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Measurements of the temperature variation of x-ray diffraction peak intensities have been
used to show that the mean-square thermal displacement of Pb in PbTe is approximately twice
that of Te. This phenomenon is explained, using a calculation of the mean-square displace-
ments from vibrational eigenvalues and eigenvectors, in terms of the heavy thermal weighting
of the acoustic modes relative to the optical. The Pb motion dominates in the acoustic modes,
whereas the Te motion dominates in the optic modes. Debye-%aller factors obtained from
the calculated mean-square displacements have been associated with a modified Lin-Kleinman
pseudopotential to obtain a theoretical estimate of the temperature dependence of the band gap.
The modifications are necessary because of errors associated with their treatment of spin-
orbit interaction. The calculated band-gap increase of 0.008 By between 100 and 300'K is
in fair agreement with an experimental estimate of the explicit increase. It is shown that
the magnitude of the shift is quite sensitive to adjustable parameters in the gap calculation as
well as to the Debye-%aller factors. The sign of the shift is dependent on the relative ordering
of levels and the relative mean-square displacements of the ions but not, otherwise, on the
details of the calculation.

I. INTRODUCTION

The fundamental one-electron band gaps of most
semiconductors and insulators decrease as the
temperature increases. Explanations of this neg-
ative temperature dependence are usually based
upon the consideration of two primary effects: an
explicit dependence through the electron-phonon
interaction, to be evaluated with the volume held
constant, and an implicit dependence through the
volume thermal expansion of the material. In the
initial attempt at a quantitative estimate of the ex-
plicit effect, Fan expressed the electron self-en-
ergies to second order in the electron-phonon in-
teraction and obtained the following equation for the
thermally induced explicit shift in the energy gap:

~ I ( g(k, + q, c) y(n. + l) I au I |)(k„c) )((n.) ) I'

&(k„c)—&(k, +q, c) ~%a,

I (y(k„~) X(n. ~ l) l~nlq(k, ~q, v) )t(n. ) ) I'
« (k& T q, c) —& (k&, v) + Ra& ~

In this expression, the electron-phonon interaction
is represented by Lu. The electron wave function
and energy corresponding to a reduced wave vector
k and band n, in the undistorted lattice are denoted

by g(k, n) and e(%, n) The ext.rema of the valence
and conduction bands are represented by k, and k~„

respectively, while e and t." refer to the bands

themselves. Corresponding to the lattice vibra-
tional state with phonon wave vector q, )t(n, ) is the
ionic wave function, n, is the occupation number,
and ~, is the vibrational frequency. It has been
noted by many authors that the Fan expression
must contribute a negative term to this temperature
dependence since the numerators of Eq. (1) are
positive and increase with temperature, while the
denominators are negative.

PbTe is one of a few semiconductors which show

positive temperature dependences of the band gaps.
Prakash measured the pressure dependence of its
fundamental absorption edge and found that the
implicit effect is insufficient to cause the observed
increase in the band gap. As indicated in the pre-
vious paragraph, however, the Fan theory is in-
capable of producing a positive dependence of the
band gap. This dilemma has troubled many people
in the field since its observat:ion.

Recently, however, we reported a calculation
which yielded a positive temperature dependence
for the explicit effect, based on the Brooks-Yu
theory of temperature-dependent band energies.
The pux'pose of this papex' 18 to present the details
of that calculation and related experiments as well
as their limitations. In addition, it is shown that
a self-energy theory of the Fan type is capable, in
principle, of predicting a positive temperature de-
pendence when all of the second-order terms are
included.
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The paper is organized in the following manner.
The Brooks-Yu theory indicates that the most im-
portant effect of the electron-phonon interaction on
the band structure can be represented by the as-
sociation of the usual Debye-Wailer factor with
each Fourier coefficient of the pseudopotential.
Thus, the first portion of the paper describes x-
ray diffraction measurements of the ionic Debye-
Waller factors in lead telluride. These measure-
ments yielded the unexpected result that the Pb
mean-square thermal displacement is approximate-
ly twice that of the Te. Since this result was un-
expected, we proceeded to calculate the Debye-
Waller factors using vibrational eigenvectors and
eigenvalues obtained by Cochran et al. in an an-
alysis of their inelastic neutron scattering data.
This calculation and its results are presented in
Sec. II.

The last sections of the paper deal with a cal-
culation of the temperature dependence of the band

gap, based on the Lin a,nd Kleinmans (LK) pseudo-
potential. Unfortunately, the LK work contains a
faulty computational procedure. A result of this
error is the establishment of an incorrect relation-
ship between the parameters characterizing their
pseudopotential and the band structure. Our use
of the correct relationship necessitated the revi-
sion of their parameters. Consequently, the LK
procedure and its modifications are discussed in
detail. Then, the results of the calculation of the
temperature dependence of the PbTe band gap are
presented and discussed. Finally, a revised Fan
theory, capable, in principle, of yielding a posi-
tive temperature dependence of the band gap, is
presented in an appendix.

II. MEASUREMENT OF DEBYE-%ALLER FACTORS

Samples for the x-ray diffraction study were
prepared by grinding polycrystalline PbTe of
greater than 99. 99S8 purity' until it pa, seed through
a 200-mesh screen. The resultant powder was
pressed into a copper sample holder under moder-
ate pressures. The sample was annealed for 24 h

at approximately 150 C.
The temperature dependences of the intensities of

of the (331) and (420) reflections were measured
in an Electronics and Alloys high-temperature
camera, whose sample chamber was evacuated,
on a General Electric XRD-5 diffractometer. A
doubly bent LiF crystal served as a diffracted beam
analyzer. The half-wavelength components were
eliminated by- means of a pulse-height analyzer.
Integrated intensities of the diffraction peaks were
obtained at 20 and 102. 5'C, as measured with a
chromel-alumel thermocouple. The ratio of the
intensity of the (331) reflection at 102. 5 'C to that
at 20 C is 0. 68. The corresponding ratio for the
(420) reflection is 0. 86.

ing ratio for the (420) reflection is 0. 86.
In order to avoid the problems which would arise

if the crystallites showed preferred orientation,
the Debye-Wailer factors were extracted from the
ratios of intensities measured at two different tem-
peratures. Specifically, the ratio of the intensities
of a single reflection from PbTe at two tempera-
tures is given by

f (T ) [f e-WPb(222) ~f e-WTe T2)]2

f( ) [f e+Pbi i +f e Tei ii] (2)

In this expression, the + and —signs apply to re-
flections whose Miller indices are even and odd,
respectively. The f„are the appropriate x-ray
scattering factors, while the exponentials are the
Debye-Wailer factors for Pb and Te. The thermal
effects are contained within the W„(T), which are
related to the mean-square displacements of the
atoms of type ii, denoted by (u'„), through the equa-
tion

W„(T) = 22'S'(u„')/~' . (3)

W„(T) =A„T ins8 . (4)

Equation (2) can then be written as

f(T ) (f &-APbT2 sin 8+f e AreT2 sin 8)2
2 Pb Te . (6)

f(T ) (f & Apbri sin 8-+f &-ATeri sin 8)2
2

The two A„may be determined with ease from the
two ratios using iterative techniques. The resul-
tant (u„') are presented in Table 1.

Although these results show quite clearly that
the mean-square displacement of Pb is approxi-
mately twice that of Te, their reliability is limited
in two respects. First, no correction was made
for diffuse scattering under the Bragg peak, except
as it could be described by a. linear background

TABLE I. Experimental vibrational amplitudes in
PbTe at 300 'K.

Atom

Pb
Te

(u„) (10 "cm')
0.0351
0.0196

In this expression, S is the x-ray scattering vector,
whose magnitude is 2 sin&, 8 is the Bragg scatter-
ing angle, and X is the x-ray wavelength.

The determination of the (u2) is complicated by
the fact that the data yield two ratios of intensities
of the form of Eq. (3), wherea. s four W„appear as
unknowns to be determined. In the harmonic ap-
proximation, however, 5'„ is proportional to 7 at
temperatures above the Debye temperature, which
is roughly 140 K for PbTe. Therefore, since
each atom occupies a site of cubic symmetry, Eq.
(3) can be written as



KEFFER, HAYES, AND BIENENSTOCK

correction beneath the peak. Order-of-magnitude
calculations indicated that the additional correc-
tions should be small, but not negligible. In ad-
dition, the method of determining the (u'„) does
not lend itself to evaluation at low temperature,
since the approximation of a linear temperature
dependence was made. Accordingly, it was de-
cided to calculate the (s„) directly. Such a calcu-
lation can also be expected to yield some insight
into the cause of the relative values. This calcu-
lation is described in Sec. III.

III. CALCULATION OF THE DEBYE-%(ALLER FACTORS

ID the harmonic approximation, the Debye-%aller
factor has the form e" & for the xth atom in the
unit cell, where
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E(q, j)= [@/2(u, (q)] coth[kro, (q)/2k~X] .
In this expression, E is the number of unit cells
in the crystal, and M„ is the mass of the zth atom.
The polarization vector and the angular frequency
associated with the j th mode of wave vector q are
denoted by e(x )q, j) and &oz(q), respectively. The
e(~ tq, j) are the eigenvectors of the dynamical ma-
trix which satisfy the following orthogonality con-
ditions:

Q e* (z 1 q, j ) e, (a' t q, j ) = Gag. ,

+ ef (&
I q~ 2 ) ea (& I &4 2 ) = & na '5m~' ~

Since each atom sits in a site of cubic symmetry,
Eq. (6) can be rewritten as

4v'@' sin~e p ea (~ I q, j ) coth[%o, (q)/2y, T]
3%X Mg g y (g~(q)

where the summation over a includes the compo-
nents of the eigenvectors associated with atom z.
This sum was evaluated numerically at a number
of temperatures, using eigenvalues and eigenvec-
tors obtained by Cochran et a/. ' in an analysis of
their inelastic neutron scattering data. Through-
out most of the Brillouin zone, the sampling pro-
cedure of Kellerman was used, with 48 points in
the summation over ~«of the Brillouin zone. The
contribution of the elastic modes was, however,
evaluated using Houston's method of expansion in
Kubic harmonics, with a sphere of equal volume
replacing the central rhombohedron associated with
the Kellerman sampling procedure. The resultant
(I„) are shown in Fig. l along with the experimen-
tally obtained values.

FIG. 1. Vibrational amplitudes (u„) for lead and tel-
lurium as a function of temperature. Heavy curve con-
nects the calculated values. Experimental values are
indicated by C) for Pb and by & for Te.

TABLE II. Calculated vibrational amplitudes for
PbTe —(~ 2) Qo-16 cm2)

Temper- Pb
ature acoustical

Te
ace,ustical

Pb
optical

Te
optical

Pb
total

Te
total

0.00
20. 00
40.00
60.00
80.00

100.00
120.00
140.00
160.00
180.00
200. 00
220. 00
240. 00
260. 00
280. 00
300.00
320.00
340.00
360.00
380.00
4oo. oo

0.0018
0.0024
0.0038
0.0054
0.0070
0.0087
0.0104
O. 0121
0.0138
0.0155
0.0172
0.0189
0.0206
0.0223
0.0240
0.0257
0.0274
0.0291
0.0308
0.0325
0.0342

0.0007
0.0009
0.0015
0.0022
0.0028
0.0035
0.0042
0.0049
0.0056
0.0062
0.0069
0.0076
O. OG83

0.0090
0.0097
0.0104
O. Gill
0.0118
0.0125
0.0132
0.0138

0.0002
0.0002
0.0002
0. 0002
0.0002
0.0003
O. ov03
0.0004
0.0004
0.0004
0.0005
o.ooo5
0.0006
0.0006
0.0007
0.0007
0.0008
0.0008
0.0009
0.0009
0.0010

0.0012
0.0012
O. 0012
0.0014
0.0017
0.0020
0.0023
0.0026
0.0030
0.0033
0.0036
0.0040
0.0043
0.0046
0.0050
0.0053
0.0057
0.0060
0.0064
0.0067
O. 0070

0.0020
O. 0026
0.0040
0.0056
0.0072
0.0090
0.0107
0.0125
0.0142
0, 0159
0.0177
0.0194
0.0212
0.0229
0.0247
0.0264
0.0282
0.0299
0.0317
0.0334
0.0352

0.0019
0.0021
0.0027
0.0036
0.0045
0.0055
0.0065
0.0075
0.0086
O. 0095
0.0105
0.0116
0.0126
0.0136
0.0147
0.0157
0.0168
0.0178
0.0189
0.0199
0.0208

Three features of these results merit discussion.
The first, and most significant, is that the calcu-
lation confirms that the motion of the Pb atoms is
larger than that of the Te. This is most easily
understood through an examination of the acoustical
and optical contributions to the mean-square dis-
placements, as represented in Table II. It is seen
that Pb motion dominates the acoustic modes,
whereas Te motion dominates the optic modes.
Since nearly all of the acoustic modes are of lower
frequency than the optic modes, the former are
weighted much more heavily in 5'„ through the ther-
mal factor of Eq. (7). This thermal weighting of
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the low-frequency modes in the Debye-Wailer
factor persists to high temperatures in spite of
equipartition. Indeed, the high-temperature limit
of Eq. (7) is

E(q,j ) =- &p &/td'; (q) (10)

The second feature of these results is the dis-
agreement between the theoretical and experimen-
tal predictions of the mean-square displacements.
The discrepancy may be regarded as a measure
of the uncertainties associated with both results.
The reliability of the interpretation of the measure-
ments has already been discussed. The calculation
suffers from the approximate nature of the eigen-
vectors, which are not expected to be as reliable
as the eigenvalues. In addition, the use of the
harmonic approximation itself is open to question
at the high temperatures where theory and experi-
ment can be compared. In the work that follows,
we have treated the calculated (u'„) as approximate
and tested the sensitivity of any conclusions about
band-gap effects to variations in them.

Finally, it should be noted that the mean-square
displacements are linear with temperature down

to approximately 100'K. This justifies, within
the harmonic approximation, the linear tempera-
ture dependence assumed in the temperature re-
gion of the experimental measurements.

IV. ZERO-TEMPERATURE CALCULATION

Recently, LKe presented a pseudopotential calcu-
lation of the band structures of PbTe, PbSe, and
PbS. In the original plan of this research, we ex-
pected to modify their pseudopotential matrix ele-
ments for PbTe with the appropriate Debye-Wailer
fa,ctors in order to obtain the temperature depen-
dence of the band gap. Our initial attempts to re-
produce their calculations were unsuccessful,
however, as a result of an error in their treatment
of the spin-orbit interaction. In effect, this error
results in the establishment of an incorrect rela-
tionship between their parameters and the band
structure, which they correlated with experiment.
In order to achieve an acceptable band structure
using the correct relationship, it was necessary
for us to change some of the adjustable parameters
involved. This, for reasons which will become
evident, lessens our confidence in the reliability
of the pseudopotential used here. Accordingly, the
LK procedure will be discussed in more detail than
might otherwise be fruitful.

LK search for solutions, corresponding to the
valence and conduction hands, of the one-electron
Schrodinger equation

(T+ W+H„) gk
= (Ek+E„)$k, (11 )

where T and W are the kinetic-energy and the po-

tential-energy operators, respectively. H„ is the
spif&-orbit part of the Hamiltonian, which ha, s the
form

H„=(K'/4m'c')(V W&&p ~ o), (12&

and E„is the contribution of this interaction to the
energy eigenvalue E„. Their pseudopotential is
constructed by means of the substitution

4k Ak ~t(@kt& Ak) @kt (13)

where P„- denotes the smooth part of the crystal
wave function, C«represents a core state, and the

sum is over all core states, as represented by the
index t. The substitution of Eq. (13) into Eq. (11)
yields the equa, tion

(T + V~ + V„+H„) Pk = (E-„+E„)Pk,

for (Ek+E„) and pk", where

(14)

V,ff =0,

V (1 e-p(t -tp)) r) r2Z (17)

where P, xo, and Z are adjustable parameters.
Values for xo are obta. ined by considering Slater's"
analytical atomic wave functions

Pb 38~ ~ &3 -6 oee&Xsp-
« 46yX4p

and solving

)t(rp) = max[)((r)],

(18)

where )t(r) is the outermost ft-core orbital of the
atom. P is determined by the relation

where

P = 1/(r, r, ), — (20)

and

X(rt) = X(rp)/2e

X(r, ) = )t(rp)/2 . (21)

The appropriate values of xo and J3 for lead and
tellurium are given in Table III. This procedure
leaves one adjustable parameter Z for each kind
of atom. While the parameters ro and P obtained
by LK have been used in this calculation, it has

V. =W (-~ (&«- e.-)t(C-. IHIC;, )-E;] C;,)/e;
(15)

and

V..= -~t (4'; tP.) I:(4st IH,.I C;t) —E..]C;,/y;. (18)

In their treatment, LK separate V~ into a, local
part V and a correction for nonlocality V, known
as the s shift. V is expressed as a superposition
of individual atomic pseudopotentials of the form
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TABLE III. Some parameters for the lead telluride
band-structure calculation.

p ='0. 493 ap

xp ——0.412 ap

P'b= 3.228 a

P =3 597ap

Lattice constant = 12.21ap

E5, = —9.030 By

E4,' = —ll. 899 By'

~F. Herman and S. Skillman, &tomic Structure Cal-
culations (Prentice-Hall, Englewood Cliffs, ¹ J. ,
1963).

(K, I
T+ V~+ V„IKs). The evaluation of the matrix

elements of T+V& is simplified by the fact that there
is no mixing of single-group representations, Bs
expressed by

«»", T+ V, IK:& =&K»
I
T+ V, IK."&5.. (25)

Although our evaluation of the matrix elements of
T ~ V~ follows that of LK, our treatment of V„
differs end will accordingly be discussed in detail.

The important matrix elements of V„which ap-
pear in the secular determinant for the eigenvalues
of Eq. (14) are

(K» I
v oIK„)

= —o,.Z, & K
I c„-t&& c;,IH„I c„-,&&a„,IK„&

fx Gt

+so DIN (28~
been necessary to adjust the Z values in a manner
and for reasons described below.

In analogy with Eq. (15) the s-shift potential of
LK has the form

Vt ~t c»t(@kt& 4k) Et@ktA k (22)

In this expression, the sum is over the outermost
s-core states, and the E, are the associated s-core
state energies, as listed in Table III. The a» and

nT, are two adjustable parameters, whose values
we have found it necessary to change.

In their treatment of the spin-orbit part of Eq.
(14), LK neglect II„. In addition, Eq. (16) for
V„ is modified by the neglect of E„and by the
truncation of the sum over core states to include
only the outermost P and d levels of each atom.
The final form for V„ is

where the n now includes a spin index. In the work
that follows, we assume that the spin-orbit interac-.
tion and the P- and d-core wave functions are suf-
ficiently localized that the interatomic interaction
terms can be neglected. In this case, the Cg, can
be constructed from atomic core states of a partic-
ular atomic species with fixed IL I, ) J), and m~.
These are denoted by

(r ~ p, , L, J, m»& = N ~ Xg, ». , »,
Ev

x (r r, )e-xp(ik ~ r»), (27)

where the label k has been suppressed on the left-
hand side and the sum is over the sites of the
species p, . Using these core wave functions, D,~
can be expressed as follows:

(rlK, ) =(IiQ) ' Z, C», exp[i(%+K») ~ r], (24)

where N denotes the number of units cells, 0 rep-
resents the volume of the primitive unit cell, and
the K,. are reciprocal lattice vectors. The C~& are
determined by symmetry. For a given k and I, the
sum over j includes only those vectors k+K& which
are related by the group of k. When this set of
basis functions is used, the resultant secular de-
terminant involves matrix elements of the type

where n„ is an adjustable parameter intended to
compensate for these approximations.

The solution of Eq. (14) involves expressing the

pf as linear combinations of the members of some
suitable complete set of functions, called the basis
functions. For this purpose, LK choose the set
of symmetrized plane waves IK»&, which trans-
form according to the single-group irreducible rep-
resentation I'" of the cubic point group. The spin
index is suppressed as long as possible. These
functions are

D»»»"= 2 (K» I it, L, J, m»)
ptI t J', mg

x&l», I., J, m, lII., lit, I,, J, m, )

x(Au, L, J, m»IK„") (28)

In treating the matrix elements of H„, we make the
approximation that

x„, , (r)=x„i(r)&rlJ, m ) (»)
where ( r ~ J; mz& is the appropriate one-center
spinor eigenfunction. The matrix elements can then
be written as
&it L J mzlII oI» L J m»)

= —,
' [J(J+1) —I (I +I) 41(~,r ~ (3O)

where

~ =(2m c )
' j X ~(r~) (1/r) ( SV/rS)r dr (31)

and is obtainable from atomic splittings, as indi-
cated by LK. As a result, Eq. (28) can be written
in the form
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D»™=—,
' Q &„,Q [Z(I+1)—L, {L,+1)——,']

xg (KI jp, I,J, mg)(iu L, ~, mzlKs}
fg

(32)

Further evaluation of the D~~o requires the ex-
plicit consideration of spin. With an obvious ex-
pansion of the notation, the substitution of Eq. (24)
into the last factor of Eq. (32) yields

~(+Kz'I~, L, &, m, )(n, L, &, m, ~K„+&

CK'* Csy( ~Kg
~ V, &, &, m~)tft J't g

(p, L, eT, m~~Kg 6)) (33)

where (n, I., Z, m~ i K~ + ) represents the overlap of
the state (p, L, 8, m~ j with the normalized product
of aplane wave k+K,- and a spin function. After
some algebraic manipulation, it is easily shown
that a major portion of Eq. (32) can be put in the
form

Q[Z(v+1)-Z, (L, +1)--,']Z(+re,
~

p, , I., Z, m, )( p&I., &, m, ~&5+)

= (4&)t Z C;,',* C„, It„,(Z,, ) It„(X,) Z mr", „(k,) &,„(&;)

l2vf Z C;,'P Cg, It„l, (&g ) &„g (If'g) (Kg&Kg ),A'Py

60ti 2 Cl~p~ Cgq It, I, (Ã;. ) &,I, (Ey) (Kg ' K; ) (Kg &«g ),/&g &
g

jt J

(I, =1)

(I =2)

Z [Z(J + 1) —L(I + 1)-—', ] Q (+K'
i p, , I,, Z, m ) ( p, , I., J, m )

K"-)

=(4~)'Z C;,'PC„",It„,(Z~)ft„, (X,) Z [(L,+m+1){I. m)]'"-r,*,„„{If;)r, „{.2,.}
PtJ I

=12' Z C;,'.*C„",a„,(Z, ,,) It„, (Z, ) [(K,xlY, )„+f(K,&&K,, )„]./Z, Z, ,
ft g

In these expre881ons

It„,(Z,)= f, ~'dr ).{„,(~) f', (Z,r),
and j~(Kp") is a spherical Bessel function. The
reversal of both spine in Eq. (34) leads to a change
of slgD. Only the L, =1 poxtlon 18 px'esented ln Eq.
(35), as the I.=2 term does not contribute to any
of the levels of interest in this calculation, The
parameters R~I are easily evaluated using the
px"ocedure described by IK, while the C„"& are tab-
ulated by Luehrmann, Accordingly, although it
should be noted that, I uehrmann quantizes spin along
the ( 111) direction, the procedure for the numeri-
cal evaluation of Eqs. {34), (85), and, hence, (82)
is weQ defined.

The band calculation proceeds in a strajghtfor-
ward manner once the necessary matrix elements
have been prescx'ibed. Those matrix elements xep-
resented by Eq. (26) which do not mix the single-
group representations ax'e included with those rep-
resented by Eq. (25) and treated in a direct diagon-
RllzRtlon of the Rssoclkted seculRx' determinant.
Following the procedure of I K, the mixing matrix
elements of Eq. (M) are treated as perturbations
on the resultant eigenstates. Of the six distinct
energy levels in the region of the gap, only the I 6

levels were calculated since the 1.45 levels do not
mix with the I 8 levels.

Our initial calculations yielded energy levels at.
the symmetry point I which differ considerably
from those of I K, even though their values of the
adjustable parameters were used, A detailed
analysis' of that portion of the LK calculation'
which is based upon Eq. (26) indicates that the con-
tributions of terms of the form of the L = 2 portion
of Eq. (34) and of terms which mix single-group
x'epx'esentRtioDS had been cRlculRted incol x'ectly.
These errors cast doubt upon the general rehability
of thelx' bRnd-stx'uctux"6 calculation.

In ox'dex' to px'oceed %1th oux" calculationy we
needed an acceptable pseudopotential. Accordingly,
the five adjustable parameters of LK mere varied
systexnatically until x easonable agreement was ob-
tained with the level structure at I. computed by
Herman et al." The parameters used here, as
well as those of LK, are listed in Table IV. The
energy levels obtained here are compared with
those of Herman et cl. in Table V. The good agree-
ment with Herman eg gl. should not lead the x'eader
to the conclusion that we have demonstrated that
the pseudopotential constxucted here is an accurate
x'epresentation of the potential in PbTe. Such a



1972 KEF F ER, HAYES, AND BIENENSTOCK

TABLE IV. Comparison of parameters in original
and modified LK band-structure calculation.

Parameter

Zp13

Te
~Xb
QTe
Q

Lin and Kleinman

2. 9
3. 2
0.125
0. 17

—0. 78

This work

3.1
3.5
0.122
0.109

—1.55
L+„(L,)

.5—

demonstration would necessarily involve a calcula-
tion of the entire band structure and a detailed com-
parison with experiment. We have not gone through
this lengthy procedure. Instead, as discussed be-
low, we have tested the sensitivity of the calculated
band-gap temperature dependence of the parameters
used.

ENERGIES

(Rydbergs j

V. TEMPERATURE DEPENDENCE OF THE BAND GAP

TABLE V. Comparison of energy levels near the band
gap for our modified LK calculation and the band struc-
ture of Herman et al. (0 K) (energies in Ry).

Level

I=, (I-,')

L6 (&2')

L,', {I.,)

Modified Lin and Kleinman

0, 6242

0.5202

0. 5060

0.3869

Herman et al.

0. 6134

0.5251

0.5067

0. 3940

F. Herman, B. L. Kortum, I. B. Ortenburger, and
J. P. Van Dyke, J. Phys. (Paris) 29, 62 (1968). Their
energy levels have been adjusted by +0.4242 Ry.

The calculation of the temperature dependence of
the band gap is also straightforward. By using
symmetrized combinations of plane waves, all
matrix elements are eventually expressed as plane-
wave matrix elements coming from individual ions.
To include the temperature dependence, each of
these matrix elements is multiplied by the Debye-
Waller factor associated with the difference of the
two plane waves, and the energy level calculation
repeated. For this purpose, the calculated Debye-
Waller factors, with the zero-point motion re-
moved, were used initially, and band gaps calcu-
lated at 100, 200, and 300'K. The L-point level
structure and associated band gaps thus calculated
as a function of temperature are shown in Figs. 2
and 3, respectively, and are tabulated in Table VI.
These results show quite conclusively that the
Brooks-Yu theory is capable of yielding an increase
of the band gap with temperature despite the fact
that the individual ionic contributions to the pseudo-
potential decrease with temperature.

IOO

I I

200 500

T ('Kj

I

400'K

FIG. 2. Energy levels at the band gap in PbTe as a
function of temperature.

These results may be compared with the experi-
mental observations of Prakash. Qualitative
agreement is obtained in the sense that the gap in-
creases with temperature, while the temperature
coefficient itself decreases with temperature. Pra-
kash presents an average explicit temperature de-
pendence of +2. 0&&10 ' Ry/'K over the temperature
interval 90-295 'K, while our average coefficient
over this range is +4. 0&& 10 Ry/'K. Thus, it ap-
pears as if the calculation is incorrect by roughly
a factor of 2. In light of the discussion at the end
of Sec. IV, however, this is not surprising. In or-
der to test the sensitivity of the calculation to the
adjustment of parameters, a number of other cal-
culations were performed.

The first of these involved using all of Lin and
Kleinman's original parameters, but with the V„
matrix elements calculated in the correct manner
as described above. We refer to this result as
calculation A. Table VI displays the level order-
ings as well as the size of the band gap at tempera-
tures from 0 to 300 'K. Even though the gap is ini-
tially larger by a factor of about 3 and is made up
of a different pair of energy states, a positive tem-
perature dependence is still obtained. The size of
the temperature coefficient in the region from 100
to 300 K is +0. 72&&10 Ry/ K.

The second form of band structure was obtained
by maintaining the same order of levels as in cal-
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005

These results indicate that the sigh of the tem-
perature coefficient is not sensitive to the size of
the gap or the values of the arbitrary parameters,
as long at the I,6 (L,) level forms the valence band
and the Debye-%aller factors are held constant.
On the other hand, the size of the temperature
coefficient is quite dependent on the nature of the
pseudopotential. Because of this latter fact, we
conclude that our results for the temperature de-
pendence of the band gap in lead telluride have the
correct sign. Since we have not done a complete
band structure, we have no reason to believe that
the pseudopotential parameters finally obtained in
the previous section correctly describe the band
structure at all points in% space. Consequently,
our calculation of the magni. tude of the temperature

0
I I

F00 200
T ('K)

I

500'K

FIG. 3. Temperature dependence of the energy-band
gRp ln PbTe~

TABLE VI. Temperature dependence of band ga.p for
various calculations (energies in By).

Calculation 0'K 100 'K 200 'K 300 'K

coefficient could easily be in error by a factor of
2 or more,

As discussed at the end of Sec, III, it was also
necessary to test the sensitivity of the calculation
to the Debye-Wailer factors. In these two calcu-

culation A, but changing Lin and Kleinman's param-
eters to obtain a value of the band gap at 0 K which
is closer to the experimental value of 0. 014Ry. We
refer to this result as calculation B. Table VI
displays the level orderings as mell as the size of
the band gap at temperatures from 0 to 300 'K for
this calculation. In this case, likewise, a positive
temperature dependence is obtained at all tempera-
tures. The size of the temperature coefficient in
the region from 100 to 300 'K is +3. 1 && 10 ' Ry/'K.

Three additional calculations mere performed to
test the sensitivity of the final results to the start-
ing parameters of the band structure. These are
tabulated in Table VI for 0 and 300 'K. The first
calculation (C) involves a change of about 10% in
the strength of the pseudopotential for both lead
and tellurium. This displaces all the levels down-
ward in energy with the L, and 13 levels experienc-
ing a larger shift. Consequently, the relative po-
sitioning of the levels and the size of the band gap
does not agree with the results of Herman etal.
The second calculation (D) involves a change in the
spin-orbit parameter by about 30%. This also
causes the relative positions of the levels to change
and gives rise to a very large band gap. The final
calculation (E) is due to a change of 60% in the Te
s-shift parameter. The change affects only the I 2.
level directly and gives rise to an increased band

gap. In all cases, the gap increases with increas-
ing temperature.

Modified
(r.K} (0'K}
agrees with
Herman et al .

Li
L3
Ly'
L3'

gap

Ii
L3
L2'
L3'
gap

Ll
'L3

L2'
L3'

gap

Li
L3
L2'
I 3'

gap

Li

L2'
L3'
gap

Ll
L3
L~'
L3'
gap

Ll
L3

I

L3'
gap

Li
L3
L2'
L3'
gap

0.506 02
0. 386 87
Q. 520 21
0.624 16
0.014 19

0.562 20
0.478 72
0.650 12
0.601 69
0.03949

0.56478
0.469 05
0.649 58
0.575 21
0.010 43

0.437 54
0.31741
0.593 89
0.474 75
0.037 21

0.499 S6
0.403 92
0.547 07
0.617 92
0.G47 21

0.506 02
0.386 87
0.63S 56
0.531 90
0.025 88

0.50602
0.386 87
0.520 21
0.624 16
0.014 19

0.50602
0.386 87
0.52Q 21
0.624 16
0.014 19

0.496 78
0.392 20
0.520 46
0.621 41
0.023 68

0.550 37
0.48269
0.592 88
0.641 42
0.042 51

0.553 90
0.47207
0.570 65
0.640 67
0.01675

0.503 59
0.401 87
0.532 18
0.628 47
0.028 59

0.556 20
0.489 13
0.599 97
0.648 ll
0.043 77

0.559 36
0.47906
0.579 91
0.646 49
0.020 55

0.510 23
0.411 16
0.541 78
0.635 48
0.031 55

0.561 82
0.495 29
0.605 77
0.654 55
0.043 95

0.564 65
0.4S5 77
0.587 51
0.652 21
0.022 86

0.446 42
0.347 51
0.509 41
0.606 80
0.062 99

0.499 90
0.425 53
0 55922
0.639 35
0.059 32

0 510 23
0.411 16
0.555 85
0.640 58
0.045 62

0.516 39
0.424 73
0.534 04
0.628 65
0.017 65

0.52245
0.437 96
0.525 73
G. 621 96
0.003 28
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TABLE VII. Temperature dependence of the band

gap for the case where the L& and L2' levels are inter-
changed (energies in By). (Change ep„ from —l. 1 to
—1.5.)

Level

L3
L2'
L3'

gap

0'K

0.53989
0.390 46
0.520 21
0.624 16
0.01968

300 'K

0.540 13
0.414 21
0.541 78
0.635 48
0.001 65

lations we used the final parameters obtained in
Sec. IV. In the first, denoted by F, the individual
Debye-Wailer factors for lead and tellurium have
been replaced by an average Debye-Wailer factor
for both lead and tellurium. Table VI exhibits the
level orderings as well as the size of the band gap
at temperatures of 0 and 300'K for this calculation.
We note that the size of the gap still increases, but
the magnitude of the increase +0. 09&& 10 ' Ry/'K is
the smallest yet encountered in any of our calcula-
tions.

In the second of these calculations, denoted by

G, the Debye-Wailer factors of the individualatoms
have been reversed. Table VI displays the levels
and band gap at 0 and 300 'K for this trial. These
results show a decxease in the size of the band gap
as temperature increases from 0 to 300 K.

We can conclude from these last two calculations
that the size and, more importantly, the sign of
the temperature coefficient of the band-gap energy
do depend on the specific vibrational properties
of lead telluride.

There is one additional consideration that enters
into the nature of the temperature dependence of a
given band structure which is evident from the re-
sults given above. Examination of Fig. 2 reveals
that the reason why the band gap increases as tem-
perature increases is that the L, (L;) level has,
initially, a smaller shift with temperature than the

L&(L&) level, and both are going down in energy.
At higher temperatures, the Ls (L2.) level has a
larger shift with temperature than the Ls(L~), and

both are going up. In both cases, the nature of the
individual effects on the two levels is such as to
increase their separation as the temperature in-
creases. Suppose, however, tha the levels were
reversed; namely, suppose the L8 (L, ) level oc-
curredabove the L6(Lz. ) level. We have performed
a calculation like this by adjusting the s-shift pa-
rameter on the lead atom until the L8 (L, ) and

Le (Lz. ) levels have been reversed The r.esults
are shown in Table VII for 0 and 300'K. They
clearly show that the individual levels exhibit the
same kind of temperature dependence as in the
prior calculation, and consequently we obtain a

net decrease in the size of the energy gap with
temperature. This calculation appears to indicate
that, with fixed Debye-Wailer factors, each level
has a characteristic temperature dependence which
is roughly independent of the ordering at the gap.
The importance of the Debye-Wailer factor is, how-

ever, made evident by calculation G.
This characteristic temperature dependence of

the levels is interesting because of much recent
work on Sn Te and alloys of Sn Te with the lead salts.
SnTe is known to have a negative temperature coef-
ficient of the band gap like most materials. ' Dim-
mock etal. ' have observed that the band gap in
Pb„Sn, „Te alloys exhibits a compostion dependence
of such a nature that they postulate a band struc-
ture for SnTe which has the levels comprising the
band gap inverted from those of PbTe. In other
words, they suggest that their experimental ob-
servations can be explained by assuming that the
L6 (I.2. ) level is the valence-band edge, and the

L~ (L,) level is the conduction-band edge in SnTe.
Recent work of Herman et al. ' on the theoretical
side supports this assignment for the levels that
make up the band gap in tin telluride, although the
calculations of Tung and Cohen' complicate the

picture somewhat. The modification of the or-
dering of the levels through a change in the s-shift
parameter represents our attempt to simulate the
band structure of SnTe through the simplest pos-
sible adjustment of the parameters of the band

structure. Although we have no measurements of
the Debye-Wailer factors for tin telluride and no

pseudopotential calculation of the band structure,
it appears reasonable on the basis of the above
calculation to expect that we would obtain a nega-
tive temperature coefficient of the band gap for tin
telluride. This expectation rests on the assump-
tion that the temperature dependence of the individ-
ual levels would remain about the same as in PbTe
even though the levels have a different ordering and

that the Debye-Wailer factors would show that the
vibrational amplitude of the tin atom is larger than

that of the tellurium atom.

VI. CONCLUSION

This work shows quite clearly that the Brooks-Yu
theory is capable of yielding an increase of the band

gap with increasing temperature, in spite of the

fact that the individual ionic effective pseudopoten-
tials decrease with increasing temperature. How-

ever, because of the uncertainties 'associated with

the pseudopotential band calculation we have used,
it cannot be called a definitive calculation of the

temperature dependence of the PbTe band gap.
The good agreement with experiment within a fac-
tor of 2 with no adjustable parameters indicates
that much of the physics associated with the ex-
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plicit effect in PbTe is contained within the theory.
Nevertheless, it should be clear that in order to ob-
tain a more complete understanding, ours should
not be the last calculation.
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APPENDIX

In this appendix we report on an examination of
the Fan' theory of temperature dependence of the
band gap in semiconductors. This investigation
has indicated that it may be possible to obtain a
positive temperature dependence of the band gap in

I

some semiconductors using Fan's theory in a more
complete form.

We will proceed by reiterating Fan's derivation
of the temperature dependence of semiconductor
band gaps and in the process indicate where a more
complete development might be called for. Fan
writes the change in the electron-lattice interaction
energy due to the lattice distortion as

Au=2 [a(q) e'~ +'a*(q) e '~' ]f(q), (Al)

where x represents the coordinates of the electron
and a(q) is the time-dependent amplitude of the nor-
mal mode having wave number q. The Bloch wave
functions for electrons in the periodic lattice ( are
characterized by a reduced wave vector k and an
index cr which takes on the values 'c" and "v" for
conduction and valence bands, respectively. The
wave function for the ions y is a product of harmon-
ic oscillator wave functions, one for each normal
mode. It can be specified by a set of quantum num-
bers n for the various modes. Following Frohlich, '
Fan writes the second-order approximation for the
interaction energy of the whole crystal as

i[/ (k a q, a') )i (n, + 1) I nu I g (k, o) y (n, )] I

1„,;,e 6 ( %, a ) —f (k+ q) a') + h(dq
(A2)

where E is the electron energy in the undistorted lattice, and cu, is the angular frequency of the normal
mode q. The summation over R and a covers all the occupied states, whereas the summation over q and
a' is limited by the requirement that (k+q, a') must be an unoccupied state. In the analysis which follows,
Fan neglects terms for which p &0'because the associated energy denominators are large enough to make
the corresponding terms negligible for the semiconductors of interest to him at that time. Our present an-
alysis differs from his only in that such terms are retained.

When an electron is shifted from a state near the top of the valence band (k„v) to a state near the bottom
of the conduction band (k„c), the change in the interaction energy is

p i [g(k, + q, o' ) )t (n. + 1) I hu I )$„c)y (n.)] ( ~ l [g(k + q =%|„c)y (n. v 1) I nu I /$, a) X (n. )] I

E (k„c)—& $» + q, a
'

) + hv, „-, e (k, o ) —e (% + q =R„c)+ h&u,

l[p(k, + q a') y(n, +1) I&ulp(k„v))f(n, )]l g l[g(km' =k„v))((n, vl) lbulg$, a))j(n, )]l (AS)
e (k&, v) —6 (R& + q, a')6 Ku, g, c (k, o ) -e $+ q =ft„v) 6 h&o,

As stated by Fan, "The first two terms are due to the introduction of an extra electron into the state $.„c)
and the last two terms are due to the removal of an electron from the states (k&, v). " Since only a small
number of states of the valence and conduction bands are empty and filled, respectively, we may approxi-
mate these bands as full and empty, respectively. In that case, in the first term there are only contribu-
tions when 0' =c. Similarly, contributions to the second term come only when o = v, and so on. As a result,
Eq. (AS) may be rewritten as

~ i[/(k~+q, c) y(n, +1) I&ulg(k~, c))((n )]I p l[g(k+q=%„, c))t(n, +1)I&u I)(k, v) X(n )]I
e(k„c)—&(E,+q, c)+h(u, g &(k, v) —&(k+q=%„c)+h(o,

~ I[((k,+q, c) g(n, +1)IAuIP(k„v)X(n, )]I ~ 1[&(k+q=k„v)y(n, +1)Ibul|)I(k, v))((n, )]i
z(k„v)-e(k, +q, c) +h(o, g &(k, v) —e$+q=k„v)+k(u, (A4)
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The first and fourth terms of Eq. (A4) are those obtained by Fan. They always contribute negatively be-
cause the denominators are negative for all terms. The second and third terms are the contributions of
this work. These terms always contribute positively to the shift because their denominators are also neg-
ative. Thus, the sign of the shift of the gap with temperature can be viewed as a competition between the
interband and intraband terms. Only if the band gap is relatively small, or if there are unusual circum-
stances which make the interband very much larger than the intraband matrix elements, can we admit the
possibility of an increase of the band gap with temperature.

Since the band gap in PbTe is rather small, it is possible that these self-energy contributions will also
contribute positively to the temperature dependence. %'e have not evaluated them numerically. Because of
the difficulties discussed above with the pseudopotential used here, such a calculation seemed inappropriate.
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