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A first-principles self-consistent orthogonalized-plane-wave energy-band calculation has been
performed for cubic BeS, BeSe, and BeTe using a nonrelativistic formalism and Slater's free-
electron-exchange approximation. These are the first energy-band solutions reported for these
compounds. No experimental data are available concerning the energy bands or optical proper-
ties of these semiconducting compounds. The imaginary part of the dielectric constants, spin-
orbit splittings, effective masses, and x-ray form factors (Fourier transforms of the electron
charge density) have been calculated.

I. INTRODUCTION

The beryllium compounds (BeS, BeSe, and

BeTe) are II-VI compounds which form in the
zinc-blende (cubic) structure. These compounds
have not been studied experimentally except for
the work of Zachariasen' on BeS, BeSe, and BeTe
and Staritzky on BeS. Zachariasen demonstrated
that these compounds crystallize in the zinc-blende
structure and measured their lattice constants.
Staritzky confirmed Zachariasen's work on BeS.
The very high toxic hazard ratings of the beryllium
compounds is the primary reason for the lack of
research on these compounds.

The purpose of this paper is to report for BeS,
BeSe, and BeTe a theoretical calculation of the
band structure, the imaginary part of the dielec-
tric constant (e2) derived from the theoretical
bands, spin-orbit splittings, effective masses,
and the form factors (the Fourier transforms of
the electron charge density). This is the first
work, either experimental or theoretical, reported
on the band structure and optical properties of
these compounds.

In the past few years, a great deal of success
has been attained in calculating the energy-band
structures of III-V, II-VI, and IV compounds using
an unadjusted first-principles self -consistent
orthogonalized-plane-wave (SCOPW) model devel-
oped at Aerospace Research Laboratories. The
SCOPW programs used to calculate the electronic
band structure have given very good one-electron
band energies for tetrahedrally bonded compounds
when Slater's exchange is used. '

II. CALCULATIONAL DETAILS

A. Self-Consistent OP% Model

The orthogonalized-plane-wave (OPW) method
of Herring' is used to calculate the electron en-
ergies. In the SCOPW model, '& the electronic
states are divided into tightly bound core states

and loosely bound valence states. The core states
must have negligible overlap from atom to atom.
They are calculated from a spherically symme-
tr ized crystalline potential.

The valence states must be well described by a
modified Fourier series

(~) Q ~ [n 1/2sik~ ' I'

-Q, e' ~ "~A;, if~, (F-R,)],
where k~ = k0+ K~, k0 locates the electron within the
first Brillouin zone, K~ is a reciprocal-lattice
vector, R, is an atom location, g, is a core wave
function, and no is the volume of the crystalline
unit cell. The coefficients A. ',~ are determined by
requiring that g» (r) be orthogonal to all core-

.0state wave functions. The variation of B~ to min-
imize the energy then results in the valence one-
electron energies and wave functions.

The dual requirements of no appreciable core
overlap and the convergence of the valence wave-
function expansion with a reasonable number of
OPW's determine the division of the electron
states into core and valence states. For Be, the
ls state (for S the 3s and 3P states, for Se the
4s and 4p states, and for Te the 5s and 5p states)
are taken as the valence states. OPW series
convergence is discussed in Sec. II B.

The calculation is self-consistent in the sense
that the core and valence wave functions are cal-
culated alternately until neither changes appre-
ciably. The Coulomb potential due to the valence
electrons and the valence charge density are both
spherically symmetrized about each inequivalent
atom site. With these valence quantities frozen,
new core wave functions are calculatedanditerated
until the core wave functions are mutually self-
consistent. The total electronic charge density
is calculated at 650 crystalline mesh points cover-
ing 2'4 of the unit cell, and the Fourier transform
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of p(r)'~' is calculated. The new crystal potential
is calculated from the old valence charge distri-
bution and the new core-charge distribution. Then
new core-valence orthogonality coefficients A;„
are calculated. The iteration cycle is then com-
pleted by the calculation of new valence energies
and wave functions. The iteration process is con-
tinued until the valence one-electron energies
change less than 0.01 eV from iteration to itera-
tion.

The appropriate charge density to use for both
the self -consistent potential calculation and the
form-factor calculation is the average charge
density of all the electrons in the Brillouin zone.
In the present self-consistent calculations, this
average is approximated by a weighted average
over electrons at the I', X, I, and W high-sym-
metry points of the Brillouin zone shown in Fig.
1. The weights are taken to be proportional to
the volumes within the first Brillouin zone closest
to each high-symmetry point. The adequacy of
this approximation has been tested and the error
in the energy eigenvalues has been shown to be
less than 0.1 eV. '

The present self-consistent model approximates
the complicated Hartree-Fock exchange potential
by a term proportional to the electron charge den-
sity to the 3 power. The best-known exchange
potentials are Slater's' (S),

V»a = —6[(8/8z) p(r)]' '

and those of Kohn and Shamo and Gaspar's' (KSG),

V» Kao = —4[(8/8m) p(r)]' '

We have tried different constants of proportion-
ality. When calculating the energy-band structure
of tetrahedrally bonded semiconductors with our
SCOPW model, we have found that the S exchange
always gives results that agree most closely with
experiment. The many-body work of Hedin, S.

FIG. 1. Zinc-blende Brillouin zone with high-sym-
metry points labeled.

Lundqvist, B. Lundqvist, and co-workers sup-
ports the choice of a constant factor multiplying
the exchange term. " To give a feeling for which
transitions are most sensitive to the value of the
exchange constant, both S and KSG energies will
be given for selected high-symmetry point values.

In order to calculate the absorptive part of the
dielectric constant &~, a pseudopotential fit is
made to the relevant energy levels at the I', X,
I, and W points. The pseudopotential technique
is then used to calculate energy differences and
transition matrix elements throughout the Brillouin
zone ~

' In our experience, this procedure gives
the &z peaks at the correct energies. However,
the relative peak heights do not match experiment
because of their dependence upon the poor pseudo-
potential wave functions, and because of compli-
cated electron-hole and electron-phonon interac-
tions which are ignored in our model.

One way of taking relativistic effects into ac-
count within the framework of nonrelativistic band
calculations is with first-order perturbation the-
ory. The perturbing Hamiltonian obtained for the
spin-orbit splitting is

a,.= --,'fq'o" [vV(r) &&v],

where V(r) is the potential, o' is the Pauli spin
operator, and q is the fine-structure constant.
The I"»„SCOPW valence wave functions are used
in this calculation.

8. OPW Series Convergence

A major problem involved in an OPW calculation
of these beryllium compounds is the slow conver-
gence of the OPW series expansion of the valence
and conduction wave functions. In the OPW ex-
pansion, all k vectors are used whose magnitudes
are smaller than some value k,„. The minimum

distance that can be defined by the plane-wave
terms in the OPW series is roughly

d,„=-,'X,.= m/ ,»„=a/ (m2' ++n)f"',
where a is the lattice constant and (m, n, l) are
integers defining the largest k vector. The depen-
dence of the BeS, BeSe, and BeTe valence- and

conduction-band energies upon d,„are shown for
an OPW model in Figs. 2-4. For the convergence
study, Herman's overlapping-free-atomic-poten-
tial (OAP) model ' is used in which the potential is
calculated from free-atom charge densities which

are packed in the crysta, l lattice. It has been
shown Chat the convergence of the SCOPW model
is similar to that of Herman's OAP model. ' The
cation (Be) and anion (S, Se, and Te) core-charge
densities [4' p(r)] are also shown in the figures.

It has been shown, using this OPW model, that
the series convergence depends upon two factors. 14
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FIG. 2. Convergence study of non-self-consistent
energy levels at I' point for BeS.

FIG. 4. Convergence study of non-self-consistent
energy levels at I' point for BeTe.
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One is the relative core size of anion and cation.
d, „depends upon the lattice constant which de-
pends upon the sum of anion and cation core sizes.
The penetration into the smaller core is thus least
when the core-size ratio is most extreme. It is
clear from the figures that these beryllium com-
pounds have a, fairly extreme core-size ratio (es-
pecially in the case of BeTe), and thus a relative-
ly poor penetration into the Be core. The second
factor involves the presence or absence of core
wave functions in the symmetrized OPW's. If no

core wave functions are present in an OPW expan-
sion, it becomes a pure plane-wave expansion
(Fourier series), with consequently poorer con-
vergence. Be has no P states in the core, and thus
the l"»„wave function contains no Be core states
to aid convergence. The only saving factor is that
I »„convergence depends much more critically
upon penetration into the anion than upon cation
penetration. It can be seen from the figures that

convergence of the energies is reasonably good by
459 OPW's. We estimate a maximum uncertainty
of 0. 3 eV in our SCOPW results due to lack of
OPW convergence.

III. RESULTS

In the SCOPW model, the input data consist of
the crystal symmetry, the nuclear charge of the
cation and anion, the lattice constant, and the ex-
change constant. The lattice constants used in
these calculations are given in Table I.

The energy bands for the three compounds based
on the S exchange a.nd 459 OPW's at I' (and a com-
parable number of OPW's at X, L, and W) are
given in Figs. 5-7. The energy eigenvalues are
given in Table II for BeS, BeSe, and BeTe using
Slater's exchange and for BeS using the Kohn-
Sham exchange. The Kohn-Sham results are only
shown to indicate the effect of changing the ex-
change constant.

These compounds all have indirect gaps. The
minimum in the conduction band occurs at X or
along the I'-X line near the X point. The next
lowest conduction-band minimum occurs at the I.
point in these compounds. The third minimum in
the conduction band occurs at the I" point. The I'
and L point minimums are close to each other in
energy but much higher than the minimum which
occurs along the I"-X line. The indirect gaps are

20
f'iv

-54

-56 TABLE I. Lattice constants used in SCOPW band
calculations. The lattice constants are given in A.

.5
551 259 113 65

941 339

1.5
27

2.0 r(a, u. )
4C OPW'S

FEG. 3. Convergence study of non-self-consistent
energy levels at 1 point for BeSe.

Crystal

BeS
BeSe
BeTe

Lattice constant

4. 8624 (Ref. 2)
5.139 (Ref. 1)
S.626 (Ref. 1~
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FIG. 5. SCOPW energy-band structure of BeS. The
solid dots denote SCOPW energy levels. The solid lines
were obtained by fitting a pseudopotential-type interpo-
lation scheme to the SCOPW energy levels.
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FIG. 6. SCOPW energy-band structure of BeSe. The
solid dots denote SCOPW energy levels. The solid lines
were obtained by fitting a pseudopotential-type interpola-
tion scheme to the SCOPW energy levels.

BeS 4. 17 eV occurs at X point

BeSe 3.61 eV occurs at X point

BeTe 2. 89 eV occurs at 0.84 distance
from I' to X point

The imaginary part of the dielectric constants
(&,) are given in Figs. 8-10. The location of
some of the major transitions are also indicated.
The shape of the &, curves are very similar to
other cubic group II-VI, IG-V, and IV compounds.
Generally there are three peaks, the first due to
transitions closely related to the I &,-L,„transi-
tion. This peak is usually small and obscured by
the second peak which is very large. The second
peak originates in the outer part of the zone (U-

FIG. 7. SCOPW energy-band structure of BeTe. The
solid dots denote SCOPW energy levels. The solid lines
were obtained by fitting a pseudopotential-type interpo-
lation scheme to the SCOPW energy levels.

TABLE II. Self-consistent energy eigenvalues for
cubic BeS, BeSe, and BeTe based on Slater's and Kohn
and Sham's exchange and a four-point (I', X, L, and W)

zone sampling. 459 OPW's were used at I' and a com-
parable number of OPW's at X,I, and W. The zero of
energy has been placed at the top of the valence band
(I'&5„). All entries are in eV.

Level
BeS

Slater Kohn and Sham
BeSe

Slate r
BeTe

Slater

~15C
I'~c

I"~s

X3c
Xgc
X5„
X3v

X)v
Xg -X5„
X~ -X)„
L3C
I (C

I-iv
LS -Lav
L ic-&3v
W2C
W'3

lV3v

W~
W')v

W4v

W3 -W3v

6.50
6.14
0.0

13033
5.76
4.17
2 033

—4.59
—11.41

6.50
8.09
7.45
5.99

—0.91
—5.22

—11.89
8.36
6.90
9.09
7.20

—2.87
—3.39
—3.93

—11.38
10.07

5.43
5.52
0.0

—13.54
4.57
2.60

—2.75
—5.18

—11.25
5.35
7.32
6.27
5.20

—1.07
—6.01

—16.82
7.34
6.27
7.74
6.05

—3.54
—4.06
—4.35

—11.18
9.59

5.61
5.02
0.0

—13.36
4.80
3.61
2 037

—4.71
—11.66

5.98
7.17
6.63
4.88

—0.96
—5.22

—12.09
7.59
5.84
8.12
6.81

—2.88
—3.39
—4.12

-11.63
9.69

4.19
4.89
0.0

—11.46
3.17
2.94

—2.35
—4.75
—9.59

5.29
5.52
5.18
3.77

—0.99
—5.08

—10.10
6.17
4.76
6.21
5.87

—2.81
—3.30
—4.27
—9.56

8.68

lf) region and is usually straddled by the X&,—

X~„and X3,-X,„transitions. The third peak is due
to transition closely related to the L„-L,v transi-
tion.

Effective masses have been calculated for the
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top valence band (where spin-orbit splitting has
been neglected) at the I' point for both the heavy
and light hole in the [1,0, 0] and [1,1, 1] direction.
The electron effective mass at the minimum in
the conduction band has been calculated in the
[1,0, 0] direction. These effective masses are
presented in Table III.

The spin-orbit splitting at k = 0 of the top I'»„
valence band into 1"7 and I', bands has been found

by use of first-order perturbation theory on the
self-consistent Slater I"»„wave functions. The
calculated values are presented in Table IV.

In Table V, theoretical Fourier components of
the charge density (the x-ray form factors) are

BeSe

CC
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K

N
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-"sv

I

3.00.0 6.0 9.0
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FIG. 9. Theoretical e 2 curve for BeSe with the lo-
cation of the high-symmetry point transition shown.

(eV)

FIG. 10. Theoretical e2 curve for BeTe with the lo-
cation of the high-symmetry point transition shown.

given. The Fourier components in the column
headed RHF are obtained by the superposition of
relativistic Hartree-Fock free atoms placed in
the crystalline lattice. The columns are headed
with the exchange potential used in the SCQPW
model. From the BeS form factors in Table III,
it can be seen that for the high reflections, the
RHF results agree with the results obtained using
Kohn and Sham's exchange potential. This good
agreement illustrates the well-known result that
the Kohn-Sham wave functions are very good for
free-atom calculations. It has been found that for
the low reflections, the RHF -results are generally
too small in semiconductors. The opposite result
applies in metals where the valence charge spreads
out. It has been found that Slater results generally
give slightly better agreement with experiment
for lower reflections. '

TABLE III. Effective masses for the top of the va-
lence band (where spin-orbit splitting has been neglected)
at the I point [calculated in the [1,0, 0j and the [1,1, 1)
directions] and for the bottom conduction band at the
I'-X minimum (calculated in the [1,0, 0] direction).

m„at I'-X
minimum
in [1,0, 0j
direc tion

m„'at r
in [1,1, 1]
direction

Heavy Light
hole hole

fnv at I'
in [1,0, 0]
direction

Heavy Light
hole hole

BeS
BeSe
BeTe

0.7
0.6
0.7

0.4
0.3
0.5

1.7 0.3
1.3 0.2
1.2 0.3

1.0
1.2
1.4
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TABLE IV. Spin-orbit splitting of the 1 &5„level
(I', —r,) calculated by first-order perturbation theory
using the self-consistent wave functions. All energies
are in eV.

BeS
BeSe
BeTe

0.11
0.57
0.79

IV. CONCLUSIONS

These results are based almost completely on
first principles with no adjustment to fit experi-
ment. The only experimental datum used is the lat-
tice constant. Slater's exchange approximation
is made. The use of this approximation is sup-
ported by our experience on many tetrahedrally
bonded semiconductors and by the many-body work
of Hedin, S. Lundqvist, and B. Lundqvist. Their
work indicates that Slater's approximation includes
the effects of correlation. Relativity has been
neglected. Changes due to relativity are expected

to be insignificant for BeS (0.1 eV), small for
BeSe (0.2-0. 4 eV), but significant for BeTe
(0.4-1.0 eV).

The validity of the theoretical results presented
in this paper depends upon the applicability of
Slater's exchange approximation, the validity of
the SCOPW model, the size of the relativistic
shifts (especially for BeTe), and the convergence
of the wave-functions expansions. Past experience
on many tetrahedral compounds gives us consid-
erable faith in the validity of these results.

It is clear from this work that these compounds
have tremendous potential if the toxic-hazard
problem can be overcome. The need for experi-
mental investigation on these compounds is evi-
dent.
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TABLE V. Theoretical BeS, BeSe, and BeTe structure factors in electron per crystallographic unit cell. The RHF
values are relativistic free-atomic Hartree-Fock results. KS and S refer to the use of the Kohn-Sham-Gaspar or the
Slater exchange approximation. 459 OPW's were used in the wave-function expansion.
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Spontaneous-Raman-Scattering Efficiency and Stimulated Scattering in Silicon(

J. M. Ralston and R. K. Chang*
Dunham Laboratory, Yale University, Nezv Haven, Connecticut 06520

(Received 5 March 1970)

The absolute spontaneous-Raman-scattering efficiency and linewidth of the 521-cm optical
mode of silicon have been measured at 77 K using a continuous laser (Nd in yttrium aluminum
garnet) operating at l. 064 pm. The measured scattering efficiency (5.1 x10 /cm sr for un-
polarized forward scattering along the crystal [111] direction) and narrow linewidth yield a
calculated value of the stimulated Raman gain coefficient which is considerably larger than
those reported for other media, both solid and liquid. Stimulated Raman scattering in Si at
77 K has also been observed using a focused multimode Q-switched YAG: Nd laser. Inaccuracy
in the measured stimulated gain resulted mainly from the uncertainty in the effective focal vol-
ume inside the silicon. Multiphoton absorption at the incident laser frequency has been con-
sidered and found to modify the measured stimulated gain by a significant amount. The esti-
mated gain from the stimulated Raman effect was found to be in satisfactory agreement with
that calculated from the absolute spontaneous-Raman-scattering efficiency.

I. INTRODUCTION

The near equality of the 1.064- p. m laser photon
energy (1. 165 eV) to the indirect energy gap
(Fz,-6,) of silicon (1. 1V eV at 0 K) suggests the
possibility of resonant enhancement of the Raman
scattering from the 521-cm optic mode when the
sample is cooled to 7'7 K and below. Previous in-
vestigators, using laser radiation to which silicon
is opaque, have obtained values for the Raman-
scattering efficiency of silicon relative to other
media. Russell, using reflection techniques and
a 0. 6328-p, m laser, obtained aratio of 35 for the
scattering efficiency of silicon relative to diamond,
but did not analyze his results in terms of crystal
orientation and laser polarization. Parker et al. 2

have reported measurements of silicon's scattering
intensity relative to that of germanium, using a
0. 488- p, m laser to which both crystals are opaque.
Using general estimates for relevant parameters
such as the deformation potential, Loudon has
suggested the scattering efficiency of homopolar
semiconductors to be 10 8-10 '/cmsr. Most re-
cently, Mooradian has given a value of 5x10
cm 'sr ' for the scattering efficiency of silicon
using a 1.06- p. m laser (Nd in yttrium aluminum
garnet), and gallium arsenide as a reference medi-
um.

We have measured with a continuous YAG: Nd

laser and with due attention to crystal orientation
and polarization, the spontaneous-Raman-scatter-
ing efficiency of silicon relative to liquids whose
absolute scattering cross sections areknown. ' The
fact that silicon at 7'7 K is transparent to the
YAG: Nd laser(o. = 0. 034 cm ') and the Stokes radi-
ation (o. = 0. 008 cm ') allows an accurate measure-
ment of the scattering efficiency. That is, the un-
certain effect of surface condition on Raman-scat-
tered intensity is not as important as in the case
when the crystal strongly absorbs the incident ra-
diation. We have also observed stimulated Raman
scattering using a focused multimode Q-switched
YAG: Nd laser. The experimental arrangements
for the spontaneous and stimulated scattering will
be discussed in Sec. II. In Sec. III, the stimulated
Raman gain coefficient will be calculated from the
spontaneous-Raman- scattering eff iciency and com-
pared with that estimated from the stimulated-Ra-
man- scattering data.

II. EXPERIMENT

Spontaneous Scattering

A continuous YAQ: &d laser of approximately
2-W output of unpolarized radiation is weakly fo-
cused into the silicon sample, 1. 3 cm in length,
cooled to 7'7 K in a cold-finger Dewar. The silicon,
of high purity ( & 10000 Qcm), was mounted with


