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A microscopic derivation is given of hydrodynamic equations and response functions for
uniaxial and isotropic exchange Heisenberg ferromagnets. The method is based on the
conservation laws and makes no use of a quasiparticle picture. At low temperatures, the
hydrodynRmic equRtlons involve the z component of the InRgnetizRtlon, the local temperature
and the approximately conserved momentum. In addition to a diffusive mode, there is a
propagating mode, the second magnon, which is strongly coupled to the z component of the
magnetization and may be observed by neutron scattering, and, in transparent ferromagnets,
by Brillouin scattering (e. g. , in Eu compounds and CrBr&). The strength of this mode de-
pends on the magnetic field and anisotropy. For zero external field and no anisotropy, the
longitudinal susceptibility diverges for wave nuInber q 0. The velocities and diffusion
constants in the hydrodynaInic equations become q dependent. Then, also, the transverse
spin components perform low-frequency oscillations. For higher temperatures, t'he mo-
mentum is no longer conserved, and the hydrodynamic equations reduce to two coupled
diffusion equations for the local temperature and magnetization. For T & T~ and zero exter-
nal field, the spin density and energy obey uncoupled diffusion equations,

I. INTRODUCTION

At finite temperature, the low-frequency re-
sponse and excitations of a many-particle system
are described by hydrodynamic equations. This
paper is devoted to a quantum-mechanical deriva-
tion of hydrodynamics for uniaxial and isotropic
Heisenberg ferromagnets. The method employed
is closely related to the general theory of Brownian
motion and transport by Mori. ' It is based on the
mieroscopie conservation laws and the fact that in
the hydrodynamic regime the nonconserved opera-
tors relax much faster than the conserved quanti-
ties. Since no explicit use is made of the existence
of quasiparticles, the derivation also holds in a
temperature region where the quaslpartlele con-
cept does not apply. For T & T, and zero external
field, one finds a set of uncoupled diffusion equa-
tions for the spin density and the energy density.
For Tn & T & T, (where TD is the Debye temperature
of the magnons), one finds two coupled diffusion
equations for the local temperature and the z com-
ponent of magnetization. (z is the direction of
spontaneous magnetization. ) For T « Tg), momen-
tum is conserved approximately which allows for
the possibility of an oscillatory motion of momen-
tum, the z component of magnetization, and the
local temperature. In analogy to He II and lattice
dynamics, this mode is called second magnon,
Special attention is given to the conditions for the
observability of this mode. Since neutron scatter-
ing and, in transparent ferromagnets, Brillouin
scattering are most appropriate tools to detect
these modes, expressions for the dynamic form

factor are derived. Whereas in HeII and in lattice
dynamics, second sound is mainly a temperature
wave [coupled to the density by the small ratio
(cp cy')/c~], the second magnon is for finite mag-
netic field primarily a magnetization wave and
therefore has more similarity to a density wave of
a real gas. In the ma, gnetic case, one is in the
fortunate position of having an extra experimental
degree of freedom (the external field) by means of
which one may tune the ratio of the contributions of
the propagating and the diffusive modes in the dy-
namic form fa.ctor of the magnetization. Since in-
creasing the magnetic field also reduces the value
of the static longitudinal susceptibility which enters
as a factor in the neutron cross section, an upper
limit is set to the applied field. With increasing
temperature the propagating mode gets heavily
damped and finally one enters the diffusive regime.

In an isotropic ferromagnet in zero externalfield
the transverse components of the spin density also
perform low-frequency oscillations. Moreover the
longitudinal susceptibility diverges and the coeffi-
cients in the hydrodynamic equations are q depen-
dent. (The divergence of the homogeneous longi-
tudinal susceptibility for H- 0, which usually is
derived in spin-wave approximation, follows rigor-
ously from Dyson's theory. 4)

We omit dipole forces and interaction with pho-
nons, which in the temperature range in which we
are interested, are indeed negligible. For temper-
atures where these interactions become important,
the hydrodynamic region is restricted to extremely
small values of the wave number q.

In Sec. II, we present the general method for
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deriving hydrodynamic equations.
In Sec. III, we derive the hydrodynamics for the

Heisenberg model; in Sec. IIIB for temperatures
where the momentum is not conserved; in Sec. III C
for the case of (approximately) conserved
momentum.

In Sec. IV, we discuss the solutions of the hy-
drodynamic equations for finite external field or
anisotropy so that the thermodynamic limit (q- 0)
in the evaluation of the static susceptibilities may
be taken. The transition from the propagating to
the diffusive regime is described. The coefficients
of the hydrodynamic equations assume a particu-
larly simple form if one generalizes thermodynam-
ics so as to include the volume as a thermodynamic
variable.

In Sec. V, we discuss the case of an isotropic
ferromagnet in zero external field. Besides the
hydrodynamic equations involving the local temper-
ature, magnetization, and momentum, the oscilla-
tions of the transverse spin components are also
studied.

In Sec. VI, the range of validity of the theory is
ascertained. Estimates for the various collision
times and criteria for the observability of the sec-
ond magnon mode by neutron and Brillouin scatter-
ing are derived. Special attention is given to EuO

and CrBr, .
In Appendix A, we collect a variety of thermody-

namic relations. In Appendix B, we derive the

changes resulting from the addition of an anisotrop-
ic exchange term to the Hamiltonian. In Appen-

dix C, the coefficients of the hydrodynamic equa-
tions are calculated in the lowest-order magnon

model and in a collision-time approximation.

». M Xmsl OER&VM ION OV HVOROOVXAMK:
t=QUA I'IOUS

In this sect.ion. we describe a general quantum-

mechanical derivation of hydrodynamic equations
based on conservation laws. The method includes
the case of approximately conserved quantities
such as quasimomentum in a lattice.

The response of a system to perturbations of

long wavelength A. and low frequency ~ is deter-
mined by hydrodynamic equations. In this regime,
the quasiparticles undergo frequent collisions with-
in a distance X and period '. lt is important to
realize that in this region the variables describing
the system separate clearly into two classes whose
relaxation times are of completely different orders.
The relaxation time of the first group —the densi-
ties of conserved operators —is very large, being
proportional to the wa, velength. On the other hand,

the nonconserved operators decay very rapidly to
local equilibrium because of the frequent collisions
of the quasiparticles. Consequently, the nonequi-
librium state can be characterized completely by

specifying the spatial and temporal variation of the
conserved densities. The time change of these
densities p(x) is governed by the conservation
laws:

p(x) = —divj(x) (2. I)

4"'(q, t)=t f dt'e "([XIt(t'),X-'(0)t]) . (2.4)

Its one-sided Fourier transform is related to the
more commonly used response function

y."(q, ~)= f dte'"'ts(t)([X (t), X';(0)~]), (2. 5)

by 4 "(q,e) -=f dt's "(q, t) e'"

= (I/te)[X"(q, e) —X"(q, 0)], Ime &0 .
(2.6)

If the disturbance (2.2) couples to a conserved den-
sity, the relaxation is alternatively described
macroscopically by hydyodynamic equations. This
relation between the relaxation function O(q, t) and

the initial-value problem of the hydrodynamic
equations has been used by Kadanoff and Martin to
determine C (q, t) and then the dynamic susceptibil-
ities from the known hydrodynamic equations of a
liquid. Conversely, if one has to derive the hy-
drodynamic equations microscopically, it is natural
to investigate Kubo's relaxation function C . In the
following it will be convenient to measure all sus-

The currents j themselves decompose into a part
proportional to the densities p(x) and into a non-
conserved part. The first will give rise to cooper-
ative oscillatory motions of the conserved densities
whereas the latter (like a, random force on Brown-
ian particles) will produce damping. '

Although all the various correlation functions
display the hydrodynamic singularities, it seems
that Kubo's relaxation function' is most appropriate
for a microscopic derivation of hydrodynamic
equations. In order to demonstrate this, let us
imagine that the system is disturbed by adiabatical-
ly switching on an external force K'(x), which
varies slowly in space:6

5R(t) = —f d'xX'(x, t)ff&(x)e"8(- t) . (2. 2)

Elere X~(x, t) is some operator of the system,
whose Fourier transform is denoted by

X';(t) = f d'x e "*X'(x, t)

At time t = 0 the disturbance is turned off and we
observe the system relaxing to equilibrium. The
relaxation of the operator X' is given by

5(X,'-(t)) =C'~(q, t)K~(q) for t &0 . (2. 3)

Here 4 "(q, t) is Kubo's relaxation function~'7:
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ceptibilities on a unique scale. This is achieved
by orthonormalizing our complete set of operators:

(X';,X';) = 5" (2.7)

(ce"'(q, (d) = C""(q)e"'"(q,(0)

+C'"(q)e '(q, (c)+iS-', (2. 1»)
(de"'(q, (d) = C '(q)C ~'(q, (0)

The scalar product of any two operators is taken to
be the static susceptibility

(A „",8„-)=- y" ( k, (0 = 0) (2. 8)

As already stressed we group the operators X into
two sets: the conserved and the nonconserved op-
erators. If we want to make a distinction between
them we shall label the former by c,c ', . .. , and
the latter by n, n '.

~ . . The separation in slowly
and rapidly decaying operators has been used by
Wegner in a similar derivation.

The time derivative of the operators given by
Heisenberg's equation may be expanded in the fol-
lowing manner:

x;= -ic-'(q)x;- -ic'"(q)x,"-

X"= -iC (q)X',« —iD"" (q)X;"

The coefficients obey the symmetry relations
Ccc' Cc'c Cnc 4 Ccn Dnn' Dn'n (2 10)

Summation over r epeated indexes is always implied.
For an exactly conserved quantity the expansion
coefficients C" (q) and C'"(q) are proportional to
q. In a lattice the momentum is only approximately
conserved [see Eq. (3.37)]. The time derivative of
the momentum P; equals the sum of the divergence
of the momentum flux tensor and a vector u,'- which
is different from zero only for umklapp processes.
The scalar product of u; and any other operator is
therefore proportional to the small wave number
K = & e & for low temperatures, where T~ is
the Oebye temperature. For low T we shall in-
clude the quasimomentum P;" in the set of con-
served operators. Consequently, the general form
of the equation of motion for an operator X~~ is

x = iq j q
——iu~ = —iq'm," (q)X0

iq m'"(—q)x;" —iK0"" (q)X" —iKx'"(q)X;".
(2. 11)

From Eq. (2.11), it is easy to see that the matrix
elements C'"(q) and C" (q) are small because of
their linear dependence on either q' or z. The ma-
trix D(q), on the other hand, stays finite if q and K

go to zero. The analysis in Sec. III shows thats"
is zero, and we shall therefore omit this coeffi-
cient from now on. From (2.8) one readily derives
the equation of motion for 4:

+ D""'(q)e""(q, (0)

(de""'(q, (d)=c (q)e'"'(q, (d)

(2. 12b)

+D"" '(q)C"""'(q, (d)+i6""",
(2. 12c)

(de'"(q, (0) = C"'(q)e""(q, &)

+ c'"'
( q)e" ' "(q, (0) . (2. 12d)

Our aim is to derive a set of equations containinge" only. We may rewrite (2.12b) and (2.12c):

q"'(q, ~)=( )
c"'*'(q)q"'(q, (o)

(2. 12b')

q""'(q, ~)=(„c-„) „c "(q)q"(q ~'")'

1

w( —c(q)), (2. 12c ')

Because of its repeated occurrence we shall denote
lim ., lim, „., by Lim. Successive use of (2.12b ')
and (2.12c ") in (2.12a) leads to'

[ 5cc C" '( ) 'C'"( )C" ' '( )

&& Lime ""'(q, (c)]e'""(q,(c) = i5" . (2. 13)

This is the desired hydrodynamic equation, which
by use of Eq. (2.11) can be written

[(0&" -q m" '(q)+i&" (q)]
xec '

( +)='gcc' (2. 14)

The relaxation coefficient I'" (q) is of second or-
der in q and x, and expressible by a Kubo formula

1qcc'(~) Ccn(~)Cc n'+(~)

&&Lim-,'Pf dte'"'(-', {X,"(t),X,"- (0)']),

=q"q Lim —', p J dte'"'( ,'(j p(t)j ' 0(0)t])-,

+q" 2ReLim-,'Pf dte'"'( ,'(j';"(t),u'; —(0))),

+ Lim~ P f d t e'"'(-', (u';(t), u'; (0)tj),.
(2. 15)

(, } is the anticommutator. We have denoted the

Since inserting (2.12b ) in (2.12a) results in ((01
-D) ' being multiplied by a second-order term, we
need only consider Eq. (2. 12c ') in the limit of
small q and K. Use of (2.12d) for C'"(q, (d) shows
that the first term on the right-hand side of (2.12c')
may be neglected. More precisely, we may write

1
lim lim - =-ilim lim 4"" (q, 0)) .

0 c, n 0 q nn' (q"0 c n 0

(2. 12c ")
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nonconserved part of the current j& by

j cu cnxn
at

where X' is the exchange Hamiltonian

R'= ——2 J(l-I ')(S S,:,+S', Sf"i) .
f. 7 ' (3.2)

We want to emphasize that the second equality in
(2.15) has a symbolic character: the limit q-0,
z- 0 is not to be applied to the q dependence in
C'"(q) and C" ' (q), but only to the Kubo formulas
containing the normalized currents. If the suscep-
tibilities are not singular for q -0, this difference
is irrelevant up to 0(qi). In Eq. (2.15), we have
used the relation'

I imC "(q, &)= I im-', P f dt 8'"' &-,
' (X (t), X J (0)i}), ,

where the cumulant is defined by

&fx,'.(t), x i,(0)t}),

=-&(x '(t) —&x,'-(t) ),x';(o)' —&x''(0)') }).
First, Eq. (2.14) gives the long-wavelength be-

havior of the relaxation function C" (q, &u) and in
turn all the other Green's functions:

( q, &0 ) = i [Qp 1 —g m~ + iI ]~~ ~

and y""'(q, ~) = ~ReO"'(q, ru),

where X "is the imaginary part of y. Second, we

can immediately infer the structure of the classical
hydrodynamic equations

5X';(t—)=[-iq'I"' (q)-1" (q)]5X" (2. 18)

for the nonequilibrium averages of X;-,

5X;-(t)=&x (t))N-M. . -Pq(t)) .
The hydrodynamic Eq. (2.18) is constructed such

that the relaxation derived from them is identical
with the microscopic result (2.3).

III. HYDRODYNAMICS OF HEISENBERG MODEL

In this section, we shall apply the method of

Sec. II to derive the hydrodynamic equations for
a Heisenberg ferromagnet. In Sec. IIIA, we give

the necessary definitions, in Sec. IIIB we derive
the hydrodynamics for the case where the momen-

tum is not conserved, and in Sec. III C for the case
where P~ is conserved. In order to keep the de-
rivation as short and as clear as possible, we

shall in this section consider only an isotropic
exchange Hamiltonian with external magnetic field,
the modification to the results for the anisotropic
case being given in Appendix B. In our units
Planck's constant and Boltzmann's constant are
equal to 1.

8. Hydrodynamics without Momentum Conservation

For high temperatures such that umklapp pro-
cesses' are important, the only conserved oper-
ators are the s component of the magnetization
and the exchange energy. Their Fourier -trans-
formed densltles al e

M" =g p, 5- =gp, ~ P~» g ' '" ' $»

(3.7)

If H=0 also g-S-'and g"S= are conserved How-

ever, for symmetry reasons these operators do

not couple to the hydrodynamic equations involving

M~ and X'-, and therefore we shall postpone the
discussion of S' and 8 until Sec. V. Prom Eqs.
(3.5) we find the conservation laws

M- = —jq j~

e ~ ot el

(3.8)

(3.9)

The summation runs over all sites l of the mag-
netic lattice. In Eq. (3.2), 8, is the spin operator
(in the Heisenberg representation) for the spin lo-
calized at site l of the magnetic lattice. The time
dependence will not be written explicitly. As usual
we have introduced

$» =8""+ jS»~ (3.3)

The exchange interaction between the spin at site
1 and the spin at site I ' is denoted by J( I - I ') with
J'(0) = 0. We assume that the magnetic lattice has
inversion symmetry. The external field points in
the z direction; g is the spectroscopic splitting
factor, and p. & is the Bohr magneton. The equal-
time commutation relations for the spin operators
are

[S1~ Sf'] 251,1'Sl & [Sf & Sl'] + 5f i' Sl'
(3.4)

[sr, sr,]=[s';, sr,]=0 .
We also note that Sf=S(s+ 1) for a spin of mag-
nitude S. Later we shall also need the equations
of motion for the spin operators

S'; =+i ~&f J'(l —l')(Sfs';. -Sps;) wiggsHsj,

S,'-= -5;.J(1-I')(S";,S,'- -S,'-, Si~) .

A. Heisenberg Model

The Hamiltonian of the system is given by

+ =X -gp, sHQ "Si (3.1)

where the magnetization and energy currents are
given by

j;""=geeg exp[ ——,'iq (x-+X-.)]
», »
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and

& —'(x- —x-.) (S"-S-.—S-S"-.)J(l —1') (3. 10)
1 1 1 1

j'; = —,
' g exp[ —', tq (x-+x-")]

x (g- —x-")'Z(1 —1')J(l' —1")S- S- ~ x S-.
1 1 1 1 1

(3.11)
Following the program of Sec. II we construct the
orthonormal operators:

X- =(M-, M-) ' M-

x';-=, , ((M, , M;)z -(z, M;)M;) .
d~q)

(s. 12)

x';=- tq (M;, M,}'"P
X'-, = —tq [I/d(q)]((M-„M;)j';

(ZI M ) Mol)

(s. is)

the hydrodynamic equations may be inferred from
Eqs. (2. 11) and (2. 15)-(2. 18):

5XI = —q'q~D~3~ 5X'; —q'q~D,'8 5X;
0

6X,'-= —q q~D 8 5X'; —q'q~D,
& 5Z;

The transport coefficients, which are in general
q dependent are given by the Kubo formulas:

1. Spin diffusion:

D"(q) = (i/(M;, M,}
&&Lim-,'p f"dt (-,' {j,"-'(t),j; (0)~]},e'"' .

(s. iv)
More precisely, according to the first line of Eq.
(2. 15) we should apply Lim to the normalized cur-
rents j,"-(j;",j,"-) 't, In Eq. (3. 1V) this amounts to
afactor(j&, j}~Lim(j-, j-), which& as long as
(j f,j f) is not singular for q-0, is set equal to
1 in the order in which we are interested. A
similar remark applies also to the other diffusion
constants. If one is interested in higher nonlocal

(We reserve labels 1 and 2 for S' and S, which
will be treated later. ) The normalization factor
d(q) is given by

d(q) = [((M,-, M-,)(z,'-, z.',)
—

I (Mi, z';)
I
'}(M;,M~)]'" . (3. 14)

We shall see (Appendix A) that in the thermody-
namic (q 0) limit X; is the operator whose non-

equilibrium expectation value is proportional to
the local temperature.

For symmetry reasons, the projections of the
currents j; and j'; on the conserved densities
X';, X,'- vanish. 'o Therefore, in the expansion
(2. 11) of the currents, only nonconserved operators
contribute. This implies that the total current
is nonconserved, or (so to speak) dissipative, and

appears in the transport coefficients. Using the
conservation laws of the normalized operators

D'~g-—D'~ 5~g
(s. 2o)

We also note that D'~~ has the properties of a scalar
product. This implies, besides linearity, that
D", is real and ~ 0, that D'~~~=D~&,', and that the
Schwarz inequality,

ID "8I
' -D"Dt't' (s. 21)

holds.
The coupled diffusion Eq. (3.16) which, by use of

Eqs. (3.12) and (3.13), can be transformed into dif-
fusion equations for the unnormalized densities,
M~, K~, have the following eigenfrequencies:

&~ = —'LB''I ~ 2

= --', zq'{D"+D"+ [(D"—D' ) +4l D' ('] ~a].

(s. 22)

Here we have limited ourselves to a lattice of cubic
symmetry [see Eq. (3.20)]. For stability the dif-
fusion constants D, must be positive; this is guaran-
teed by the Schwarz inequality (3.21). The absorp-
tive part of the dynamic susceptibility is given by

IIMM MM
X(g, +) X(Q, e = 0)

(u +(DII ) D, —D &u +(D q2)' D, -D

(3.23)

This can be related to the dynamic form factor by
Eq. (6.10). Above the Curie point, if there is no

terms in the hydrodynamic equations, the depen-
dence on q of such factors has also to be taken into
account. (See also Ref. 8. )

2. Thermal diffusion:

D.",(q) = d(q)-'[(M;, M;)'

xiim-', pf"dt(-', {j'; (t),q' (0)']),e'"'

—2 Re(M, , M&)(Z-;, M,)

x Lim-,'P f "dt(-,' {j; '(t), jf~(0)t)),e'"'

+ (z',-, M;)I'

xLim —,'P J "dt(—,'{j (t),j; (OP]),e'"'] .
(s. i8)

3. Thermomagnetic diffusion:

D.",(q) = d(q)-'[((M- M-))'"

&Lim —',PJ dte'"'( —'{j; (t) j.' (0) J)
—(Z';, M;)/((M;, M;)}"'
~Llm ,'p f "-dte'"(-,'{gf (t), j;"'(0)']),] .

(s. i9)
In crystals with cubic symmetry or in isotropic
systems these tensors are proportional to the unit
matrix
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external field, (K&, S&) vanishes. In this case the
hydrodynamic equations reduce to

gSv ~e~B ~M gSv

~e e /De ~e (3.26)

(3.24)

C. Hydrodynamics with Momentum Conservation

Every continuous symmetry implies a conserva-
tion law (Noether's theorem). Since the Hamil-
tonian (3.1) is translationally invariant only with
respect to a lattice vector, the generator of this
transformation, the (quasi-) momentum will not in
general be conserved. It is physically clear and
well known that momentum is approximately con-
served at low temperatures.

In order to study effects connected with transla-
tion invariance it is convenient to introduce a boson
representation by means of the Holstein-Primakoff
transformation"

S,"= (2S) [1—(1/2S)a., a,-]"'a;,
S;= (2S)'/ a& [1 —(I/2S)aIa. ]'/' (s. 26)

1

gS; =S -a1a1

The commutation relations for the boson operators
ag are

f I ] 1, 1 [af al ] (3.2"/)

Let us introduce the Fourier-transformed vari-
ables

I)/-) /k P „eik~f, 1&

e=1 e

a-=I)/-'"&-e '"'"Ia-~1 l~

(3.28)

We imagine we have a cubic crystal with conven-
tional lattice constant a. The number of atoms in
the direction of the basis vector a„ is N, and the
total number of atoms N = N1 N2N, . The reciprocal
lattice is spanned by b~ (bi) a, =2)/5)), ). The inte-
ger v varies between --,'N and —,'N . The opera-
tors ak obey the commutation relations

The diffusion constants are found from Eqs. (3.17)-
(3.19) by taking the limit

(Z)t, Sg')- 0 .
The cross term D' also vanishes.

+— ~ W (k), k2, k„k4) & (k, + kk —k3 —k4)
1~ ~ ~ k4

&&ak-, ak ak ak -gp, &HNS .
In (3.31), the harmonic-magnon energy is

~&=s(Z(o) -Z(k)),
J' (k) = ~P; e '" ' "i J(l )

(3.31)

(3.32)

(3.33)

and the four-magnon interaction potential reads

W(k), kk, kq, k4)=kg(k))+k J'(k4) —J (k, —k4) . (3.34)

In addition to the conservation laws (3.8) and
(3.9) for magnetization and energy, we have in the
present low -temperature case

P~ = —gQ' IIq —S 8& ~ (s.36)

The momentum flux operator is given by

0
ea ~p e ~~a

II ~
—~ k ~~) ag (q /2) ak+ (q/2)

+ —
~~ a" a- a-a" &k1 k k3 k4 (q+ k) +2k k3 k4)

k1) ~ ~ ~ k4 2

e 8 ex
eke k) & (k )+ sk8 k4 & (k, )

1 4

e e—2 )) (k", -k4) J'(k) —k4)
8k1

(3.36)

The advantage of having bosons without kinemat-
ical interaction is paid for by the presence of the
square root in (3.26), which gives rise to nonlin-
earities of infinite order in the Hamiltonian.
Oguchi' has established that one gets Dyson's
result up to order (1/S) if one keeps all terms up
to order (1/S) . ' Similarly, we make here an ex-
pansion in 1/S keeping only terms up to order
(1/S)'. The structure of the hydrodynamic equa-
tions does not depend on where one truncates the
expansion in I/S of the Hamiltonian. Only if one
wants to calculate explicitly the coefficients in the
hydrodynamic equations, does this come into play.
One also can derive the hydrodynamic equations
for the case of spin —,

' without any approximation.
This will be published in a forthcoming communi-
cation.

Through order (I/S)' the Hamiltonian reads
pK= ~~ ( k)+kg/ Hs) akak

[ak, a„-]= &(k —k')

The momentum density may be written

ak - &k/k) ak+ iti/k)

(3.29)

(3.so)

Because of the discreteness of the lattice, there is
a term in (3.35) which is not proportional to q:

&(q+ k)+kk —kk —ki)g
k1P o ~ ek4

The generalized Kronecker 5 h(p) is defined to
vanish except when its argument is zero or a re-
ciprocal-lattice vector, in which case it equals
unity. x ak,ak a„" ak (3.3'/)

x (q+k, +k, —k, —k, ) [J'(k, )+J (k, ) —2Z(k, —k, )]
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The symbol g (k) denotes a reciprocal-lattice vec-
tor which is defined such that in the relation

a =u,"+g (k), (3.38)

(P~, P ~) = Vp 5 +cq q~+ 0(q4) (s.41)

where p and c are constants. (p has nothing to do
with the material density of the system. ) If we
neglect terms of O(q ) the normalized momentum,
ls

X 5e (V )-1/2 P+ (s.42)

In a spatially more anisotropic crystal, the dif-
ferent components of the momentum will no longer
be orthogonal. It is not hard to extend the deriva-
tion to such systems.

After these preliminaries let us now deduce the
hydrodynamics from the conservation laws (S.8),
(S.9), and (3. 37). The currents j~&' and j&" have
finite projections on the momentum operator. The
projection of II~ on K~ and M& is also nonzero.
The scalar products of the currents in (3.8), (3.9),
and (S.35) with the transverse spin components
are still zero. For the calculation of the projec-
tions, it is useful to employ the identity

(Ag, Bg) =-i([Ag, Bg]) (3.43)

the vector k~ lies in the first Brillouin zone. In
the derivation of (3.35)-(3.38), we used

[P';, ag]=-[0'+-', q' -g" (k+-', q)]ay, g . (3.39)

The vector u; is different from zero only for
umklapp processes. Therefore its scalar product
with any other operator is of order z =a 'e- ~

where T~ is the Debye temperature of the mag-
nons. There is yet another contribution to (3.35)
arising from the boundary of the Brillouin zone
and containing a factor of the type g" (k, + q). Since
it is proportional to q and different from zero only
for k, at the zone boundary, it is of the order q ~ z
and therefore negligible compared to the linear
terms.

The expectation value of the momentum flux op-
erators (3.36) defines a pressure P,

PV5 '=(ll, (s.40)

In fact, this pressure has also thermodynamic
significance. In the low-temperature lirgit where
magnons at the boundary of the Brillouin zone are
not excited, P is the volume derivative of the in-
ternal energy at constant entropy and constant
M —Mo. Since we do not need this property in the
derivation of the hydrodynamic equations we have
deferred the proof to Appendix A.

For the normalization of the momentum operator
P~ we need (,P~, P~~). In an isotropic or cubic
system, this will be

which follows from (2.5) by partial integration.
So we find

(j',~, Pf) = P'(M -M,),
( jg, P g) = 5 ~ (U+PV)

(s.44)

(s.45)

In (3.44) and (3.45), M is the equilibrium mag-
netization, Mo the saturation magnetization, and
U the internal energy (see Appendix A), and PV is
given by (3.40). From Eqs. (3.44) and (3.45) fol-
lows the decomposition of the currents in a con-
served part and in a nonconserved part j:

t', =[(M-M, )/(Vp)'/']X', +t;, (3.46)

ja = [(U+PV)/(V p)'/']]X,"+j; (s.47)

The decomposition of the momentum flux operator
II& will be found by use of the symmetry condition
(2. 10). The conservation laws for the normalized
operators are

X~= iq"c,(q) X~' —iq" (M;, M;) '/' j ~

X';= -iq c,(q)X' iq'd(q) '-
x((M;, M;) j;-" -(Z, M,-)j'; ),

(3.48)
X~ =iq c,(q)x&-iq'c, (q)x';

q't(v-)p-'" ll t(vp-) '/2u;"-.
The dissipative part of II; is given by

11-' = ll-' —5"(Vp)'" (-c,(q)X'-+c, (q) X';), (S.49)

—q D (q)5X~ —q D (q)5X~
' Se

5X," =-iq (-c,(q)5X'; c,+(q)5X;)

—q q D~~~~ OX' —cup&Xq

(S.52b)

(3.52c)

We have indicated that the velocities and diffusion
"constants" themselves will in general be q de-
pendent. The hydrodynamic Eqs. (3.52) are iden-
tical to the ones obtained from the Boltzmann
equation'4 [Eq. (3.14)]; one has to identify 5X;
—= 5R(q, t), 5X,"=0(q, t), and 5X;=—5' (q, t). If one
uses the definitions (3.6), (S.7), and (3.42) one
may rewrite Eqs. (3.52) into a, set of equations

and the velocities c,(q) and c4(q) are

c,(q)=(M -M)((M,",M;) Vp) '/' (3.50)

and c4(q) = [1/(Vp)'/ad(q)] ((M;, M,") (U+ PV)

-( X;,M;) (M -Mo)) (s. 51)

From Eqs. (3.48) and (2. 15)-(2.19) we find im-
mediately the hydrodynamic equations;

5x~=iq'c, (q) 5X~ -q'D"(q) 5X~ —q D' (q)5xt, ,
(S.52a.)

5X- = —iq'c, (q) 5X;
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(5ag 5&sr 5iMT 58») g
i5a»Bv (s.54)

The tensor 5 &„is different from zero only for
a = p=o =»'. In an isotropic medium the coefficient
P' vanishes; the viscosity p is given by the quadru-
pole contribution to Il; and the bulk viscosity f by
the scalar part. The presence of the momentum
relaxation rate due to umklapp processes &p in
(3.48) is typical for a discrete system

&dpi'"~= lim lim — dtN8

~P &-o, -o 2 „„
(s. 55)

Off-diagonal diffusion constants like D", D are
zero in isotropic or cubic crystals. For noncubic
anisotropic lattices the momentum susceptibility
&P», P;) is a tensor. The transformation matrix
'which diagonalizes this tensor appears in the ve-
locities and Kubo formulas.

There are still other dissipative terms like
—q p. & 6X~ in OX' and similar terms in gg ~ and
6X5~ . The coefficient q p, ,z is proportional to

q J .«& '(t f" (t), &-'(0) }&., (3. 55)

and is estimated to be of order cq~„/~N and there-
fore neglected compared to the diffusion terms.

It can be seen from the hydrodynamic Eqs. (3. 52)
that the system may perform a wavelike motion
with velocity [c3(q)+c»(q)] if the damping terms
are small.

One would also expect that (3. 52) reduces to the
hydrodynamic Eqs. (3. 16) if ~~ becomes large,
i. e. , ar~=arz. In fact, for large ~p, (3. 52c) can
be written as

for the unnormalized densities (magnetization,
momentum, and energy or temperature).

The hydrodynamic equations for the ferromagnet
(3. 52) contain a variety of transport coefficients.
The diffusion constants D', D', and P have al-
ready been defined in Eqs. (3.1V)-(3.19). The
only difference is that we have to replace j'," by
jcem. VVe note that D44 ls the nonconvectlve part of
the thermal diffusivity. Because part of the energy
current is proportional to the momentum density,
the bulk magnon thermal conductivity diverges if
we leave aside umklapp processes and impurities.
In a liquid experimentally one can avoid convection
and measure D; in a magnet a convective flux
is built up in such an experiment, if there are
number-violating interactions on the surface.
The viscosity is given by

D,', ', = (I/VP) Lim-,'P J dt&-', (11' (t), II; (0)tt), e "~

(s.5s)

In a cubic crystal D" decomposes into

D5 5
(g 2i))5»i»5/1'

—iq [ —c3(q) 6X&+ c»(q) 5Xj]—&u~ 5X»g" = 0. (3 5V)

Inserting

5X

(3.5V) into (3.52a) and (3.52b) gives

—q'[D "+(c,'/(u, )]5X-',

—q [D —(c,c»/(op)] 5Xg,
—q [D ' —(csc4/&u~)]5X;

—q' [D "+(c',/(o, )] 5Xf.

(s. 58)

The additional diffusive terms make up for the dif-
ference in definition of D'~ and D'~. Equation
(3. 58) applies also if ~ « ~~ and arbitrary ~~.

Finally we remark that the structure of the hy-
drodynamic equations is unchanged if the exchange
interaction is anisotropic, as long as /Sf is con-
served. Only the values of the coefficients will de-
pend on these details. In Appendix B we give the
modifications resulting from anisotropic exchange
interaction.

IV. SOLUTIONS OF HYDRODYNAMIC EQUATIONS
(H 4 0); MODES AND RESPONSE FUNCTIONS

In the following we study the characteristic modes
of the hydrodynamic equations (3. 52). We recall
that 5X~, 6X~, and 5X~ are, except for a nor-
malization factor, equal, respectively, to the local
magnetization, temperature, and momentum [Eqs.
(3. 12), (3. 13), and (3. 42)]. Let us for the sake of
definiteness imagine that the wave vector q lies
in the [1,0, 0] direction. Use of expression (3. 54)
for the viscosity tensor in (3. 52c) shows that the
transverse components of the normalized momen-
tum, 5X;" and 5X;", are uncoupled to the rest of
the system. The corresponding eigensolution is
the viscous mode

5Xg (t)=5Xg (0)e ', a=2, 3,

F~ = g q + Q) p . (4. 1)

g.a'4q' C3q

ZD34 Q q2

C3q

sa"q' —c4q (4. 3)

—c,q i(—,
'

n i i')q'+i
The eigenfrequencies are found from

Det(a)1 —q m +iI') =0

and the relaxation functions by inverting (4.2b),

(4. 4)

The remaining set of hydrodynamic equations is
made up of the z component of magnetization, tem-
perature, and longitudinal momentum, and may be
written

~X& O

[~1-q m„(q)+t I (q)]-' = (4 2a)
4" (q (o) 6' '(4. 2b)

where the matrix —q'm + iI" is given by

-q rn +iT'
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e. g. , the magnetization-magnetization relaxation
function is given by

I"(q, (o) -=4""(q, (o) = X"(q, 0)

i((&o+iD44q )[(d+l( 37)+ 5+ K ) q+l&p] c4q )
Det(+1 —q'm, + iI')

(4. 5)

q.=a '(gI sH/d~)'" (4. 6)

as will become clear in Sec. V. Now we suppose
that we have an external field or anisotropy such
that q«q„as will be the case in most practical
situations, and take the thermodynamic limit. In

the derivation of the hydrodynamic equations one
makes an expansion in q, which implies the con-
dition c, 4q &D' q'. Employing a collision time
approximation for D'~ this condition may be re-
written in the form

cq & c /D cog (4. 7)

The nature of the modes derived from (4. 3) de-
pends crucially on the relative magnitude of the
momentum-relaxation frequency ~~ and c3 4q.
+e may distinguish four different regimes.

(i) ~~«c, q«&u„: Frequency window" and

c, q within the window.
One finds from (4. 4) a diffusive mode

Usually one takes the limit q 0 of the suscep-
tibilities entering in the coefficients of the hydro-
dynamic equations. Since the longitudinal suscep-
tibility for the isotropic Heisenberg ferromagnet
is divergent for q and H-0, the limit may be
performed only in the presence of an external or
anisotropy field and only for q«q„where the
characteristic wave number q, is given by

all &

~ U+PV+ 1-T Mp 1lf, 4, 12

Of particular interest is the oscillatory solution,
the second magnon. In order to determine wheth-
er it is primarily a temperature wave or an oscil-
lation of the z component of the magnetization, we

have to find the amplitude of M", in this mode or
equivalently the residue of the pole (4. 9) in the
magnetization correlation function. From Eqs.
(4. 5) and (2. 17), we find for the longitudinal dy-
namic form factor [defined in Eq. (6. 10)]

sM q~D r(1 —cs~ / c~ )

q c~(q D, +u&J) q( D'-+D-r(1 c,/c, )](e :c',q~)—

(~ —c,q ) + (~(D, q +~J)]
(4. ia&

It is seen that the integrated strength of the diffu-
sion pole in S"(q, &u) is ,'T (&M/&—H)r(1 —c', / c, )

and the integrated strength of each one of the prop-
agating modes is —,'(c',/c, )T(BM/BH) r. This is
rather noteworthy because it shows that if c 3 c
the propagating mode is mainly an oscillation of
the z component of the magnetization. On the
other hand, second sound in a phonon system and
in liquid helium is mainly a temperature wave'
coupled to the density fluctuation by the small ra-
tio (1 —c r/c, ) = (c~- cv)/c~ . The situation in the
magnetic case is more analogous to a real gas
where the propagating mode is mainly a density
wave. '8 (The density corresponds to the z compo-
nent of the magnetization. ) The analogy can be
pushed further if one applies the thermodynamic
results discussed in the second half of Appendix A.

We find in (A20)-(A22), that

2y= —2Dz q

= ( —i/c, ) (2 Re D"c,c4+ D"c4+ D"c,' )q, (4. 8)

and a damped propagating mode (second magnon)

C4 —— VT—

(4. i4)

ar, =a c,q --', i(D,q'+ u&J, ) (4. 9)
Here terms of order e D have been neglected.
The coupling of the propagating mode to the mag-
netization is ~ (1 —c v ~ „ / c~ „s). Its velocity
is proportional to the adiabatic "magnetic com-
pressibility. " All these constants depend on the
external field, by means of which one may vary
the relative strength of propagating to diffusive
mode and the velocities. In Appendix C we give
values for these constants in the lowest-order
magnon model. There we find that ca/ c~ in-
creases from 0 to 5 if II varies from 0 to . The
velocities of the lowest-order magnon model agree
with the results of the work by Reiter (Ref. 3), in
which also an expression for the response function

(4. 10)where c,= (c', + c', )'"
D = D (ce/c,')+ D (c4/c, )

+ ~~ q+ g+ f ' —2ReD (c3c4/c,')

(4. 11)

c4= (Vp ~c~,v)

The velocities c, and c, of Eqs. (3. 50) and (3. 51)
may be written in terms of thermodynamic deriv-
atives by means of (AS)-(A10):
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has been derived. In the damping of the second
magnon we have included also the contribution due
to thermal diffusion and umklapp processes.

If the wave number is lowered, the ratio of
damping versus real part in (4.9) increases be-
cause of &u J, and we reach region (ii).

(ii) e~=c,q «&u„. The leading term of the
"propagating" solutions is given by

(u, =- —,'i(up+ ( ——,
' (u'p+c', q')'"+O(q') . (4. 15)

For 2c,q = co& the modes get critically damped,
Bnd for still smaller values of q we have only de-
caying modes. Which brings us into region (iii).

(iii) c,q «~~ «&u~. In this region expression
(4. 15) reduces to &u = i+~, -v, =-ic,q'/~~ T.he
correlation functions can be found from Eq. (4. 5)
in regions (ii) and (iii). If finally the temperature
is so high that

(iv) c,q«e~= ur„, we have no reason to treat
the momentum differently from any other fast-relax-
ing nonconserved operator. The coupled diffusion
Eqs. (3. 16) apply. (See also end of Sec. III. ) The
solutions in this region are purely diffusive and
have been found already in Sec. III jEq. (3.22)].
The absorptive part of the dynamical susceptibility
has been given in Eq. (3.23). The over-all pic-
ture is the following:

Imagine we keep the wave number q' fixed such
that c,q «x„and raise the temperature. Since
co~ increases, from zero to —~„, we pass succes-
sively from regions (i)-(iv). We have illustrated
this in Fig. 1, where we have shown the position
of the poles in the complex ~ plane. The arrows
point in the direction of increasing temperature.
At low temperatures, there is a propagating mode
with damping D, q + ~~. With increasing temper-
ature the poles move to the imaginary axis. One

pole moves downward and disappears in the con-
tinuum of fast decaying oscillations. The other
moves upward and becomes the diffusion pole

2

10 u(sec )

FIG. 2. Dynamic form factor q= 10

D q~. In addition to the poles shown in the graph,
there is always a diffusive peak present.

Figure 2 shows the dynamic form factor S"
(q, &u) for temperatures 4 J8, 5JS, and 5.5JS and
H=4JS/gita for the values in Appendix C. Since
co„ increases with temperature the propagating
peak broadens. The integrated strength increases
because the static susceptibility rises with T.

V. ISOTROPIC FERROMAGNETH~0 (T«T, )

All coefficients in the hydrodynamic equations
contain q-dependent susceptibilities. If the q de-
pendence is weak and the limit q- 0 is finite, this
limit may be taken in the hydrodynamic regime.
For instance, the energy susceptibility is given by

(Xg,3'g) = (X('),X(', ) +O(q') .

FIG. 1. Poles in the complex u plane.

Retaining the q dependence would require also
that the Kubo formulas for the transport coeffi-
cients have to be generalized by iterating Eq.
(2. 12c ').

In the following we shall treat wave numbers
sufficiently small that one may perform q- 0.
However, there is one exception —the longitudinal
magnetic susceptibility of an isotropic Heisenberg
ferromagnet diverges at q = 0, H = 0. Therefore,
the q dependence has to be retained here. In this
section we shall first review the status of the
longitudinal susceptibility and then discuss the
consequences on the solutions of the hydrodynamic
equations. In Sec. V C the transverse modes are
treated.
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(
8M 2 VT ~ gP, ~H

@~B) 683/2(gSg8)3/8 1/8
T

+0(T3/8, T3Z„,(gi,H/T)), (5. 1a)

(
~M +Ts/2

(tgP )B6 (gS 8)3/8@ H/T )178

+O(H', H '"T'") . (5. Ib)

For notation see Appendix C. One expects that
the static longitudinal susceptibility y", for small
values of q will be given roughly by replacing
giIBH by ZSq8a8. In fact, Mori and Kawasaki'7have
found a 1/q singularity for O'Sa8q8» g p. BH in the
longitudinal susceptibility. Their result and the
leading term (5. lb) are reproduced by the expres-
sion

VT' 'P
Xq (COB) 6(g'Sn8)3/8 (gSn2 2/T)1/2

where the function g is defined by

q = (2/I/) arctan (OSa8q8/4g//, BH')'/8. (5. 3)

E41. (5.2) has been arrived at by perturbation the-
ory. Therefore the consequences which we shall
drawfrom it are not as well founded as Sec. IV. It
must be noted that, in addition to the singular
terms (5.1) and (5.2), there are also nonsingular
contributions to the susceptibility. We assume
that the wave number and external field are so
small that the singular terms dominate. At low
temperatures, this will be the ease for qa
&(T/ZS)'/810 8 and gpBH/T&10 8. In this range,
y,"is much larger than the other susceptibilities;
therefore we expand all coefficients in terms of
(gu 8)'/X", .

B. Modes and Response Functions

Tile velocl'ties c3(q) aIld c4(q) are glvell by [Egs.
(3.50) and (3.51)j

c3(q) =c3 (g'~B i x,")'",c4(q) =c4+c4~'u 8/ x.",
(~& & 02 0 2 2

(q) c0 (c4+ 2 C3 /C4)g p Bs — 4+ —

gg
Xq

+ higher-order terms.

(5. 4)

A. Longitudinal Magnetic Susceptibility

It follows rigorously from Dyson's4 theory that
the derivative of M with respect to the external
field 0 develops a 8"'~2 singularity for H- 0. The
leading term in an expansion in T is

D34(q) d34(g8~ 2/Xqq)1/8 O(( qq) 3/2)

(q) = d44+d44Ã PB/Xq ~

(5. 5)

Whereas the p dependence of the velocities is only
a consequence of the singular susceptibility, ex-
pressions (5.5) for the transport coefficients con-
tain the assumjtion that the Kubo formulas, or
equivalently the relaxation time, are regular for
T «T, . Although very plausible, this assumption
is questionable, since mode-mode coupling the-
ory' gives a singularity in D" (Sec. V C). In this
order it is not yet necessary to include any other
q-dependent terms. Under the assumption that
(oB «c,(q)q [region (i)j we find from EII. (4.4) in
lowest order in (X,") ' the modes

(5. 6)

and

IdI = - (iq2/C482)

&& [d„(c,')'+ 2 Re d'4c,'c,'+ d44(c,')8}g8p, '/X"

We see that there is a propagating mode with dis-
persion and a diffusive mode whose diffusion con-
stant is proportional to (X',*) ' in relaxation time
approximation.

In the order kept in EIIs. (5. 6) and (5.7), one
may still use expression (4. 13) for the dynamic
form factor. One only has to replace (SM/BH)r by
y", and e„t.-4, c„D„D~by the expression we
have obtained now. The strength of each of the
propagating poles (5.6) is (independent of the
damping constants)

lTX,"[c3(q)/c.(q)j'= l(g/1 B)'(c3/c4)'T, (5.6)

whereas the strength of the diffusive pole, which
gets more and more elastic for q-0, is given by

lTX',*[I—( /' .)'j= l [x", -g'/1', (,'/ ,')'jT. (5.9)

In Appendix C we have evaluated c3(q), c,(q) in the
lowest-order magnon model. For q -0, B-0, y",
diverges, c, goes to zero, the strength (5.6) in-
creases to a finite value, while (5.9) becomes
infinite.

In the purely diffusive region, (iv) of Sec. IV,
the diffusion constants are given also by expres-
sions like E41. (5. 5) if one makes again the regu-
larity assumption. We find for the modes in lowest
order in (X", ) ' from EII. (3.22),

3q'D. (q) = Iq'—(&«+ I:(d34)'/—d44jg'/ B/xq'j
For the diffusion "constants" one finds in lowest

order q [d33 (d34) /dqqjg PB/X, (5. 10)

In Sec. V C, we present the results of mode-mode
theory, which are more reliable than (5. 10). The
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In the limit of zero external field, the equations
of motion for the transverse components have also
the structure of conservation laws [see Eq. (3. 5)]:

sq= - iq'j ", 8;= - iq'j;
where the currents are given by

(5. 11)

~ +fX gg ( ) g $+(k) S(q/2&-k &I/2&+& ~O( 3) (5 12)
~ (g(2)-k ~(i/2)+k

We define the normalized operators

large transverse fluctuations produce singularities
in the Kubo integrals, which cancel the longitudinal
susceptibility in D".

C. Transverse Modes

D, and Dz are proportional to q . Summation of
higher-order mode-mode diagrams may contribute
additional logarithmic factors in A(q). Recent
perturbation theoretical calculations' gave for the

damping

q4T2[A+Bln(T/q )+C ln (T/q )] .
Halperin and Hohenberg ' havepredicted aq' damp-
ing.

From (5. 1V), one finds for the absorptive part
of the transverse susceptibility

ie gg
( )

i r &A(q)
X q.~& —2X, [ ( )]2 A( )2

(oA(q)
[~+~(q)]'+ A(q)'

St/(2Xr)&/8 gR S"/{2Xr)&/'/

where y, is the transverse susceptibility

x.'= -'&s,'-, s', ) .

(5. 13)

(5. 14)

The f sum rule puts a, lower limit on the trans-
verse susceptibility

X,
' & M '(&q'Np; I'Z(i) [g"(I)+g"(I)]+AM)-' (5. 22)

~ j'; 2(/Sf) —X~ 2M
a +

(2 r)1/2 gd
=

(2 r)1/2 . (5. 16)
XQ Xq

Applying again the results of Sec. II, one finds

= i(o(q) 5~, —A(q) 5~2, (5. 1'7)
dt 5X~

with

e(q) =(Qf SS)/X r=
q Moi//&Ta /(M)K),

and

A(q) = M'/(X', )'

(5. 18)

.'i f «""""&-.'(;(f), rg(0)'}). . (5. »)
In Eq. (5. 18), we have used the representation

Xa = M )/q k/&'i Na (g p sP (5. 20)
tv

for the transverse susceptibility. Relations (5. 1V)

and (5. 18) have already been obtained by Mori and

Kawasaki. Calculating the damping terms for
T«T, self-consistently by mode-mode theory'
one finds D'~~q', D" ~q'/6+0(q'/ ), D' ~q',
A(q) ~q'[1+in(q /q)]. '9 The maximal hydrody-

namic wave number is denoted by q . In this de-
rivation, we factorized the correlation functions
in Eqs. (3. 1V)-(3.19) and (5. 19), inserted the hy-

drodynamic correlation functions, did not take

lim„„, lim, „and replaced w by the real part of
the mode. In the regime of the second magnon,

The projection of j',- onto I'f, M~, X~ vanishes.
Only the scalar product

—iq (j,-'", x ) = - i(7- sp(2x,')-"' (5. 15)

is different from zero (below T,). Therefore the
nonconserved part of the time derivatives is given

in accordance with the representation (5. 20).
In the immediate vicinity of the Curie point, the

hydrodynamic response functions have to be mod-
ified. I ocal hydrodynamics is only valid for wave-
lengths A. larger than the critical correlation
length $„which increases indefinitely on approach-
ing the transition point. For X & $ a phenomenolog-
ical description (dynamical scaling) '" is possible,
which, as static scaling, rests on the fact (or as-
sumption) that there is only one length determining
the critical behavior and that therefore suscepti-
bilities, eigenfrequencies, etc. , have to be homo-
geneous functions of X and $. In the present paper,
no discussion of the critical behavior is given.

Concluding this section we would like to eluci-
date shortly the absence of coupling between the
equations of Mq, X-', I',»", and those for S~. If
the Hamiltonian contained terms of the type S'S',
which, of course, would violate conservation of

g Si, the transverse components would be coupled
to the energy density. Another possibility is that

g Sf is conserved but the ground state has differ-
ent symmetry, as in a planar ferromagnet (e. g. ,
(S")40). Then the transverse components and

Mq are coupled. Halperin and Hohenberg' have

derived hydrodynamic equations for a planar fer-
romagnet in analogy with two fluid hydrodynamics.

VI. APPLICATIONS: NEUTRON AND BRILLOUIN
SCATTERING

In this section, we shall determine the range of
validity of this theory and the conditions for the
observability of the second magnon.

A. Relaxation Rates

In order that the present theory be applicable
to real systems dipole forces, interactions with
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phonons and impurity scattering have to be negli-
gible. Dipole forces violate the conservation of
the g component of the magnetization. If the di-
pole relaxation rate is much smaller than the ex-
change-collision rate, one may neglect dipole
forces compared to the exchange forces as we

have done. This requirement gives the following
condltlon

T»JS {gIJ,eMO/Js) i" . (6. 1)

(d))(&(JS/hs ) (T/JS) 0. 001 . (6 4)

One obtains the same order of magnitude for the
relaxation time of a thermal magnon. Accord-
ing to Sec. IV, Eq. (4. 7), we have the condition
cq «ur„. Combining this with (6. 4) and using
(C6) for the sound velocity, we arrive at an upper
limit for the wave number

aq«(T/Js)"' s ' lo-' (6. 5)

In order to find the condition for the existence
of a frequency window (Sec. IV) we have to calcu-
late (()& given by (3. 55). It is extremely delicate
to make a reliable analytic estimate of &uJ, . A
possibly rough estimate gives

(T/Js)-)( e 2&un)n/2)i r (6.-)

where y & I and x is of order 1. The vector ka
lies at the bounda, ry of the first Brillouin zone.
For fcc lattices with nearest-neighbor interaction
one finds for the frequency at ~ kz and for the
Debye temperature

(d(~ k~) = 8JS, TD= (d(k~) = 16JS. (6. 7)

Here we used the full dlsperslon relation fol" R

In the temperature region determined by condition
(6. 1), phonon-magnon processes also are much
slower than the exchange processes. "'"'

An average exchange collision rate is given by

(o„= (2w/@ [V/(2 )v']' ,' J' "-d'k, ~ ~ ~ (I'k,

x [2(Ja'/iv)k, k, ]'~(k, +k, -k, -k, )

x 5(E„,+ E„,—E„,—E)(4 )

x n{k,) n(k, ) [n(k, )+ 1] [n(k,)+ I]/f d'kn(k),
(6. 2)

where we have extended the integration to ~ and
used the small k form of the interaction potential.
The energy E» is given by Eq. (C4) and n(k) is the
Bose distribution function [exp{PE~+n)- I] '. Be-
cause of the inequality n(k;) &e )'(i, one ob-
tains the following lower limit for the collision
frequen cy:

e„&(JS/L) )(T/Js) [15e /2 M2v I" i (u)] .
(6. 3)

For @=0, one finds

1 91 Q
4 9 S$$

{6.9)
The wa, ve numbers of the incoming and outgoing
neutron are k~ and k&, the momentum transfer is
q. The dynamic form factor is defined through

P Q„jdfe f~(,'-& t')(f(

l &(SI-&SI&)(Sfo-&S &)& . (6. 10)

It is related to the imaginary pa, rt of the dynamic
susceptibility by the fluctuation dissipation theo-
1em:

fcc lattice with nearest-neighbor interaction, "
w(k)=sr()& — Z e""), (8. )))

and kD = (2v/a, 0, 0). Condition (6. 5) gives qa
&10 S, 1.3&&10 'S, 0. 53S for T equal to
JS, 4JS, and 648, respectively. If, in expression
(6. 6) for ~p, the factors in front of the exponential
function are about 1, there is an appreciable
frequency window for these temperatures. The
lower limit in T set by condition (6. 1) is typically
of the order 10 'JS or smaller for insulating fer-
romagnets. At these temperatures, the hydro-
dynamic q space is so small that it can scarcely
be detected by experiment.

It must be emphasized that for temperatures of
the order of JS and higher, Eqs. (6. 4) and (6. 6)
are no longer reliable and can at best give a very
crude estimate. In place of these values, numer-
ical evaluations of (3. 55) and of the transport co-
efflclents should be used.

Ideal insulating ferromagnetic substances are
the europium chalcogenids' (EuO, EuS, etc. ). If,
with the above reservations, one applies our esti-
mates to EuO [fcc, a = 5. 14 A, S= —'„JS=5. 4 '

K,
Mo= 1910 G, T,= 69'K] one would expect to find
the second magnon for temperatures 5, 20, and
30 K, respectively, in the following q ranges:

[0, 1.6&10 ], [4xlo, 2xlo ],
[5&& lo ', o. 6&: lo ']A '.

The expected velocity is c,= 1.5x 10' cm/sec. Im-
purities, dislocations, etc. , can constitute a serious
problem. Even elastic impurity scattering dissi-
pates momentum and gives rise to a term —vl P,
in the equation of motion for the momentum. The
sample ha, s to be pure enough so that ~I « ~~; then
(io IPq can be treated on the same 1.eve l as ~pPq

B. Neutron and Brillouin Scattering

An ideal probe for measuring the excitations of
a magnetic system is neutron scattering. The in-
elastic scattering cross section for unpolarized
neutrons is given by'
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8 (q, m) =(1—e ") X""(q,m) = (T/&o) X""(q,&) .
(6. 11)

The second identity is valid in the hydrodynamic
regime.

As is seen from (6. 9) the scattering cross sec-
tion is a superposition of transverse S""(q, v)
= S"(q, u&) and longitudinal S"(q, v) dynamic form
factors. If the window condition is met, the longi-
tudinal form factor contains the second magnon
and a diffusive mode, and is given by Eq. (4. 13).
In the opposite case if cq ~ &u~, S"(q, ~) is purely
diffusive [regions (ii-iv) of Sec. IV]. In a perfect
single crystal without domains one could isolate
S"(q, v) by measuring do/dQd&u for q in the
[1,0, 0] and [0, 0, 1] directions and subtracting half
of the latter from the former. By applying an ex-
ternal field, one could eliminate domains and shift
the transverse modes to higher frequency.

At this point we want to discuss the effects of an
external magnetic field. First, it reduces (d~ and
the hydrodynamic q space, because the population
of thermal magnons becomes smaller. This effect
makes itself felt for H & k~T/gps. Second, ac-
cording to the estimates of Appendix C the rela-
tive strength of propagating modes to diffusive
mode increases. Third, the static longitudinal
susceptibility decreases, which enters as a factor
in S"(q, v). If one applies the simple magnon
model of Appendix C one finds an acceptable value
for the field given by 10 ~ gpaH/ka T~ 1, which at
20 'K gives 10 G H-10'G. For comparison with
experiment more realistic values for the thermo-
dynamic derivatives should be taken.

A further experimental check of the present
theory could be possible with Brillouin scattering.
For this purpose one needs a transparent ferro-
magnet, an example of which is EuzSiQ4. Also
CrBr3 transmits light in two bands, one in the red
and one in the green. This uniaxial ferromagnet
crystallizes in a hexagonal layer structure. Using
the values '

J,S = (1.491 + 0. 039) 'K, J, ,S = (24. 75 + 0. 3) 'K,
one sees that the surface of constant spin-wave
energy is an ellipsoid which is very prolate along
c and which touches the zone boundaries for ener-
gies of about 5'K. For higher energies the sur-
faces of constant energy are cylinders„The mo-
mentum relaxation rate ~J,~ is highly anisotropic.
There are many umklapp processes in the e direc-
tion but the relaxation rate for momentum orthog-
onal to the c axis co~ will still be small for a tem-
perature of 10 to 15 K.

Besides the high purity required of the sample,
the main difficulty for an observation by neutron
scattering is at present time the low momentum

We thank Dr. M. Sangster for careful reading
of the manuscript.

APPENDIX A: THERMODYNAMIC RELATIONS

Here we want to compile thermodynamic rela-
tions needed in the main text. The thermodynam-
ics of the ferromagnet is generalized so as to
treat the volume as a thermodynamic variable. It
is shown that the pressure defined through the
trace of the momentum-flux operator is identical
with the volume derivative of the internal energy,
neglecting terms of the order e

The density matrix of the system is

p = & exp[ —P (sc —Hgp Z Sf)] (Al)

where Z is the partition function

Z = e ' = Tr(exp[- P(Z'- Hgp, gS-', )]) . (A2)

If there are single-ion terms or any other internal
interactions which do not violate the conservation
of ZSy we include them in K' . The thermal ex-
pectation value of any operator 0 is given by

(o) =Tr(po) .
The internal energy, excluding the interaction
with the external field,

(A4)

and the magnetization in the z direction,

M =gPap; (S, I), (A6)

is related to the entropy by

TS =- —T(lnp) = —I" + I)' —HM.

We also note the differential relation

dV= TdS +HdM=—TdS +Hd(M —Mo) .

(As)

(A7)

Differentiating (A4) and (A5) gives for the q= 0
static susceptibilites

(AS)

For variations of long wavelength such that the sys-
tem is in local equilibrium, the fluctuations in en-
ergy, magnetization, temperature, and field are
related through

|)U(q) = — 5P(q) + — 5H(q),
8U 8U
8 p ~ 8II

transfer. One may hope that this will be accessi-
ble to high-flux reactors.

ACKNOWLEDGMENT
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6M(q) = —6p(q) + 6H(q) . (A11)
8M eM

This implies

sp))=( -) sv)) (
—

) tM))( '

)
(A12)

Application of the identity

s(U, M) =T(-&56o 50o) &Mo Mo)+&56o, Mo) )
g 2

(A13)

(A19)

Using (A8 —A10), (A14), (A17), and (A19), expres-
sion (3. 51) for c4 may be written in the thermody-
namic limit as

c4=(Vp TC„v) i T S —(Mo —M)
M-Mp, 7'

and from the Duhem-Gibbs identity (A17) we get

tend the summation from —~ to +~, committing an
error of order e a . Employing Eq. (A18) one
finds by straightforward differentiation

P=)P +O(e &i ) .

where C„=T(S S [8T)„ is the total specific heat at
constant magnetization, gives for the normalization
factor in (3. 13) Similarly, one finds

-1/2

(A20)

d(0)= TC„( ) (A14) (A21)

Comparison of Eqs. (A12) and (3. 13) shows that the
nonequilibrium expectation value of X~ is related
to the variation of the normalized temperature

- -1/2
p eV

and for c, =
P S0M MPg

(A22)

6x,'= &x~4)„„„„&x~4)
= —(T'C„)'~' 5P(q) = (C„/T)'~' 5T(q) . (A15)

The Hamiltonian of the ferromagnet contains a pa-
rameter, the volume V. So far we tacitly kept this
parameter constant. However, it is useful to take
V as a thermodynamic variable and to introduce the
conjugate force, the pressure

(A16)

Thus, we have

dU= TdS —6 dV+Hd(M Mo)- (A7')

As usual one can derive the Duhem-Gibbs identity

APPENDIX B: ANISOTROPIC EXCHANGE INTERACTION

We quote the modifications which arise from an
anisotropic exchange interaction. We assume that
the Hamiltonian (3. 2) contains an additional term,

hZ= —
2 Q b J„(l -1') S) S(. , (al)

lal

where AZ„(1 -1) is such that it favors ferromag-
netic ordering in the z direction. One finds the
following additional terms to the currents:

g~Mof 0

1 ~ -&&/'2&& (y-+g"")
e

27, 'f' T"

U=S T —a'V+H(M Mo) . — (A17)
x(X; -X;„)'~Z„(1"-1')Z(1 —1')

8)) B(3C' gp MD))
~N a eN~a

(A18)

The volume change is to be understood as a change
of N; the lattice constant a remains constant.
The Hamiltonian (3. 33) depends on N through the
factor 1/N and through the Fourier-transformed
exchange constant which we write explicitly as

Z(k) =Z(g v~/N ) —.
The operators ak =-a"„, of course, contain no N-de-
pendence. The summation over v extends from
——,'N to —,'N . For low temperatures one may ex-

We shall now demonstrate that the expectation value
of the momentum flux tensor PV [Eq. (3.40)] is
identical to the thermodynamic pressure [Eq.
(A16)] neglecting terms of the order e n~ . First
of all we note the identity

x (- S&,.Sj S~&. +S1~„S Sj,),
(gg 1r lip = —— Z (kg- k4)' 8 b J„(kg —k4)

~ ~ ok4 ek

xh (q+k, +ka —ko —k4)a- a- a"„a„-
3

(H4)

1 ~ rv

ha~ = ——Z A J„(k~—k4) &(q+k&+ka —ks —k4)
0 0 0$

Xg'(k, +ka —ko —k4+q) a a a a . (B5)
k1 k2 k3 k4

The decomposition of the currents in its conserved
and in its nonconserved parts is still given by
(3.46), (3.47), and (3.49). The structure of the
hydrodynamic equations remains unchanged but in
the calculation of the coefficients the new thermal
expectation values and the new currents have to
be taken.
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APPENDIX C: LOWEST-ORDER MAGNON MODEL

where F,(n) is the generalized f function

F,(n) = [I/I (c)]J dx [x ' '/(e"" —1)],
and a is the reduced magnetic field

Q =Hgi/, s/T

(C2)

(C3)

The quantity 0 is just the Gibbs potential of an
ideal Bose gas with energy spectrum

Z~= JS(ka) -=Dk = (5'k)2/2m . (C4)

Only the momentum fluctuations can not be derived
from I". For an ideal magnon gas one readily finds

Vp5" = (Eg, Pf) = m(/)f, m) 5"'—. (C5)

Herewith we get for the velocities (4. 11) or (4. 13,'

C3 = [TE3/2(Q)/m E1/2(Q)]
(C8)

c,= [T 5F, /(ao) /m3F3/2(n)]'

In this approximation the residue of each one of the

propagating poles in S" (q, &o) is
1 T(g~ )2 (y T1/2/8v 3/2 g)3/2)

& (3E',„/10E„,), (C7)

and of the diffusive pole,

Ri= ~ T(g pa) (I/T' /8v &' ) (E,/a —
g E,/a/Eg/2) .

(C8)

For a Heisenberg model with nearest-neighbor
interaction one may use Dyson's expression for
the free energy [Eq. (131) of second paper] to find

the velocities c3, c4 in the hydrodynamic equations.
For more complex situations an empirical expres-
sion for the free energy could be used to find the

necessary thermodynmaic derivatives. In order to
demonstrate the principal features we take only the
lowest-order(Bloch) term of Dyson's expansion.
The free energy for a cubic system with exchange
constant J then reads

E= —[I/T"'/(JSa')' ' 8w' '] E (o.) -AM
(Cl)

0~

In order to get some estimate for the diffusion
constants, we evaluate the Kubo formulas by a re-
laxation time approximation for the currents

jpf(t)=j g(0)e "i', r=(o (co)

which implies that

Iim ,'P J —dt(,'Jjg-(t), j~"(0)]),e'"'

=p7(-. [j (0) j (0)]), . (C10)

f/"= (Tr/m) ', (7E,/—, 5F', /, /—F,/, )

x (5F5/2 3E3/2 /El/2) 1

g = [(TY'/m) E5/a]/Es/2 ~

(C11)

The other diffusion constants are different from
zero only if one includes interaction or nonquadra-
tic terms in the dispersion.

We calculate now the q-dependent sound veloci-
ties of Sec. V [Eq. (5.4)]. Using (5. 2), (Cl), and

(C5) in Eqs. (3. 50) and (3. 51) we find

c,(q) = [TE,/, (o.)/mph ' '] '/' (n q'/T) ' '+ O(q'/')

c4(q) = [T 5E,/, (o.)/m 3E,/, (o.)]'/'

x (I —[3E,'/, (a)/10 yv '/'F „,(n) ]

x (nq'/T) '/')+O(q'),

c,(q) = [T 5E, /(n) /m3E, /, (n)]'/'+O(q') .

(C12)

From these values in conjunction with Eq. (5. 2)
we obtain for the strength of each one of the propa-
gating poles in S"(q, &o) again R, given in Eq. (C7).
The strength of the diffusive pole is Ay = 2 T p, '—
——R1

2

In the equal-time correlation functions (C10) only
the quadratic contributions to the currents are re-
tained, and the resulting four-point functions are
factorized. The constant given by the equal-time
correlation function yields only an order-of-mag-
nitude estimate. In the case of a gas these approx-
imations reproduce the results of the kinetic theo-
ry. One finds for the thermal diffusivity and the
viscosity
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Raman Spectra and Mode Frequency Shifts of Ferroelectric Sodium Nitrite

at 77 and 294'K
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The Raman spectra of the noncentrosymmetric biaxial sodium nitrite (NaNO&) single crys-
tal at 77 and 294'K are presented. No major difference between the two spectra is observed,
indicating that the recently reported phase transition at 178'K from thermal-expansion mea-
surements does not appear to change the crystal symmetry. Frequencyshiftswereobservedwith
changes in the phonon wave-vector orientation for all five asymmetric 8 modes. The fre-
quency shifts of the asymmetric internal vibrational B&{x) mode of the NO2 molecular ion were
examined in some detail.

INTROD UCTION

Very little work has been done on the study of
noncentrosymmetric biaxial crystals by Raman
spectroscopy. The lack of theory, as well as the

birefringence, makes the analysis of the data dif-
ficult at best. Ferroelectric sodium nitrite is one
of the simplest orthorhombic biaxial crystals con-
sisting of one molecule, four atoms, per primitive
unit cell. The limited number of normal modes


