests that the approximations leading to Eq. (4)
should be reexamined for diamond. In particular,
the approximation involved in ignoring the angular
momentum dependence of Vp seems somewhat
questionable. Unlike Si and Ge, diamond has no

p electrons in the core; hence, the Coulomb po-
tential felt by the P valence and conduction elec-
trons is not canceled in the core region by a re-
pulsive term from V~. As a result, Phillips's
cancellation theorem is not valid in this case, and
one cannot assume V~ to be weak in this region for
such electrons. In light of this fact, we modify
Eq. (4) in our calculation by adding to it a, nonlocal
term V„„(r)to account for the strong potential ex-
perienced by P states in the core. Thus, instead
of using Eq. (4) as a starting point for our calcula-
tion we use the following equation:

[(P'/2m)+Q v(l r —R,.
l
)

+ VNL(r)]4 „«(r)= Z„(k)g„«(r),

where V»(r) is assumed to operate only on P states
in the core region. To satisfy these conditions,
we have followed the analysis of Lee and Falicov
for F and the analysis of Kong and Cohen' in their
treatment of KCI by choosing V„L(r) to have the
form

V»(r) = ~~ &l~(l r -
Ryl )pi (6

where P, is a projection operator which operates
only on those spherical harmonics with /= 1, and

P, is the corresponding Hermitian conjugate op-
erator.

During the course of the calculation, several
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forms of U(Ir I) were tried, such as a simple
square well, a Yukawa-type well, etc. The best
results are obtained by choosing

where R, is the diamond core radius in the crystal,
assumed to retain its free-atom value of approxi-
mately 0. 2A, and A and n are treated as param-
eters. This choice of U(Ir I) is vaguely suggestive
of the Coulomb potential (proportional to 1/r) felt
by an atomic P electron which has an associated
radial charge density of the form x e " in the pres-
ence of a point nucleus. The calculation resulting
from this choice of U will be the only one discussed
in this paper.

To solve (5), it is convenient to expand the weak
local-pseudopotential term in the reciprocal lattice
as follows:

iG t2& 12

where G is a reciprocal-lattice vector in units of
2v/a, a being the lattice constant of diamond taken
to be the value 3. 57A, and where

v(IGI) = (2/~) 1,',„v(lr l)e "'d'r (9)

is the crystal form factor, 0 being the volume of
the unit cell, and

S(l GI ) = c»G '& (io)

is the structure factor, r = —,
' a (1, 1, 1) being the

vector between the two diamond atoms in the unit
cell. %'ith the truncation of the expansion at )G
= 12 in (8), the only nonvanishing form factors are
v(IG I =8), v(4), v(8), v(11), and v(12). v(4) and

v(12) do not contribute to the potential because the
corresponding structure factors S(4) and S(12) are
O. However, we set S(12)= 1 in order to be consis-
tent with the x-ray scattering data. ~"

Having made the expansion (8), one then diagonal-
izes the pseudopotential Ha.miltonian (5) over a
basis of plane-wave states. The matrix elements
for the local pseudopotential are calculated by a
method described by Brust. ' Essentially, this
method consists of treating those plane waves sat-
isfying )k+G )'&E, exactly, while those with E,
& )k+6 ( &E2 enter only through second-order per-
turbationtheory. Plane waves with )k+G ( &E2 are
neglected. For the nonlocal term V»(r) we also
neglect the contributions of those plane waves with
E, & )4+6) &E2. A typical matrix element of V»
is of the form

&k+Gl V"Ik+G ) =fog, (24/fl) coseog, S(G —G ),
where (ii)

&oo = J A(lk+Glr»i(lk+G'lr»(r)r'«(»)

and where j, is the spherical Bessel function of
order 1, egg. is the angle between the vectors
k+ G and k+ G, and 0 and S are the volume of the
unit cell and structure factor as defined previously.
The integral is evaluated numerically. Satisfactory
convergence is obtained by choosing E, = 12. 50
and E2= 30. 10.

The EPM method of solution of (5) consists in

choosing the pseudopotential form factors v(G, ),
along with the parameters A, n associated with

U(r), to give band structures consistent with ex-
periment. In practice, one calculates a few of the
principal band gaps at important symmetry points
in the Brillouin zone, and then adjusts these param-
eters until the gap values agree with those extrap-
olated from the optical experimental data. Once
these parameters are fixed, the energies can be
calculated at general points throughout the zone.
The resulting band structure and pseudo-wave-func-
tions can then be used to calculate e2 via the ex-
pression

e2ha 2 f„,(k) dS

„,(2v)'J E„,IV-„E„,I

where

2 I(k, v Ip Ik, c) I'
3m E

is the EPM interband oscillator strength, Ik, c)
and Ik, v) are the EPM wave functions for the con-
duction and valence bands at the point k, S is a
surface of constant interband energy E„,=E,—E„,
and E, and E„are the energies of the conduction
and valence bands, respectively. The details of
evaluating the sums over initial and final states is
described elsewhere. ' The only modifications
are that the mesh size is defined by dividing the
distance I'X into 10 parts, and each cube is divided
into 125 equal subcubes yielding -13600 random
points, and quadratic interpolation between mesh
points in used instead of linear interpolation. The
whole process is repeated until satisfactory agree-
ment with the optical data is obtained or until no
further improvement can be obtained.

The available optical data for diamond can be
summarized by a plot of e2, "as shown by the
dashed line in Fig. 2. We also list the measured
values of the conduction-band minimum &;„and
the threshold for indirect transitions E„„"'"(see
Table II), As can be seen, the experimental e,
has structure at 7. 2, 7. 8, 12, and 16 eV. Pre-
sumably, these structures can be related to Van
Hove singularities at critical points, where V„E„,
= 0, although it is possible that they may also
arise from transitions extending over large regions
of 4 space around symmetry points, as Kane showed
to be the case for Si." It is by identifying the
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structure with transitions at certain critical sym-
metry points that one determines the data to which
the form factors are fitted.

Unfortunately, no clear-cut interpretations of
the critical points causing the principal structure
in the low-energy region of the diamond e2 spec-
trum exist. The shoulder at 7. 2eV is temperature
independent, "which suggests that the threshold
for direct transitions is near this energy. How-

ever, there is some debate as to whether this
fundamental absorption edge begins with transi-
tions at I or L.3 The peak at 7. 8 eV is tempera-
ture dependent, which suggests the possibility of
its being caused by an exciton; however, previous
calculations yield no critical point near this en-

ergy with which such an exciton can be associated.
By contrast, the origin of the main peak at 12 eV

is understood to arise from 4-5 transitions
starting at X(X4-X,) and extending out along the
Z directions where there is a large region of es-
sentially parallel bands. The structure at 16 eV
is not sharp and is at too high an energy to be
given accurately by our EPM approximation.

For the purposes of this calculation, then, the
only unambiguous experimental data to which the
form factors can be fitted are the threshold for
indirect transitions, the position of the conduction-
band minimum, and the position of the main peak,
which is expected to lie near the X4-X, transition
energy. The experimental values taken for these
quantities are listed in Table II, under experiment.
In addition, we assume that the threshold for
direct transitions occurs at I' with energy in the
vicinity of 7 eV. Since prior calculations agree
fairly well with all of the above data except the
position of the main peak, we have directed our
efforts towards improving this value. As a start-
ing point in our calculation, we use the local form
factors V»» V~&0, V3»p Vzzz of Saslow et al. '
(Table I). They are combined with A, n and ad-
justed until satisfactory agreement with the op-
tical data is reached.

II. DISCUSSION OF RESULTS

The resulting pseudopotential form factors,
principal energy gaps, and positions of ~,„and
the main peak are given in Tables I and II. For
convenience, results of other recent calculations
are also listed. The calculated energy-band struc-
ture along principal symmetry lines is shown in

Fig. l. Figure 2 contains the calculated e2(&o)

spectrum for the range 0-20 eV, with the corre-
sponding experimentally derived curve also in-
cluded for comparison. The theoretical reflectance
R(&u), obtained via a Kramers-Kronig analysis of
our calculated e2 using the method of Walter and

Cohen, ' is shown in Fig. 3, accompanied by the

measured curve. Finally, Figs. 4 and 5 indicate
important energy contours and critical points for
4- 5 and 4-6 transitions, respectively.

We will first consider the calculated band struc-
ture. The valence-band maximum is at I', and the
conduction-band minimum occurs near (0, 8, 0, 0),
which is in good agreement with the value of (0. 78
+0. 02, 0, 0) determined via neutron diffraction
studies. ' The threshold for indirect transitions
is seen to be 5. 46 eV, ' ' in excellent agreement
with experiment. The threshold for direct transi-
tions is 6.96 eV, and corresponds to I'». - I",.
transitions. The band structure is similar in most
respects to those of prior calculations, including
the APW calculations of Keown and Herman's
OPW calculation. ' However, there are some
significant differences, mainly with respect to the
level ordering at I and L. The present calcula-
tion has I'~. lower than I'», which agrees with
Saravia and Brust, ' but is opposite to the ordering
of other calculations. A Priori, there is no reason
for choosing one ordering over the other. One
might argue that since Ge and Sn have I'3. lower
than I'», while Si has the order reversed, C could
be expected to follow the trend and have I » lower
in energy than I'~. . However, there are no experi-
mental data presently available which favor one
ordering over the other. Until such time as ex-
periments can isolate some effect which differen-
tiates between the two, the question of which or-
dering is correct remains open. Another differ-
ence in the levels occurs at L, where L2. is lower
in energy than L„L„and I'2, and L, and L, are
reversed, with L, lower than L,. The fact that L,.
lies lower than L„L, is related to the fact that
I"~. lies below I"„. The peak which appears at
8.4 eV in the calculated reflectance spectrum
(Fig. 3) is a consequence of the fact that the con-
duction band at L(Lz.) hasbeenbroughtdowncloser
to the valence band.

The calculated e~ spectrum begins with direct
4 5 transitions at I' with energy 6 ~ 96 eV. As
just discussed, this corresponds to the I». —I'~.

transition, which has Mo sy™~ry.Since the
contributions to e~ near 7 eV come from a very
small region in k space, as shown in Fig. 4, the
absorption edge is very weak in this vicinity and

does not show up well on the curve. As the en-

ergy is increased, more and more states are able
to contribute, and e2 starts to rise. The slope in

the region 7. 5-8 eV is quite steep because the
joint density of states with transition energies in
this range increases quite rapidly, as indicated by
the much larger energy contour for 8. 1 eV in Fig.
4(a,), and the associated oscillator strengths are
very large, especially out along the A and Z di-
rections from I'. At 8 eV the curve starts to
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TABLE l. Nonlocal and local form factors (expressed in Ry) used in the present calculation. Also included are the
form factors employed in prior EPM calculations.

Present calculation
Ref. 1
Ref. 2
Ref. 3

—0.785
-0.811
-0.514
—0.696

&22O

0.189
0.337

—0.022
0.337

Local
&3«

0.138
0.132
0.186
0.132

0.071
0.041

-0.078
0

Nonlocal

—0.159
~ 0 0

l. 25

level off somewhat, as the increase in J„„the joint
density of states, is not quite as rapid as before;
in addition, much of the increase in J„,comes from
interior points in the zone in a region where the
oscillator strengths are generally weaker than
before.

Near 8. 2 eV, ez again changes slope and begins
another steep ascent until Sv = 8. 4 eV, where it
starts to level off again. In this region there are
three main contributions to ez. First, there is an
Mo singularity at I', corresponding to the 4 -6
transition I"z5. -1"„with energy 8. 2 eV. In addi-
tion, there is a second critical point at L which
has M, symmetry and is associated with the 4-5
transition L3 -La. of energy 8.27 eV. Finally,
there is a large increase in J„,in this energy in-
terval coming mostly from 4-5 transitions in the
region around L and extending out along 5, where
the oscillator strengths are fairly large.

The structure exhibited by e~ from 8.4 to 11.5
eV is not associated with any critical points but

seems to be solely due to a volume effect. The
major contributions come from 4 5 transitions in
the interior of the zone, as shown in Fig. 4 for
selected energies; 4-6 transitions around I' also
contribute, but not significantly, as the available
phase space is of limited extent, and the oscillator
strengths are generally weaker. The roughness
in the region 8.4-10 eV arises primarily because
of the sampling procedure used in evaluating the
sum over initial and final states in (13}. In this
range, the energies change quite rapidly with posi-
tion in the Brillouin zone. As a result, the meshes
used to divide up the Brillouin zone when perform-
ing the sums are probably too coarse to yield ac-
curate energy levels and EPM oscillator strengths
at random k values in this region. Previous ex-
perience indicates that dividing the Brillouin zone
into a finer mesh should smooth out the curve in
this region. This belief is strengthened by the
fact that the calculated reflectance (Fig. 3}is ab-
solutely smooth in this range. In the interval

TABLE Ij. Prominent interband transitions, indirect-band gap, and positions of the conduction-band minimum and
main peak in e2 for recent diamond calculations, including the present one. Experimental values are included when
applicable.

Principal energy gaps (eV)
~25 ~$5 25 ~ 2 +3 +2 +3 ~25' —&my. &mrn Main

peak

Present
Calculation
(nonlocal EPM)

8.22 6.96 8. 27 13.13 11.79 5.46 0.80 11.8

Ref. 3 (EPM)

Ref. 5 (OPW)

Ref. 1 (EPM)

Ref. 2 (EPM)

Ref. 4 (APW)

Experiment

14.06

8. 21

5.8

7—7 3 ' '

7.52

12.04

12.0

7-7 3 ' '

7.39

20. 5

10.88

17.2

12.8

12.8

13.0

10.43

11.8
12.9

12.66

5.37

5.47

5.26

5.45

5 47c

0.76

0.8

12.7

0.78

0.83 -11.0
0.75

The entry in this slot depends on whether one assigns the direct gap at 1" to the I'25' 2&5 or F25' 12' transitions.
'Ref. 16
cRef. 18
Ref. 17
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10-11.5 eV, the major contx ibution to ez comes
from 4-5 transitions in the interior of the zone,
coming closer to the region around K, U; X as the
energy increases. The steep rise in &3 is due to
the fact that the oscillator strengths become signif-
icantly stronger as one goes away from F, L and
toward the region around K, U, X.

The large main peak at 11.8 eV is caused by the
M, critical point at X with energy 11.79 eV, cor-
responding to the 4-5 transition X4-X,. The main
contribution still comes from 4-5 transitions,
especially those in the XFER' plane as shown in
Fig. 4(b). 3-5 and 4-6 transitions also combine
in roughly equal proportions to make up about 10%
of the total contribution to ea at this point.

As one goes higher in energy, the 4 -6 transitions
become more and more important. Since the oscil-

lator strengths are generally much weakex than
those corresponding to the 4-5 transitions, za falls
smoothly as energy increases. The peak at 13.2 eV
is due to the M, critical point at L, associated with
the 4-6 transition I.3 -I3, with energy 13.13 eV.
The small peak at 14.4 eV is caused by the 4-6
transition &,-bz at the point (0. 5, 0, 0); this tran-
sition has enex gy 14.38 eV and Ma symmetry.

A comparison w1th the experimentally dex'1ved 63
yields generally adequate agreement (Table HI).
The main purpose of this calculation is to try to
improve the agreement between the position of the
main peak in the theoretical and experimental re-
sults. In previous calculations, the calculated
position of the main peak is displaced from its
experimental value by -1 eV. As seen from Fig.
2, 1n this cRlculRtlon the two peRks R1e 1Q excellent
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agreement, differing in position by only 0.2 eV.
The calculated peak is somewhat larger in magni-
tude but this seems to be characteristic of the
EPM-type calculations. The height of the experi-
mental && curve is somewhat arbitrary, anyway,
as surface contamination of the sample can lead to
differences in peak height of up to 20%" in the
measured reflectance from which &2 is derived.
Since the measured and calculated peak heights

for the reflectance differ by only approximately
5/o, as shown in Fig. 3, one can assume that the
magnitude differences in &~ are probably due to
the different methods employed in evaluating the
Kramers-Kronig integrals in the higher-energy
regions; we used an analytic tail of the form P~/
(&u'+y ) to replace the calculated cz(&o) for ener-
gies above 24 eV, while Walker used Roesslers'
method o to extend his values of R(&o) beyond the
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FIG. 3. The
calculated re-
flectivity {full
line) is compared
to the experimen-
tal curve {dashed
line) .
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measured range 5-31 eV. (See Refs. 15 and 19 for
more detailed comparison of the methods. ) The
difference in magnitudes of the two &„ along with
the different extrapolation methods used, should
also explain why the positions of the main peak are
displaced further apart in R(&o) (- 0.4 eV) than in
e2. Any altering of the peak heights in R(&u) (or e~)
would be expected to cause energy shifts when
transforming to cz(ur) (or R).

The agreement between theory and experiment in
the 7-10-eV region is not extremely good, but this
range has always been a troublesome one for theo-
rists. As remarked earlier, the cause of the ex-
perimental structure between 7-8 eV is very un-
certain. The calculated e~ starts off with a slope
very similar to that of the measured curve, but
displaced approximately 0. 8 eV higher in energy.
The shape of this absorption edge is much im-
proved over that obtained by Saravia and Brust,
using Saslow's form factors, which is much too
weak compared to experiment. Saravia and Brust
do calculate a strong absorption edge near 7. 3 eV
with their moddl II, 3 but the slope is too steep, be-
ing almost vertical and essentially forming a step
function. Neither calculation accounts for the peak
at 7.8 eV. A close look at Fig. 2 shows two
"bends" in the calculated e~ at 8. 1 and 8. 3 eV.
This structure shows up more prominently in R(~)
(Fig. 3), where there are two small peaks at 8. 3
and 8. 6 eV. These seem to correspond to the mea-
sured peaks at 7. 2 and 7. 6 eV, but are displaced
in energy by -1 eV. Since these calculated peaks
are caused by the Mo and M, critical points at I'
and L, respectively, it seems likely that their
positions could be shifted down in energy by reduc-
ing the energy gaps between I'3,. and I'» at I', and

between L3. and La. at L. Unfortunately, this turns
out to be very difficult with our model potential
for U(r). It was found that decreasing the L; -L2
gap at L could only be accomplished by lowering
the conduction band, the valence band remaining
essentially unchanged. However, any significant
lowering of the conduction band at L has the effect
of shifting the conduction band minimum from ~,„
to La.. Thus, any shifting of the gap at L must be
done by shifting the valence band upward.

The gap at I', corresponding to the F». -I"»
transition, can be handled much more easily. How-
ever, as long as L is kept near 8. 2 eV in energy,
the agreement with experiment of the over-all line
shape in the low-energy range deteriorates, with
the absorption edge becoming weaker as I'» is
lowered. This indicates that one must lower both
I' and L at the same time, as the slope of the ex-
perimental ez curve in the low-energy region seems
to depend on the two gaps being close together in
energy. At this time, we have not been able to
accomplish the raising of the point L3., the valence
band at L. However, we tentatively associate the
peak at 7. 2 in the experimental e2 with the Mo
critical point at I', corresponding to the F~,.-F»
transition, and the peak at 7. 8 eV with the L,.-L~.
transition at L, which has M, symmetry. This is
the first theoretical identification of a critical point
associated with the peak at 7. 8 eV. The associa-
tion of the peak at 7. 2 eV with the I"».- I'» transi-
tion is not new, but agrees with the identification
made by Herman et al. ' and Saslow et a/. ' How-
ever, in our case we do not also assume that I"».
-1» forms the threshold for direct transitions,
but instead delegate this honor to the I'». -F~.
transition occurring near 7 eV.
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In the region 8. 5-10 eV, the calculated ea is too
strong and too rough. The roughness probably
arises from sampling techniques, as discussed
previously, and disappears altogether in reflectance
(Fig. 3), which is very smooth in this region; the

magnitude of the curve is still larger than the ex-
periment in this region. From 10 to 13 eV the two

&3 plots agree quite well, except for the magnitude
of the main peak. The slopes of the two curves
are quite similar in this region. From 13 eV and

9,5
IO-0

I I.8
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I 4.4

FIG. 5. 4 6 energy contours and
clltlcal points ln the TEE. and ILUX
planes.
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CALCULATION OF THE BAND STRUCTURE AND 2063

~& structure (eV) Associated critical points

Theory Exper- Location in zone
iment

Sym- CP
me try energy

(eV)

8.1 7. 2 I'p5, I'ig (0, 0, 0) I()
+3 +g (0 5 0 5 0 5) ~f

8. 22

8. 27

TABLE III. Theoretical and experimental e& struc-
ture and their identifications, including the location in
the Brillouin zone, energy, and symmetry of the cal-
culated critical points. The experimental results are
those of Roberts and Walker (Ref. 15).

inite effect on states within the zone as well as on
those along symmetry lines. An illustration of this
effect is the significant shift introduced in the posi-
tion of the main peak, which has large contributions
from extended regions in k space. Further im-
provement in the quantitative agreement between
theory and experiment in the low-energy region
seems to be possible if a method can be found for
raising the valence bands L3. at L. The question of
the proper ordering of the energy bands at I' will
have to remain open until further experiments are
done.
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upwards, the calculated curve is again larger than
experiment, and has peaks at 13.2 and 14.4 eV,
which don't show up in the experimental curve.

CONCLUSIONS

As discussed in Sec. II, the nonlocal EPM cal-
culation seems to explain most of the observed
structure in the dielectric constant ez(~~) and the
reflectance R(m) for diamond, at least qualitatively.
The calculation indicates that the experimental
peaks in e& and R near 8 eV can be associated with
the M, critical point at L, even though the calcu-
lated value of the L3. -Lz. energy gap seems to be
-0. 5 eV too large; the temperature dependence of
the experimental peak could be caused by an exciton
associated with this point. The position of the
main peak has been brought into excellent agree-
ment with experiment. Calculations done without
V„L(r) indicate that the nonlocal potential has a, def-
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