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The thermodynamic potential of a metal in the presence of a weakly nonuniform magnetic
field of induction B(r) is evaluated. The calculation is a mean-field theory for the interac-
tion between the magnetization at different points in the metal, and is restricted to magnetic
field strengths for which the Fermi energy is large compared to the separation between
I.andau levels. An integral equation for the spatially varying part of the magnetic induction
is obtained by minimizing the appropriate thermodynamic potential of the system. The sol-
ution of this integral equation is studied. Both domain-type and magnetization-density-wave
solutions can be obtained for appropriate Fermi surfaces. The nature of each of these sol-
utions as discussed.

I. INTRODUCTION

There has been considerable interest recently in
the effect of the magnetic interactions among the
conduction electrons on diamagnetism in metals.
This problem first arose with the study by Shoen-
berg' of the wave shape of de Haas-van Alphen
oscillations in silver. Shoenberg suggested that
the magnetization M of the real metal as a function
of the magnetic field strength H could be approxi-
mated by the magnetization of a system of nonin-
teracting electrons in the presence of the field
B=H+4mM. This conjecture agrees with a simple
self-consistent-field calculation of the magnetiza-
tion. Pippard showed that this prescription for
determining the magnetization could lead to a
multiple-valued function M(H), and he investigated
the thermodynamic behavior of the system as a
function of H. He found that the path of minimum
free energy led to an abrupt jump in the magnetiza-
tion in the region where M(H) is multiple valued.
In Pippard's work, the sample was implicitly as-
sumed to be a long thin rod oriented parallel to
the applied magnetic field. A very interesting sit-
uation, first pointed out by Condon, arises when

the sample has a finite demagnetizing factor. In
that case, there can exist a region of applied mag-
netic field strength in which no portion of the H- 8
isotherm is thermodynamically stable. As shown

by Condon, the sample must in this case spontane-
ously divide into regions with different values of
the magnetization, and a domain structure results.
The domains are regions in which the magnetiza-
tion is uniform; in the domain walls the magnetiza-
tion changes smoothly from its value in one do-
main to its value in the neighboring domain. The
behavior of the system is analogous to the conden-
sation of a gas, with the two different states of
magnetization playing the roles of the liquid and

gas phases.
Another interesting possibility, the magnetiza-

tion-density-wave (MDW) state was first suggested
by the study of the wave-number-dependent sus-
ceptibility' y(q). If we define r(q) =dM(q)/dB(q),
then the wave-number-dependent permeability p(q)
=dB(q)/dH(q) is equal to [I—4vy (q)] '. When

4m'(q) becomes equal to unity, p(q) diverges. This
implies that the system is capable of sustaining a
nonvanishing spatially varying magnetic induction
dB, without any driving force dH, . For the free-
electron modele X(q) is given by

(FjM /aa ) [2J,(qr, )/qr, ]',
where Mo and 80 are the spatially uniform magne-
tization and induction and r, is the cyclotron ra-
dius of the extremal orbit on the Fermi surface.
J,(x) is the Bessel function of order unity. In
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Ref. 6 it was noted that l X(q) I is always largest
for q equal to zero. This means that I —4m'y(q)

will first become negative at q equal to zero, and
leads automatically to the domain state proposed
by Condon. 4 It was also noted in Ref. 6 that X(q)
displays geometric resonances associated with
matching an integral number of wavelengths 2m/q
to the orbit diameter 2r, . Azbel' ' pointed out
that with more than one extremal orbit, it is pos-
sible for the geometric resonances from each or-
bit to so interfere with one another that 4m}t(q)
can first become equal to unity at a finite value of
q, instead of at q equal to zero. In that case, the
MDW state proposed by Quinn' will occur. The
MD%' state has been studied by Azbel'7*8 and by the
present authors. ' The results in Refs. 7-9 are
largely restricted to one-dimensional variations
of the magnetization. The solution of the two-di-
mensional case was briefly sketched in Ref. j.0.

The purpose of this paper is to present a more
detailed discussion of the ideas introduced in Ref.
10, and to investigate the boundary conditions more
carefully. The entire calculation is in the spirit
of mean-field theory"'2 (also referred to as mo-
lecular-field theory). In Sec. II, we consider a
spatially varying magnetic induction B(r ) = Bo
+ B,(r }, where lBol » lB, I . We evaluate the energy
levels of a system of Bloeh electrons to first order
in 8,. These energy levels are then used to eval-
uate the thermodynamic potential of the noninter-
acting electrons as a functional of B{r). In Sec.
III, we obtain an integral equation for the function
B,(F) by minimizing the appropriate thermodynamic
potential for the system. The solution of the inte-
gral equation is discussed in Sec. IV for the situa-
tion in which 4&y(q) exceeds unity by a very small
amount. Several different cases seem possible
and the transition can be either of first or second
order. In Sec. V, we investigate the validity of
t'he mean-field-theory approach to the present
pxoblem. In Sec. VI, we present the results of
some numerical calculations for a simple Fermi-
surface model.

II. EVALUATION OF THERMODYNAMIC POTENTIAL

Vjfe shall leave the value of Bo unspecified for the
moment, but assume that it is along a principal
axis of symmetry. In this case, the magnetization
M(r) and B(F) are aligned along the same direc-
tion, which we choose as the z axis. For the band
structure of the conduction electrons we assume a,

many-valley model. Interband and intervalley ef-
fects are neglected, since they are not expected to
affect the essential features of the phase transition.
With this assumption, the single-particle effective
Hamiltonian for the electrons in a particular valley
ean be written as

a = e[- i V+ {e/c) A], (2. 2)

where A is the vector potential for the magnetic
induction B (r), and F(k) describes the energy dis-
persion law for the electrons in this valley in the
absence of magnetic fieM. We take —e as the elec-
tronic charge and use units in which 8 is equal to
unity. The vector potential consists of two parts:

A =ho+A), (2. 3)

For Ao, we use the usual Landau gauge

A, =(o, a, x, o), (2. 4)

and we take A, to be of the form

X, = (a,(x, v), o, o).

In the absence of the inhomogeneous field B„ the
the eigenfunctions and eigenvalues of the Hamilto-
man in Eq (2. 2) are .well known. They are de-
scribed by three quantum numbers (n, k, , k, ), and
can be written in the form

(2. 6)

This is true only if the Landau-level spacing 5&,
is much smaller than the Fermi energy E~ (which
we will assume throughout this paper) .We assume
that the magnetic induction has only a very small
spatially varying part

B(F) =B,+B,(F), (2. I)

where

Following the usual procedure of molecular-field
theory, we first replace the interaction between the
magnetization at different points by the interaction
of the magnetization with a self-consistent magne-
tic induction B(r) in the sample. Since the chemi-
cal potential IL( is a function of the magnetic field,
the spatial variation of 8 will then lead to a spatia]. -
ly varying electric field. However, it can be easi-
ly shown that the effect of this electric field on the
field energyandthe quantization of the energy level
of the electrons is negligible compared with the
effect of the spatial variation of the field B(r}.

(2. 6)

The corresponding eigenvalue

E,(n, a, ) =(n+y) a~, (a,}+~(u,)
is independent of k, . Vfe have introduced the quan-
tity o —= c/e80 and the functions Q„, (x) which are the
solutions of the differential equation

(2. 6)

Vfhen a small inhomogeneous field is present, we
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can expand the Hamiltonian in powers of 8, and ob-
tain

H=H0+H1,

where

Ho ——e[ iV-+ (e/c)AO]

and

H, = (e/c)v„A, (r) .

(2. g)

(2. 10)

(2. 11)

In Eq. (2. 11), we have neglected the noncommuta-
tivity of v„A,(r), since we are only interested in
quasiclassical regime. We now assume that

i B, i

satisfies the criterion

i 8,/Ho
~

(Er /Ii (u, ) & 1. (2. 12)

It is easily seen that in this case the energy shift
due to H, is small compared with the Landau-level
spacing, and hence perturbation theory can be ap-
plied. In the absence of A„all levels with the
same value of n and k, are degenerate. According
to standard degenerate perturbation theory, the
correct zeroth-order eigenfunctions are given by
the combination

From Eq. (2. 18), we can see that the problem of

evaluating the matrix element in Eq. (2. 15) re-
duces to finding diagonal matrix elements in a one-
dimensional case. In the semiclassical regime,
these one-dimensional elements can be evaluated
following a method due to Landau. ' According to
this scheme, the matrix element can be replaced
by a time average over the classical orbit with

all the operators replaced by their classical value.
Thus Eq. (2. 18) becomes

(n, k„k, H, ~n, k„k,) =(1/T) $ dt (e/c)A, (x(t), q, )

(t) inc&»g &» ) (2 Ig)

We now make use of the equation p = —(e/c) v x Bo
to express v„(t) dt as o'dp, and x(t) as o.(p, —k, ).
Then Eq. (2. 10) takes the form of an integral over
the classical orbit in p space:

(n k» k.
l
Hi lin, k', k.) (oe/c T)

x pdp A, (c»p, nk„q,—)e"'~ (2..20)

Here T is the period of the orbit in p space defined

by

i(r) =& C~(k, )4'„»» (r), (2. 13) ~(P„,P„k.) =E,(n, k, ). (2. 21)

with energy
0

z 'l n'kz l, n, kz (2. 14)

where l denotes a new set of quantum numbers.
C, „, and e, „~ satisfy the equation

Z C, (k, ) (n, k„k. i H, i n, k„k,) e,C, (k=, ),

where we have dropped the indices (n, k,) on C,
and e, for simplicity. Now we write k, =k, +q, .
The functions p„» (x+ o.'k, ), introduced in Eq. (2. 6)
with different values of k, , are related by a trans-
lational operator

y„» (x, nk„') =e' '«" y„» (x+ nk, ). (2. 16)

Vfe also introduce the Fourier transform of a func-
tion f(x, y) with respect to y as follows:

f(x, y) = (1/I.) fdyf (x, y) e"~' (2. 17)

f (x, q) =5 f(x, q, ) e "~' .
Qy

With the help of Eqs. (2. 16) and (2. 17), we can
express the matrix element appearing in Eq. (2. 15}
in the form

( n, k„k, i Hg
~
n, k,

'
k, ) = J dx g„» (x+ o.k, ) (e/c)

x A, (x, q, ) v„e' '~"y„, (x+ o k )

(2. 18)

Substitution of Eq. (2, 20) into Eq. (2. 15) then gives
an equation for the coefficents C, (k,):

Q C, (k, +q, )(ne/cT)
Cy

~ fdP, A, (~P, —~k, , q, ) e'" "=., C, (k, ). (2.22}

The exact solution of this equation is difficult.
However, for our present purpose, we can intro-
duce the following trial function with two param-
eters xp and gp..

C„,„(k,) =e 'o"F(k„x,-),
where F(k„xo) is a function of k, with the property
that it is very small outside a region of width &

centered about the value k, = —x,/o, and is large
and roughly constant inside that region. The height
of the peak is of course determined by normaliza-
tion. Substitution of Eq. (2. 23) into Eq. (2. 22)
then gives

(2.23)

It is expected that the dominant terms in the sum

over q, on the left-hand side of Eq. (2. 24) come
from values of q, such that iq, l &1/r„where r,
is a typical cyclotron radius. (This is verified by

the final expression of A, in the subsequent calcu-
lation. ) In this case, it is not difficult to see that

for

e,o, ,„F(k, ,xo} = Z e "0'~ (&e/cT)f dp, A, (op, &k„q,)-
(2.24)

x e'~»y»xF(kq +q~, xp) ~
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I/r, «a«r, /o, ;

that is,

1/r, ««&(E /~, )(I/r. ),

(2.25a)

(2.25b)

S(x, y, E, 0, ) = 8 (1+58),

S'= (2o/~) n, (Z, u. )

(2.2Oa)

(2.29b)

C„p„o(k,) is an approximate eigenfunction of Eq.
(2. 22) with eigenvalue e(xp, yp):

e(x„yp) =(ne/cr) gdp, X,(np, + x„yp —np„).{2.26)

The physical significance of the parameters xo and

yo in the function e can be seen by writing down the
corresponding wave function

y(o) (r ) (I L )
-1/P iihzz

t~O t Xo

x f (da, /2o) e'"" 'p'F(k, , x ) P„, (x+ &k',). (2.2V)

From the property of the function F(k, , xp) and the
criteria in Eq. (2. 25), it can be seen that the wave
function ifi„lo,' „,(r) has the property of being lo-
calized around the point (xp, yp) in real space. The
approximate nature of our solution arises from the
fact that quantum mechanically the two coordinates
of the center cannot be specified with infinite ac-
curacy. In fact, according to the definition of
Both'3 and of Kubo et al. ' for xo and yo as opera-
tors, they obey the commutation relation

[xp, g p] = i c/1e 1 Bp = i cl .
When pi, /Er tends to zero, the commutator
[xp/r„yp/r, ] also tends to zero. Hence in our
present approximation where pi, /E„«1, treating
xo and yo both as good quantum numbers is a reason-
able approximation.

When reduced to a one-dimensional case, the re-
sult in Eq. (2. 26) is in complete agreement with
that obtained from the method of semiclassical
quantization. The present approach seems superior
because the validity of the semiclassical quantiza-
tion for a two-dimensional variation of the field is
rather doubtful.

Now we come to the evaluation of the thermody-
namic potential. For the case of uniform magne-
tic field, the problem was solved in a classical
paper by Lifshitz and Kosevich. '~ The central step
in their calculation is a knowledge of a function
n(E, 0,). For every valley in reciprocal space the
function n(E, k, ) is obtained by inverting E(n, k, )
when both n and E are regarded as continuous vari-
ables and k, is regarded as a parameter. In the
presence of the inhomogeneous field, inverting the
fllllct1011 E(n, 0, xo, pp) gives us then

n(xp, y„z, 0, ) =n, (E, 0, )+ "' e (x„yp). (2. 23)

If we now introduce a function

S(Z, it„x„yp) -=(211/a) n(x„y„z, u, ),

then S can be written as

58= (- e/S c) p dpi' Al(xp+ np, yp —ap„). (2. 29c)

The integral here is taken over the path defined by

e(p„p„a,) =z.

Comparing with Ref. 15, we see that SP(zl, , 0, ) is
just the cross-sectional area bounded by the Fermi
surface and the plane k, = a constant. Equipped
with a knowledge of S(xp, yp, E, k, ), we can then
follow the calculation of Ref. 15 step by step and
obtain an expression for the thermodynamic poten-
tial density Q„„(xp,yo). We omit the detailed steps
and simply give the resultM:

5/2 82go "1/3
n„„(xo,~o) = & '(») "' -' '

c 8k,

8S~ ~ tt) Ap v 88o
$/g cos

p-g ~ 2vlo

x cos[(v/eBp) S (xp, yp) —2vvyw y &],

(2.30)

The notation here is the same as in Ref. 10. 8
indicates the extremal value of 8(e, fl, ) as a func-
tion of k, . The sum over m runs through all the
extremal areas of the Fermi surface. Only the
oscillatory part of the thermodynamic potential is
included, since only this part will be of importance
ill 0111' sllllseqllen't dlscl18810118. Ill Eq. (2. 30),
8 (xp, yp) has been replaced by So everywhere ex-
cept in the phase of the second cosine factor where
B,( )rhas a dominant effect. We have seen in Eq.
(2. 12) that for perturbation theory to be valid,
(B,/B, ) (Et /pi, ) has to be smaller than unity. When
this condition is satisfied, the second cosine factor
in Eq. (2. 30) can be expanded term by term in
powers of B,/Bo. Here a question may be raised
as to why is it enough to keep only terms to order
B,/Bp in the change in individual energy level to
arrive at an infinite power-series expansion of
Al, x (xp yp) ~ The reason for this is that when we
investigate the ~th-order term in B& of the expan-
sion of Ql, „(xo,yo), the contribution of a first-or-
der shift in energy has a factor of (Er /ff &u, )",
whereas the contributions from higher-order
changes in energy will only be multiplied by a
factor (Et /h&u, ), with m &n. Hence in the limit
Er /ff&u, » 1, Eq. (2. 30) is equivalent to a partial
sum of the dominant terms for every order in a
perturbative calculation of the thermodynamic po-
tential. Before we write down the expansion of
0&K, we note that by introducing a function
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s.(q„,q, ) -=(- I/~s, q, ) $ dp„e"&"& -.~, &, (2. sl)

Eq. (2. 29) can be written as

5$ (x„yo) = —(I/Bo) f dr B,(r)

xpe 0 0 s (q, q ) (2.32)

r =(x, y)

ro=(~o, yo).

For an elliptical cross section given by o'.&P„
+ o'op,'=p', the functionS(q„, q, ) can be easily eval-
uated and has the value

S( )
2dl[(+0 Qx + +1 'Qy) ]

qx I qy
(

-1 qz ~-1 qo)1/8

where Q = np q W. ith the help of the function
S (q„,q, ), the expression for the thermodynamic
potential can be finally written in a compact way
as

(2.33)

~LK J ~LE(+0 yo} dro

= ao- (l/4v) J dr1B,{r1)g1-
—(I/40n} f dr, l'dr, ".

J dr„B1(r,) ~ ~ ~ 81(r„)g„(r,o, ~ ~ ~, r1„),

(2.34)

r1n = r1- rn ~

g„(r„.. . r, ) =Z g„(r10 ', r1„)

is a sum of terms from different extremal areas
of the Fermi surface. The Fourier transforms of
the functions g„are given by

4& 8"Mo
g..1(q,1,",q. )=—, „S(q,)S (q,) ~

x S (q„) S (q, +q, + . .+q„).
(2.35)

Here Mo"' is the contribution of the mth extremal
orbit to the uniform magnetization and g, = 4&MO .

ill. INTEGRAL EQUATION FOR 8 i Cr')

Having obtained the expression for the thermody-
namic potential O«of a. system of electrons in a
self-consistent field, we now proceed to investigate
its physical meaning. This question has been
looked at by Pippard, 3 by Condon, ' and by Azbel'. '
%e will follow a slightly different line of approach.
First, we notice that the thermodynamic potential
calculated in Sec. II only includes the kinetic-ener-

gy part of the electrons. The total thermodynamic
potential A„t should include also the field energy.
Hence, we have

II...= IILK+ f [B'(r-)/3.] d'r (s.l)

At fixed temperature, the variation. of the thermo-
dynamic potential is given by17

&II...=(i/40) f H(r) SB(r) dor. (3.2)

Comparing Eqs. (3. l) and (3.2), we obtain the re-
lation between IILK and the magnetization ~(r):

SIILK = —J M(r) ' fIB(r) dor

or

NI(r) =- &II,„/SB(r). (s. 3)

When the values of B(r} at each point r, and the

temperature T, are fixed, the equilibrium state
corresponds to the minimum of Q„t. However,
this is not the situation under consideration. The
quantities fixed here are the temperature, the cur-
rent j,„t in the coils of the magnet, and the main
magnetic field 80 yet to be defined. Following
de Gennes, '8 we can construct a thermodynamic
potential adapted to this situation. Define the
function G as

B,(r) H „,
tot 4&

(s. 4}

Thus for fixed T and Bo, 6G vanishes when j,„t is
fixed. The equilibrium state under this condition
then corresponds to the mininum of G. Vfe can
also write Eq. (3.4) in the form

2 2

G=Q + —+ —d r+ M ~ B d r. (3. V)
80 81 3 3

am 0 1

To determine the form of B1{r), we need another
relation between M and 81. It is here that the
sample shape factor comes into play. For simpli-
city, we shall assume that both the external field
and the magnetization are directed along a princi-
pal axis of an elliposidal sample. The average of
the field and the induction must obey the usual
boundary condition17

4vn„&IOI) =If, —B. (3.3)

SG- '1" . m dor
4m

In Eq. (S. 5), the variation is performed ader
fixed temperature T and main field Bo. Since
divB1 =0, we ean set B& = curlA1 and integrate by

parts:

SG = (V && A,) ~ SH d 'r =— A, &j,„1d 'r.
4m C

(s. 6)
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Here n„ is the demagnetization factor of the el-
lipsoid along the z direction, H is constant over the
whole sample, since both its curl and divergence
vanish, and (M) denotes the spatial average of the
magnetization.

Now we choose the value of Bp to be that which
would exist in the sample if the magnetization were
uniform. The boundary condition that gives the
value of Bp is determined by

83—4&(1 —ng, ) M3(B3) = H3. (s. 9)

In Eq. (3. 12), r,„stands for r, —r„. The functions
g„, etc. , are very similar to the functions g„ in-
troduced in Sec. II. They are defined by

g„=g„—n„( /&I) f dr, g„(r„„~~ ~, r2,). (s. Is)

The Fourier transform of Eq. (3. 12) can be written
as

81(q1) (I - r2(q1)] = »1(q2) 81(q~3) P3(q2 'q3)
q2, (j3

x ~(q, q, q,)+. . .
+ 2. 8,(q,) 8,(q„)

g~ ~ ~ e q

g„(q„,q„)5(q, —q, — —q„).
(s.14)

Equation (3. 12) naturally allows many classes of
solution, To find out which solution corresponds
to the equilibrium situation, it is necessary to sub-

Here Hp is the value of the magnetic field if the
sample were absent. Equation (3. 9) will admit a
unique solution for 8p only when the condition 4m

x(I —n„)dM3/d83& 1 is satisfied. This is one of
the conditions that has to be kept in mind in sub-
sequent discussions. Making use of Eqs. (3. 8) and
(3.9), the relation between B, and m can be written
as

81= 4& (M(r) —M3(83) —n„(M —M3(B3))). (3. 10)

To determine B„ there exist two approaches. The
first is to minimize the thermodynamic potential
subject to the restriction on 8, owing to the bound-
ary conditions. The second approach, which
proves to be much more convenient, makes use of
the relation between QLK and the magnetization.
Substitution of Eq. (3. 10) into Eq. (3. 3) gives

.8,/4~ = n„( 5n„„ /58, +M( 8)) —5n„/58, -M, (8,).
(s. 11)

Writing Eq. (3. 11) explicitly in terms of B„we
finally obtain an integral equation

81(r1) = f d"2 81(r,) g2(r12) + ~ ~ ~ + f dr, ~ dr„

x 8,(r,). . .B,(r~)g3(r„. . . r1 ) (3 12)

stitute the function 81(r) obtained from Eq. (3. 12)
into the thermodynamic potential G expressed as a
functional of 81(r). We see readily from Eqs.
(3. 7) and (3. 11) that this functional can be written
as

Bid x BQzK 3 8pG = Q~K+ — nzz B,d X+-
8m ZZ $8 8m

+ Mp Bp ' &y x d'~ 1 —n„. 3.15

The equilibrium value of 8,(r) then corresponds to
the solution of Eq. (3. 12) which renders G a. min-
imum.

=n +—+Z [I-4~}t(q)] + ~ ~
B,' - 8',(q)

8m
(4. 1)

From the form of Eq. (4. 1) it is obvious that if the
factor 1 —411y(q) becomes negative at some value
of q, it is energetically more favorable for the
corresponding Fourier component B,(q) to assume
a finite value than to vanish identically. If the
Fermi-surface structure of the metal is such that
there exists only one extreme cross section at the
particular orientation of the magnetic field, then
the expression for g2(q) in Eq. (2. 35) shows that

Igzl will always have its maximum at q=0. In
other words, the quantity 1 —411X(q) will first van-
ish at q = 0. The system is then thermodynamically
unstable and will either jump to a new uniform state or
break into domains depending on the demagnetizing
factor of the sample. The boundary condition used
in Sec. III is no longer applicable for this situation.
I et us consider a disk-shaped sample. What hap-
pens in this case is that the internal field stays at
a fixed value H for which 4m X(0) exceeds the value
unity. Domains are formed, in each of which the
local magnetization assumes a value which mini-
mizes the thermodynamic potential. The appropri-
ate choice for the value of induction Bp is now Bp

=H, resulting in the relation M=8, /411. Equation
(3. 12) still enables us to find the value of magne-
tization in each domain. In particular, if the do-
main width is much larger than that of the transi-
tion layer, the structure of the transition layer
can also be obtained with the help of the same equa-

IV. SOLUTION OF INTEGRAL EQUATION

One can notice by inspection that 8, -=0 is a triv-
ial solution of Eq. (3. 12) corresponding to the state
of spatially uniform magnetization. This solution
need not, however, correspond to the state of min-
imum thermodynamic potential. To see this, it is
sufficient to write out the leading terms in the ex-
pansion of G in powers of 8,(q), the Fourier com-
ponents of 8,(3): For n„=0 we have

G = &,+—+Z [1-g2(q)] + ~ ~

8', (q)
8m ( 8m
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S,(r) =A(r) e "''+A*(r) e'"''+ C(r). (4. 2)

Here A(r) will be a slowly varying function of r,
and C(r) will be of higher than first order in A(r).
By substituting Eq. (4. 2) into Eq. (3. 12), one can
readily show that C(r ) must assume the form

C( ) C C -2ck 8 Ce 2ck (4. 3)

tion. For explicit results we refer the reader to
Ref. 9.

%e will now concentrate our attention on the sit-
uation where 1 —4x X(q) is negative at a finite wave
number q, but positive at q = 0. In a subsequent
section, we present some numerical calculations
for a system with more than one extremal area to
show that this is indeed a possible situation. In
this instance, the system is. stable against domain
formation, but unstable against the formation of
a magnetization density wave. Suppose the condi-
tion il —4&x{«)I «1 is satisfied, «being the value
of q which 4vlC (q) assumes its maximum value
with respect to q. Later we will specify more
clearly as to how small II —4m@(«) I has to be.
Then the form of G as in Eq. (4. 1) suggests that
the dominant Fourier component of the solution
8,(r) is that with q «.=In general, there may be
several equivalent ~'s, depending on the symmetry
of the sample. Let us consider a material which
has a twofold axis of symmetry such that ga(q) has
maxima greater than unity atq=(0, +«). The
situation could arise, for example, in a hexagonal
crystal with B perpendicular to the c axis. In
this case, we can try a solution of the form~

Note that if A(x, y} is independent of x, then Eq.
(4. 6} reduces to the one-dimensional equation
given by Ying and Quinn.

Equation (4. 6) is identical in form to the Ginz-
burg-Landau equation for a superconductor in zero
field, with A(r) playing the role of the order pa-
ramater. This resemblance is brought out more
clearly if we express the thermodynamic potential
in terms of A(r). Substitution of Eqs. (4. 2) and

(4. 4) into Eq. (4. 1) gives

83
G=Q +—+

where

(VA)' dr, (4. 7)

a = {I/47c) [1-g,(«)], c = —(I/6«) V', g, («),

1 2g', («, —«) g,'(«, «)
'(o) +)' '(2) lg, (~, ~, —«) ).

(4. 6)

This is of course the standard form of the expres-
sion for the free energy' in the Landau theory of~

second-order phase transitions, "provided the sign
of 5 is positive. In this case, the transition point
occurs at 1.—4v X{«)=0. Below the transition point
1 —4vx(«) &0 and A(r) is nonzero. A(r) tends to-
ward zero as the transition point is approached,
and A(r) = 0 above the transition point. It is not

difficult to see from the form of G in Eq. (4. 7) and

the equation for A, in Eq. (4. 6), that the spatially
varying solution is energetically less favorable
than the uniform solution given by '

C, =2~A~'g, («, -«)/[I-g, (0)]
A =(- a/2f)"'.

Hence the MD%' has the form

(4. 9)

C„= ~A~'g, («, «)/[l-g, (2«)]. (4 4)

Bg,(, , —rT)) ~

A
~

' A = D. (4. 6)

Now we make use of the fact that A(r) varies very
slowly in space, so that expressions like A(r + Ar )
can be expanded as

BA
A(r + ar) =A(r) + Q —&x, +-

~= &, 2 8&i

~A
g p 8X) ~X~

Making use of Eqs. (4. 2)-(4. 5), we can finally con-
vert the integral equation (3. 12) into a differential
equation for the function A(r), "

, +[g,(«) —1]A
&'g'(«) &'A

2 ~=&, 2

4g, («, —«)g, («, 0) 2g, («, «)g,(«, —2«)
1 —g, (0)

+ 1-g,(2«)

8,(r) = 2( —a/2b)'~'cos«(y —yo). (4. 10}

For the situation where 5 is negative, a first-order
transition occurs at a negative value of gz(«) —l.
In the case where ga(«) has threefold symmetry, a
first-order phase transition always occurs because
the maximum of g2(«) appears at values «such
that g, «; = 0, and the cubic term in Eq. (4. 6) is
important.

V. VALIDITY OF MOLECULAR-FIELD THEORY

Now we come to the question of the validity of
mean-field theory as applied to the present prob-
lem. As is well known, for any kind of second-or-
der phase transition, fluctuations play a dominant
role near the critical point. " These gigantic fluc-
tuations cause the molecular-field theory to fail in
the immediate neighborhood of the critical point.
Hence, it is important to know in what physical re-
gion the results presented in the preceding sec-
tions are valid. For our present problem the



1808 YING, McINTYRE, AND QUINN

transition point can be reached by varying the tem-
perature at fixed Ho, or varying Ho at fixed temper-
ature. The quantities (e,), =10", (.„),= Io-»

fying Eq. (5. 6), we readily obtain

(5. V)

e, = (T-T-,)/T„e„=(H, —H, ) /H, (5.1)

are a measure of how close we are to the transi-
tion point in each case. In Ref. 24, it was shown
that the Landau theory can be used to estimate the
fluctuation itself. Suppose we define the correla-
tion g(r, r ) as given by

g(r, r ) =([A(r) —(A(r))] [A(r ) —(A(r ))]). (5. 2)

Here () has the meaning of a statistical average
instead of a spatial one. In Landau's theory,
g(r, r ) is given by

g(r, r ') =(r -r') 'exp( —
~

r —r '~ /$) 8, (5. 3)

where $ is the coherence length. The coherence
length is given by

&(T) =c'~' (T- T,)" for T&T,
r.

—C — T, —T '~ for T& Tc.
C (5. 4a)

We can also think of ( as function of magnetic field
Ho, in which case it is given by

1/2

5(HO) =c"' (HO-H, ) '" tor H, &H,
8H' e

C

-1/2

eC

([A(r) - &»][A(r') -&A)]& «&»', ~r r'~ & (5. -5)-.

Here (A) is the value of the order parameter cor-
responding to the solution of Eq. (4. 6), namely,
&A) =(-a/2b)' . From Eqs. (5. 5) and (5. 3) we
must then have

T, /4&ec)(T) « —a/b

&H, ,

(5. 4b)

In Eqs. (5.4) we have assumed for simplicity that
& ga/&&„= & g2/&K =——4Bc. According to Kadanoff
et ol. , the criteria for the Landau theory to be
valid are that fluctuations in the order parameter
over distances comparable with $ must be relative-
ly small. In particular, they must be small in
comparison with the order parameter itself.
Therefore we must have

for a field strength Ho -30 ko, T -1'K, the ratio
Ez/8'~, -10', and r, -10 cm. Thus, the mean-
field theory will be valid for

10-14« c « l 10-17« c « 1 (5 8)
T-T H-H

T. H,

G = 00+80/8m+a(H, T) A +b(H, T)A4 (5. 8)

for a unit volume where a and 5 are given in Eq.
(4. 8). Near the transition point where H =H„we
can use the following approximation for a and 5:

g= Ho Hc ~
b=& Hc ~

H

(5. lo)

We now recall the result

5G= —(1/4&) jB,(r) ~ 5H dr

given in Eq. (3. 5). Together with the relation be-
tween B, and M(r) given in Eq. (3. 10), this yields

—5G/5H = (M) —Mo(BO). (5.11)

Here a unit volume is assumed. If we now define
a quantity Mo such that

Mo = Mo(BO) ——Oo+ 8
(5.12)

These very small values of &, arise because of the
long-range nature of the magnetic interactions.
It indicates that we can neglect the effect of fluctua-
tions in almost all practical situations. The tran-
sition from the normal state to the MDW state has
the typical form of a second-order phase transi-
tion. According to mean-field theory, the second
derivatives of the thermodynamic potential will ex-
hibit discontinuities at the transition point. In par-
ticular, the susceptibility, regarded either as a
function of temperature at constant magnetic field
or a function of magnetic field at constant temper-
ature, will have a discontinuous jump across the
transition point. Here we will follow Landau's
approach to calculate the jump in the susceptibility
as the external magnetic field Ho approaches the
critical value H, . For simplicity, we shall limit
ourself to the case where n„ is zero so that H=-IIo.

It has been shown in Sec. IV that near the critical
point the thermodynamic potential of the system
can be written as

or

keT/4&ec)(HO) « —a/b

(5. 6)
then we have

(M) =MD ——A
8H

for the validity of the mean-field theory. If we now
define &, as the lower bound for values of e satis-

to lowest order in A . For the normal phase A =0,
so that the susceptibility is given by
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e(m}
XN 88 XO ' (5.i3)

In the MDW phase, A is given by the value corres-
ponding to the minimum of G. It is given in Eq.
(5. 9) as

(««)) ))(«).a Ba
2Q BH C C

H
(5.14)

Hence the susceptibility in the MDW phase is given
by

XMDe —Xo+
C

b(B,), (5.15)

and the discontinuity in the susceptibility is

b(H, ) . (5.16)

If we make use of the expressions in Eq. (5. 10) for
a and b, it is not difficult to obtain an estimate for
the order of magnitude of hX. We will adopt a
model in which one of the extremal cross sections
of the Fermi surface gives the major contribution
to g2, ~ ~ ~, g„, etc. , at the wave number q = ~ of the
MDW. We also assume this extremal area to be
circular. In this case, the function 8 introduced in
Sec. II becomes

8(k„,k, ) = 2Z, (kr, )/kr, = 1 (5.i7}

for this particular cross section, and approximate-
ly equal to zero for all other cross sections. Ac-
cording to Eq. (2. 35}, the susceptibility when

lql = l ~ l then becomes

4vtf(v) =gp=Kcos(eS /eBp+ —,'v), (5.18)

where K is a constant of the order of unity. Thus
we obtain

»0 (5.i9)

The order of magnitude of 5 is easily seen to be

IbI = Ig4(K, ~ —~}
I
=(I&I/Bp} «r «~.}' (5 20}

VI. MODEL CALCULATION

The possibility of a MDW state and the type of
transition to that state will depend upon the coeffi-
cients a and b in Eq. (4. 7). We have seen that if
a &0 and b&0, the trivial solution A =0 minimizes
the thermodynamic potential, while for b &0 there

Hence l hx/Xpl -I.P' Since hx is of considerable
magnitude, it should be readily observable experi-
mentally. We can also do an exactly similar calcu-
lation for the discontinuity in the specific heat.

The frequencies f, and fp are proportional to the
areas of the two extremal orbits; we define their
ratio by the parameter q =f2/f, . The phase factors
5~ are independent of magnetic field. By using
Eqs. (6. 1) and (2. 35) we can obtain an explicit ex-
pression for the function gp(q):

g2(q) =4m'� (q) = ay cos(2&fg/Bp+ 5)) &) (q)

+ a, cos(2', )7/Bp+ &,) &',(q). (6. 2)

Here a, = —2', o(( /Bp, and . the functions 8; (q) are
defined in terms of an integral over the orbit by

Eq. (2. 33). For the present case of elliptical
cross sections the functions 8((q) are quite simple:

s, (q) =2J,(q ~ r„)()(/q r„.) (6.3)

where r„ is the radius vector from the center to a
point on the ith orbit. The procedure to be followed
in looking at various instabilities is to plot gp(q)
as a function of q„, q, , and 80 for some fixed value

of the temperature. Regions in which g2 exceeds
unity are regions of instability. A word of caution
must be given at this point. We have been assum-
ing that gp(q) is a function of the induction Bp How-.
ever, it is not 80 that one controls experimentally,
but an external magnetic field H0. This point must
certainly be kept in mind in thinking about what
instabilities are realizable. For the q = 0 instabili-
ties, both the discontinuous jump in the magnetiza-
tion of a long thin rod and the domain state of a
sample with finite demagnetizing factor occur
slightly before the point where gp(q =0, Bp) = 1.
When these instabilities occur, whole regions of
values of Bp are not realized (e. g. , for a long
thin rod the magnetization jumps from some value
—M, to a value M& at an applied field H; thus val-
ues of 8 between H-4&M& and H+4+Mj are not
realized within the sample}. A peak of g,(q, Bp) at,

a finite value of q in a region of 80 which is un-

realized because of a q = 0 instability will not in

is no minimum in the thermodynamic potential in
the regime of infinitesimal A. This indicates that
the transition is to a state of finite A and therefore
first order. When a & 0 and 5 & 0, the MDW state
of constant amplitude A = (- a/2b)'~' has the lowest
free energy and the transition is second order as
seen from Eq. (4. 7).

It seems worthwhile to investigate a simple mod-
el to see which of these conditions is realizable.
We consider a Fermi surface with two extremal
cross sections of elliptical shape, and take the
magnetization M0 to be of the form

Mp = o(, sin(2', /Bp+ 6~) + a(2 sin(2wfp/Bp+ bp). (6. I)
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general lead to a MDW state.
Clearly, Eq. (6. 2) is sufficiently complicated

that a tremendous variety of situations can arise
by properly choosing a„aa,f„fz, 6„6„r„,and x,a.
We present some numerical results for one par-
ticular model in which the MDW state certainly oc-
curs. Let the Fermi surface consist of two iden-
tical cigar-shaped ellipsoids whose major axes are
oriented along the x and y directions, respectively,
If the dc magnetic field is tilted very slightly off
the z axis, the two extremal cross sections of the
Fermi surface will differ in area by a very small
amount. For a 1% difference, the beats resulting
from the two slightly different de Haas-van Alphen
frequencies will lead to almost completely distruc-
tive interference over hundred cycles of the main
de Haas-van Alphen period. Consider gz(q, Bo) for
a value of 80 in such a region. The contributions
to g2(q = 0, Bo) from each of the orbits are exactly
out of phase, giving a very small result. In Fig.
I we plot g2(q„, q, = 0, Bo) as a function of q„. At
q„= 0, the two contributions are out of phase, lead-
ing to the small value of g~ mentioned above. How-

ever, as q„ increases, each of the orbits displays
geometric resonances in their contributions to
g2(q Bp), Because the ellipsoid whose long axis
is oriented along the y direction has a larger or-
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FIG. 2. Contours of constant g&(q„q~=0, &p) in the

q„, &p plane for the model described in Fig. 1. The only
maxima of g2 (q, &p) in this region of field occur at finite
values of q.
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FIG. 1. Plot of g2(q„, q~, = 0, Bp) versus q„ for a model
consisting of two cigar-shaped ellipsoids of approximate-
ly equal area. The contributions of the two ellipsoids to
g2 at q = 0 are out of phase, giving a very small value for
g&(q=0, Bp). Because the orbital radii in the x direction
differ, the cancellation does not hold at finite q, and a
maximum of g2(q& Bp) occurs at finite q.

bital diameter in the x direction, its contribution
to g2(q„) decreases very rapidly compared to that
for the other orbit. The resulting maximum in

g2(q„, q~ = 0 Bp) occurs at finite q„and, if the a.m-
plitudes a, and a2 are sufficiently large, will lead to
a MDW state. Notice that there are no maxima of
g2(q= 0, Bo) for any nearby values of Bo, because it
takes a hundred cycles for the two orbital contribu-
tions to constructively interfere. In Fig. 2 we plot
contours of constant g2(q„, q, =0, Bo) in the q„, B,
plane. The values of the parameters appearing in
Eq. (6. 2) which have been chosen in plotting these
graphs are 6, = 0, 62 = m, g = l. 0 y = r, z/r„ = 5, a, .

= 1.2, and a& = 1. 1. When using this model to cal-
culate the coefficient h appearing in Eq. (4. 7), h

is always positive when g2 & 1.
Clearly, we have investigated a very special

model with particularly simple properties. For a
real metal with a sufficiently complicated Fermi
surface, many interesting instabilities caused by
diamagnetic interactions among conduction elec-
trons may occur.



THEORY OF THE DIAMAGNETIC INTERACTIONS ~ ~ ~ 1811

*Work supported in part by the Advanced Research
Projects Agency and by the National Science Foundation.

tPresent address: Department of Physics, University
of California, San Diego, Calif.

D. Shoenberg, Phil. Trans. Roy. Soc. London, A255,
85 (1962).

~J. J. Quinn, J. Phys. Chem. Solids 24, 933 (1963).
3A. B. Pippard, Proc. Roy. Soc. (London) A272, 192

(1963).
4J. Condon, Phys. Rev. 145, 526 (1966).
J. J. Quinn, Phys. Rev. Letters 16, 731 (1966).
H. J. Lee, M. P. Greene, and J. J. Quinn, Phys.

Rev. Letters 19, 428 (1967).
M. Ya. Azbel', Zh. Eksperim. i Teor. Fiz. 53,

1751 (1968) tSoviet Phys. JETP 26, 1003 (1968)].
M. Ya. Azbel', Zh. Eksperim. i Teor. Fiz. 53,

2131 (1968) [Soviet Phys. JETP 26, 1203 (1968)).
S. C. Ying and J. J. Quinn, Phys. Rev. Letters

22, 231 (1969).
B. J. McIntyre, J. J. Quinn, and S. C. Ying, Phys.

Letters 29A, 412 (1969).
"See, for example, L. D. Landau, and E. M. Lif-

shitz, Statistical Physics (Pergamon, London, 1969).
L. D. Landau and E. M. Lifshitz, Quantum Mechan-

ics (Pergamon, London, 1958).
L. Both, Phys. Rev. 145, 434 (1966).

' R. Kubo, Satoru J. Miyake, and Natsuki Hashitsume,
in Solid State Physics, edited by F. Seitz and D. Turn-
bull (Academic, New York, 1965), Vol. 17.

' I. M. Lifshitz and A. M. Kosevich, Zh. Eksperim.
i Teor. Fiz. 29, 730 (1955) [Soviet Phys. JETP 2, 636
(1956)).

The broadening of the electronic energy levels due
to collisions has not been included in this calculation.
To include them in a phenomenological fashion we can
simply introduce a factor exp( —2r v AT@/h~~) on the
right-hand side of Eq. (2. 30). Here To is a phenomeno-
logical "scattering temperature" or "Dingle temperature, "
and is proportional to the inverse of the collision time 7.
See R. B. Dingle, Proc. Roy. Soc. (London) A211, 517
(1952).

"L. D. Landau and E. M. Lifshitz, Electrodynamics
of Continuous Media (Pergamon, London, 1960).

P. G. de Gennes, Superconductivity of Metals and
Alloys (Benjamin, New York, 1966).

' This form for the thermodynamics potential was
suggested by Azbel' in Ref. 3 without proof.

Dr. E. I. Blount and Dr. J. Condon pointed out (in
private discussion) that the domain-type transition
actually occurs slightly before the point 47t X(q = 0, &p)
=1 is reached. Hence, in order to be absolutely sure
that the system is stable against domain formation
4&X(q=0) has to be considerably less than unity.

We have omitted a cross term in the derivative of
A. This kind of term can always be removed by effecting
a transformation of coordinate systems.

~2When magnetostructure effects are neglected, the
free energy is the same as the thermodynamic potential.

Since g2(q) has a maximum at q=v, —8 gp/BK; &0 for i
=1 2.

24L. P. Kadanoff, W. Gotze, D. Hamblen, R. Hecht,
E. A. S. Lewis, V. V. Palciauskas, M. Rayl, and J.
Swift, Rev. Mod. Phys. 39, 395 (1967).

This result differs from estimate of Azbel' in Ref. 7.


