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In this paper we derive expressions for a number of properties of simple metals, using a
spatially local energy-independent pseudopotential to represent the electron-ion interaction.
Quantities are expressed in terms of correlation functions for the homogeneous electron gas
and matrix elements of the electron-ion pseudopotential; electron-electron interactions are
included to all orders in perturbation theory, and electron-ion interactions to low order.
First, we consider the long-wavelength finite-frequency dielectric function and generalize
some results of Hopfield; the dielectric function is then used to derive expressions for optical
properties, and the frequency and damping of long-wavelength plasma oscillations. Second,
we consider the phonon spectrum; expressions for the phonon dynamical matrix are derived,
taking into account the influence of the periodic ionic lattice on the motion of electrons. It is
shown that to obtain results consistent with expressions for the elastic constants derived from
expressions for the energy of the system calculated to the second order in the electron-ion
interaction, one must include in the calculation of the phonon dynamical matrix some terms
of third and fourth order in the electron-ion interaction. A detailed discussion of the long-
wavelength behavior of the dynamical matrix is given.

I, INTRODUCTION

It is now possible to determine experimentally
with fair precision a number of properties of
metals; among these are the phonon spectrum, the
elastic constants, the shape of the Fermi surface,
the electrical resistivity, optical properties, and
properties of plasmons. All these quantities de-
pend both on the electron-ion interaction and also
on the electron-electron interaction. For a num-
ber of metals, which we refer to as simple metals,
the effects of the periodic ionic lattice are rather
small and the Fermi surfaces of these metals
differ little from spheres. To calculate the prop-
erties of such metals it is natural to treat the
electron-ion interaction by perturbation theory,
taking as the unperturbed system the homogeneous
electron gas with a uniform background of positive
charge. The electron-ion interaction is conve-
niently treated in the spirit of the pseudopotential
method first introduced by Phillips and Klein-
man, and by Antonlik. Such calculations lead
to expressions for physical quantities in terms
of matrix elements of the electron-ion pseudopo-
tential, and correlation functions for the homo-
geneous electron gas; these correlation functions
cannot be calculated using low-order perturbation
expansions in the electron-electron interaction
since at metallic densities the electron gas is in
the intermediate coupling regime; however, the
properties of the homogeneous electron gas have
previously been studied in some detail. ' Perturba-
tion expansions in terms of the electron-ion inter-
action are particularly convenient since they enable
one to take into account the effects of the periodic

ionic lattice without having to perform a band-
structure calculation for the system; such low-
order perturbation expansions will not, of course,
give a correct account of effects, such as the
interband optical absorption near threshold, which
depend on the detailed structure of the excitation
spectrum near Brillouin-zone boundaries.

In this paper we investigate a number of prop-
erties of simple metals on the assumption, com-
monly made in the past, that the electron-ion in-
teraction may be represented by a spatially local
energy-independent pseudopotential. The paper
falls naturally into two sections; in the first we
consider the long-wavelength finite-frequency di-
electric function, for which we derive an expres-
sion exact to second order in the electron-ion in-
teraction. This work is a generalization of the
earlier work of Hopfield, ' who calculated the im-
aginary part of the dielectric function assuming the
motion of the ions during an electronic process
could be neglected. The calculations described
here go beyond those of Hopfield in two respects;
first, the motion of ions while an electronic process
takes place is taken into account. Consequently,
our results involve the dynamical form factor of the
ions whereas Hopfield's depend only on the static
form factor. This enables one to generalize Hop-
field's calculation to frequencies below the ion
plasma frequency. Second, expressions for the
real part of the dielectric function are given. The
latter enable one to derive rather compact expres-
sions for the optical mass, and the shift due to
band-structure effects of the long-wavelength plas-
mon frequency. The second part of the paper is
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concerned with the calculation of phonon frequen-
cies. In the past it has been customary to calcu-
late the phonon dynamical matrix to second order
in the electron-ion interaction and to neglect the
effect of the periodic ionic lattice on the motion of
the electrons. Here we take into account the effect
of the periodic lattice on the motion of the electrons
to second order in the electron-ion interaction.
This approximation for the phonon dynamical matrix
is consistent with expressions for the elastic con-
stants found by differentiating the expression for
the energy of the system calculated to second order
in the electron-ion interaction. In the past it has
often been assumed that the effective interaction
between ions depends only on their separation;
this assumption is no longer valid when the effect
of the periodic lattice on the motion of the electrons
is taken into account.

In Sec. II we derive the expression for the long-
wavelength finite-frequency dielectric function;
applications of the result are considered in Sec.
III. The calculation of the phonon dynamical ma-
trix is described in See. IV, and in Sec. V we
discuss in detail the long-wavelength behavior of
the dynamical matrix. Section VI contains a dis-
cussion of the results for the dynamical matrix.

II. LONG-Vf AVELENGTH FINITE-FREQUENCY
DIELECTRIC FUNCTION

In this section we calculate the long-wavelength
finite-frequency dielectric function taking into ac-
count electron-electron interactions to all orders
in perturbation theory and electron-ion interactions
to second order. However, before turning to the
details of the calculation we must discuss the def-
inition of the dielectric function. Consider a sys-
tem which is subjected to an external field of wave
vector k and angular frequency ~; the current in-
duced in the system will have frequency m but, in
general, will not be restricted to wave vector k,
except when the system is translationally invariant.
In particular, if the system is periodic in space,
the induced current will have components with wave
vectors k+K, where K is a reciprocal-lattice vec-
tor. In most cases the components of the current
with wave vectors other than k will not be directly
measurable. For example, in measurements of
optical properties k corresponds to a wavelength
of many thousands of lattice spacings whereas
k+ K (K c0) corresponds to a wavelength of the order
of the lattice spacing. The short-wavelength com-
ponents of the current are not directly detectable
and thus it is convenient to use a formalism in
which they do not appear explicitly. We therefore
define a conductivity tensor o„„(k,(d) by the relation

j,(k, v) =Q„o,„(k, (d)E„(k, (u),

where j(k, &o) is the component of the induced (elec-
tric) current having wave vector k and frecluency
(d, and E(k, &u) is the component of the electric field
having the same space and time dependence as the
applied external field. In other words, cr~„(k, (d)
gives the variation of j(k, v) with E(k, &o) when the
external field having wave number k and frequency
v is varied, but all other components of the exter-
nal field are held fixed.

The conductivity tensor is related to the current-
current response tensor }f„„(k,(d) by the usual ex-
pressionv

g„„(k,a )= -- (jj„„(f, ) ~ —((„„)

where n is the electron number density and m the
electron mass. 0 gives the response to the total
electric field E(k, &u ), not just to the external field.
E(k, &u) is the sum of the external field and the
self-consistent field having wave number k and fre-
quency &(); consecluentiy in calculating o(k, (d) one
must omit all polarization processes involving a
wave vector k and frequency ~. y~„ is given by
the relation

+ oo

1C,„(k,~) = —.
, df e'"'([Z„(k, I), Z„(-k, o)]), (3)
0

where J(k, I) is the spatial Fourier transform of the
electron particle-current operator in the Heisenberg
representation, [, ] denotes a commutator and

() a thermal average. In writing E(I. (3) we have
omitted the ionic contribution to the electrical cur-
rent since it is of order Zm/elf compared to the
electronic contribution. (Z is the atomic number
and M the mass of an ion. )

In the usual way one may define a dielectric ten-
sor by the relation

e,„(k, (o) = 5„„+(4'/(o)o„„(k, (d) (4)

4m@
2

1- 2
—

2 y„„k V

In deriving Ecl. (5) from E(I. (4) we used Ecl. (2)
for cr„„Here c()~ —=. (4wne~/I)'~ is the electron
plasma frequency.

In the remainder of this section we shall consider
only the finite- frequency long-wavelength dielectric
function. For cubic and isotropic materials, to
which we confine our attention, the finite-frequency
dielectric function is a scalar in the limit k-0;
one ean therefore write the dielectric function in
the form

4'2 2

e(0, (o) = I ——,—,)7,)I„y,„(0,(o), (6)
QP CO

where q is an arbitrary unit vector.
Next we turn to the derivation of expressions for

X„„(0,&u). The Hamiltonian for the system may be
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written in the form

H = H, )+ H(,~+ H, ~(

where H„ is the Hamiltonian of the electrons, in-
cluding electron-electron interactions, H„, is the
Hamiltonian of the ions, and H„, is the electron-
ion interaction; the latter is given by the expres-
sion

I
Ht»t ~ k V&&PIP&& ~ (6)

Here p"„and pp are the spatial Fourier transforms
of the ion and electron number density operators,
and V~ is the Fourier transform of the electron-
ion pseudopotential, which, as we stated in the
introduction. , is assumed to be spatially local and
energy independent. For simplicity, we also as-
sume that there is only a single species of ion in
the system. In general, we shall neglect the trans-
verse magnetic interactions between electrons
since this gives rise to contributions of order
v~/e3 compared to the contributions from the Cou-

lomb interactions. s (Here v~ is the electron Fermi
velocity. )

g„„(0,«&) has a spectral representation of the
usual form in terms of the eigenstates of the Ham-
iltonian (7),

m and n are eigenstates of the combined electron-
ion system and their energies are given by E
and E„. Here ~ „=E —E„,' A is the partition
function for the system, and P = 1/keT, where ke
is Boltzmann's constant and T the temperature.
J „ is the matrix element of the k = 0 component
of the electron-current operator; this may be
evaluated directly by using the equation of motion
for J,

[H, J] „=h«& „(J) „ (10)

[H, J] „=Qf(k/&n)V (p„pf) „ (11)

On substituting Eq. (11) into Eq. (9) one finds'0

1

y~~(0, «&)= —Z z 2 V„V,.[=(k, k';«&) —=(k, k';0)],
f,, )e SSN

(12)
where

I $ I
(k

-~
) g (e' ~ —e' ) (p&p„)„(ppp„,) „

A CO —(0

We note that in the above calculation k =-0 polariza-
tion processes have been excluded, as required,
by neglecting transverse magnetic interactions and

ignoring effects of the boundaries of the specimen.
Equations (6), (12), and (13) may be combined to

give a very general result for the long-wavelength

&& [g(K, K '; &o) —j(K, K '; 0)] (14)

where
-»n -»m

-(K K'. ) g e e .(Pit) (Pit') (16)
m, n A ~ —~ma

is the density-density correlation function for elec-
trons moving in the periodic potential of the ions.
Equation (14) gives an exact description of the di-
electric properties of electrons moving in a peri-
odic potential and includes all band-structure ef-
fects. We note that two powers of the electron-
ion interaction appear explicitly in Eq. (14); thus
if band-structure effects are expected to be small,
one may evaluate )t«by replacing g(K, K; «&) in
Eq. (14) by its value for the homogeneous electron
gas. One then arrives at the following expression
for the dielectric function:

CO

e(0, ~)=1-—a -7 p "' V,'[)((K, id)-q(K, O)].
QJ g 3mZ

(16)
Here X(K, «&) is the density-density correlation
function for the electron gas in the absence of the
periodic potential. Of course, this approximation
will not give a good account of the dielectric func-
tion near band gaps; to describe the effect of band
gaps, multiple scattering of electrons by the lattice
must be taken into account. "

The next more complicated approximation for
= is obtained by neglecting correlations between
electronic and ionic densities. From Eqs. (12)
and (13) one then finds

k„&„' d«&
' d«&" (1 —e-" """

&)

g»p(0& «&) = Z g 2 V&&V&,y

( &&~i)
gt

-- m~ 2m 2m

&& S(k, k;«& ) Imj( —k, —k;«& )

1 1
il + i(d —47 —CO

where

S(k, k';&s) = J "dt(p&-, (t)p"„.(0))e'"'

and g(k, k; «&) is the density-density correlation

(16)

dielectric function, including all the effects of
band structure, electron-electron interactions, and
the dynamics of the ions. The remainder of this
section is devoted to a discussion of approximations
for =. Consider first of all a situation in which
the ions are arranged in a periodic array and are
static. p"„may then be replaced by gtfn, 5„tf.„
where n, is the number density of ions and K is a
reciprocal-lattice vector. The expression for
g«(0, «&) then reduces to

g/$(0, «&)= —Z, (E;K,'/m «&~)n3V V ~

R, R



1792 C. J. PETHICK

kuk„2 d(d d(0
Xpv ~ 2 2 2i2

-g (td'+fd'~ )

z, —S(k, e") ImX(k, &u')

(
1 1

II +—CO 6) + N
(19)

S(k, ~) =—S(k, —k;~) is the well-known van Hove
scattering function deter mined in neutron- scattering
experiments. ' In many applications A~ » k~T, and
the ratio of the thermal factors in (19) may be re-
placed by unity to give

x..(0, ~)=~ a "a I'.k,k» I
d&uI (d 21T

~ [x(k, ~ - ~') - x(k, -~')]. (20)

Finally, when ~ » Q~ and ImX(k, &u) is a slowly
varying function of v, it is a good approximation

function for the electrons (interacting with the
ion s).

The ions affect the electronic correlation func-
tions in a number of different ways. First, the
periodic ionic lattice gives rise to band-structure
effects; second, phonons modify the electron den-
sity of states and effective interactions; and,
third, phonons and disorder damp the motion of
electrons. Phonon modification of the proper elec-
tronic response functions is negligible when either
~»Q&, or ksT»kQ~, where Qq ——[4mn„(Ze) /M]'
is the ion plasma frequency. ' We also note that
the electron density-density response function is
considerably modified by ionic screening when
f~ & Qp. However, the contributions to y„„which
come from terms in (17) involving screening of the
electronic motion by phonons are cancelled by
other contributions to y„„obtained by decoupling
= [Eq. (13)] as a product of two electron-density-
ion-density correlation functions. Yet another re-
gime in which phonon renormalization effects are
negligible is when ~ «Qp; the proper electronic
density-density response function is not affected
by phonon effects provided ~ «Q~ even if A~X
'@np. "

Damping of the electrons will be unimportant
provided tu» I/r, where 1/r is a typical electron
collision frequency; when m & I/r multiple scatter-
ing of electrons by ions must be taken into account.
Thus in (17), X(k, k'; ~ ') may be replaced by X(k, ~ )

p its value for the homogeneous electron gas
in the absence of electron-ion interactions,
provided (i) band-structure effects are small, (ii)
either A~T»AQp ol" Q)»Op or M «Qp and

(iii) &u» I/r Makin. g this replacement in (17) one
finds

to replace X(k, &u —v ') —X(k, —u& ) by its value at
~ = 0 and to remove it from the integral. This
gives

2 2 Q2 p'2
e(0, ~)=I- —

N
——"f 2 —'S(k)[X(k, ~) - X(k, o)],3m Z

(21)

where

S(k)= (I/nz) J" (du/2m)S(k, &u) (22)

is the static ionic form factor. The imaginary
part of Eq. (21) is identical with the expression
derived by Hopfield. '

The approximation made above is essentially
equivalent to the Born approximation —just two
electron-ion interactions are taken into account
explicitly. Are there more complicated contribu-
tions to = [Eq. (13)] of any importance? We have
examined a number of such contributions but have
found none which are appreciable when m» 1/r and
the pseudopotential is weak; we are led to speculate
that such contributions are indeed negligible. In
the case of disordered systems, such as liquid
metals, there could conceivably be contributions
due to the scattering of electrons from correlated
clusters of ions; the size of such contributions can
only be obtained from detailed calculations. We
also note that to describe phonon-aided interband
processes one must take into account contributions
to = which contain the electron-ion interaction. '

III. APPLICATION OF RESULTS FOR e(o,w)

In this section we use the results of See. II to
derive expressions for the optical mass, the optical
absorption, the shift in the plasma frequency due to
band-structure effects, and the damping of plas-
mons.

In a solid there are two sorts of contribution to
S(k, ~). First, there are zero frequency compo-
nents when k is equal to a reciprocal-lattice vector,
and second, there is an incoherent background due
to motion of the ions and to disorder. The former
give rise to interband effects, whereas the latter
give rise to intraband effects. Let us first of all
exa.mine Ime(0, ~) at frequencies below the thresh-
old for interband transitions and show how our
result is related to results obtained using a phe-
nomenological quasipartiele transport equation.
At low frequencies (~ «v~k) the leading contribu-
tion to ImX(k, m) is proportional to &u for 0& k & 2k~.
(kr is the Fermi momentum. ) This contribution
comes from single quasiparticle-quasihole states,
and may be calculated using the methods described
by Langer. " One finds

ImX(k, (u)= v J Q ~A, (p, p+k;e, e')~'&;(e)Ag, -„(e')

&&[n(e ) —n(e)](de/2w)(de /2m)5(m —e +e) . (23)
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Here p and (p+ k) are the momenta of the initial and
final quasiparticles, e' and e' ' are energy variables,
n(e) is the Fermi function, A;(e) is the spectral
density of the single-particle propagator, and

A4(p, p+ k;e, e ') is the density vertex part. '6 For
p =kz, A&(e) consists of two parts —a sharply
peaked part (the quasiparticle part) and an inco-
herent background. As co -0 only the quasiparticle
part contributes to Eq. (23) and one finds

ImX(k, (u) = — —
~
aA, (p, p+ k; O, 0)

~

», (24)

where m~ is the effective mass of a quasiparticle,
a is the renormalization constant for particles on
the Fermi surface, and the momenta p and p+k
are to be put equal to kz. Substituting (24) into
(19) and using (8) one finds

where

~s m 3 n P(u J, (2w)'

& t
d(d de) S(k, (d )P(d

6 (co —co
2m 1 —e-'"

(25)

V„' = aA4 (p, p+ k; 0, 0) V» (26)

The expression for e(0, ur}, Eq. (25), is valid only
for &u» 1/r„However. , if one uses Eq. (28} to
define a (frequency-dependent) relaxation time even
for ~ & 1/7'„, I/v'„ in the limit &u -0 agrees with
Baym's expression for the dc relaxation time. '~

However, two points should be noted. First, al-
though the basic approximation for the scattering
(Born approximation) is the same in the two calcu-
lations, Baym's expression for the relaxation time
is a variational estimate intended to give correctly
the electrical conductivity in the hydrodynamic
regime (&u7 „«1),whereas the relaxation time de-

As Heine, Nozieres, and Wilkins point out, V,"f
is the effective interaction between a quasiparticle
and an ion; this effective potential also enters cal-
culations of the band structure. '

If e(0, &u) is calculated using a quasiparticle
transport equation and the collision term is approx-
imated using a single relaxation time, one finds

M

e(0, (u)= I ——,~, (2'7)
(u[(o+ f(m*/m)(1/v„)]

where T'„ is the transport relaxation time. For
&d» I/v „, (25) has the same form as (27) provided
one makes the identification

1 2 m* 1 —e ~" "2~x& dP ff2 r d~' d~"
P~ „, (2v)' "

J 2v 2v

II
(28)

fined by Eq. (28) is appropriate for the collision-
less regime (~7„»1). The fact that the simplest
variational estimates of relaxation times in the
hydrodynamic regime agree with the exact relaxa-
tion time in the coilisionless regime is known from
work on other problems, such as the attenuation
of zero sound and first sound in Fermi liquids. '

Let us now turn to interband contributions to
e(0, v). The contribution to S(k) coming from the
periodic lattice has the form n, g„-6"„g, if one ne-
glects for simplicity the Debye-Wailer factor.
Substituting this expression into Eq. (21), which
is a valid expression at optical frequencies, one
finds

(0 g

«~[x«, ~}-x(K, 0}] . (29)

For values of ~ large compared with 1/7'„but
small compared with the interband threshold,
e(0, ~) is often expressed in terms of an optical
mass m~, defined by the equation

m vp 1
Ree(0 &u)= 1—

fPlI3 (d2
(so)

Assuming that I/r, „is small compared to the char-
acteristic frequency over which x(K, ~) varies, and

using (29) and (30), we find

+z va s x(K 0} (sl)
m~ g 6m Z

If X(K, &u) is calculated in much the same spirit as
we calculated ImX(k, &u) earlier, taking into account
only single quasiparticle-quasihole states, Eq.
(31}reduces to the usual second-order perturba-
tion theory expression for the average effective
mass of the electrons, the effective electron-lattice
interaction again being given by V».

"[Eq. (26)].
However, Eq. (31) is valid even if more general
expressions for X(K, &u) are used.

The interband optical absorption may be deter-
mined from Eq. (29), and the result agrees with
that of Hopfield, 5

2

Ime(0, (u)= ——
4 p V». ImX(K, &u) . (32)

K

If one uses random-phase approximation (RPA) or
Hubbard expressions for the response functions
of the homogeneous electron gas4 both to infer
values of V» from Fermi-surface data, [see Eq.
(26)] and to estimate X(K, ro), Eq. (32) does not give
a satisfactory account of the experimental data.
These difficulties have been ascribed to the inad-
equacy of the assumption that the pseudopotential
is spatially local and energy independent. '

Finally, we discuss the frequency and damping
of long-wavelength plasmons. These are given by
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the zeros of e(0, (()), which occur at a frequency
co'= ~~ —iv&, where, to second order in the pseudo-
potential,

I
k' V—=1++» S(k) [Rel('(k, (d~) —y(k, 0)],

(0)
k k

(b)

(33)

+a k~ V—'S(k) Iml((u, (d ) . (34)
(d " 6' (d p

Equation (33) does not contain the effects of the
polarizability of the core electrons; these are dis-
cussed by Pines and also by Hedin. ' In deriving
(33) and (34) we used Eq. (21) which is valid since
~~» Q~. To determine the frequency and damping
of plasmons with finite wave numbers one must
calculate directly l(~„(k, &u). The contributions of
second order in the electron-ion interaction can be
expressed in terms of a four-point function for the
homogeneous electron gas. However, this correla-
tion function cannot generally be expressed in
terms of two-point functions as it can in the long-
wavelength limit.

IV. EFFECTS OF PERIODICITY ON PHONON SPECTRUM

In this section we consider how modifications of
the electron gas by the periodic ionic lattice affect
the phonon spectrum. Consider a system contain-
ing n~ ions per unit volume. We assume the equi-
librium positions of the ions lie on a periodic lat-
tice. The electron-ion interaction [Eq. (8)], when
expanded to second order in the phonon operators
qp, has the following form:

I/2

i/„, =r (pii)vvpv —i Z +) (k K)'i;, v;.»v;v;.v
K k~K

™

FIG. 1. Diagrams for the harmonic contribution to
the dynamical matrix due to the electron-ion interaction.
The hatched circles correspond to correlation functions
for the electrons, including electron-electron interactions
and electron-ion interactions.

/Here l((k+ K, —k —K ) is the density-density cor-
relation function for electrons moving in the peri-
odic potential produced by the lattice. For the
purpose of calculating phonon frequencies one may
make the adiabatic approximation, and therefore
electronic response functions may be evaluated at
zero frequency. Also the effect of phonons on the
motion of electrons gives rise to contributions to
D of relative order (m/M)'~» and may be neglected,
as has been shown by Mj.gdal.

Let us now transform the second term in (36) to
exhibit clearly the long-wavelength behavior. The
expectation value of the electron density at a point
x is a functional of the potential acting on the elec-
trons due to the presence of the periodic lattice;
we denote this latter potential by U(x ), and we
make the dependence of p on U explicit by writing
(p(x;[U(x')])). If x is increased by an amount a
and at the same time the static lattice potential is
translated by the same amount, the electron density
remains constant:

(p(x; [U(x')]))= (p(x+ a; [U(x + a)])) . (37)

Taking the gradient of Eq. (37) with respect to a
one finds

p», &(k&+ k»+ ks) (36)
v(v(*)) f d~ '

~
vV(x')=O, (38)

Here e~ is the polarization vector of the phonon of
wave vector k and polarization index i(, , and A(k)
—=gg 5» g is the pseudo-5-function. Within the
harmonic approximation the electron-ion contribu-
tion to the phonon dynamical matrix may be repre-
sented diagrammatically as shown in Fig. 1. The
hatched circles correspond to correlation functions
for the electrons including the effects both of the
periodic ionic lattice and also of electron-electron
interactions. The corresponding analytical expres-
sion for the electron-ion contribution to the dyna-
mical matrix is

D,'&' ——P n,'(k;+K, )(k, +K,)V»,gV», g.l((k+K, —k —K')
R, R'

—+ "rKK)V~(p'») . (36)
R

or, on performing a Fourier transformation,

K(Pr) —nag y(K, —K )K Vx. ——0
R'

Substituting (39) into (36) one finds

D';, '(k) = Z [(k(+ K;)(k;+ K,)U„,gU», g.
E7y R'

x P(k+K, —k —K ) —K;K~U»U~. l((K, —K )] .
(40)

This result has also been derived by other authors. ~3

In previous work it has been customary to re-
place g by its value for the electron gas in the pres-
ence of a uniform background of positive charge.
However, as we shall show later, such calculations
give results which, in the long-wavelength limit,
are inconsistent with calculations of the elastic
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constants based on second-order perturbation theo-
ry calculations of the energy of the system.

One way of taking into account the effect of the
periodic ionic lattice on the motion of the electrons
is to express X in terms of the plopagatox' fox' elec-
trons moving in a periodic potential. However,
such a procedure entails performing a band-struc-
ture calculation, and is very cumbersome. In
simple metals one expects band-structure effects
on the electrons, c response functions to be small,
and we therefore adopt an alternative procedure-
we expand y in powers of the electron-ion inter-
action. Our study of the long-wavelength limit will
show that the natural ordering parameter in the
terms occurring in the expression for D, &

is not
the total number of electron-ion interactions, but
rather the total number of electron-ion umklapp
processes —ones in which the total pseudo-wave-
number changes by a reciprocal-lattice vector. In
the discussion which follows we take into account all
terms which contain no more than two umklapp
processes; the appropriate diagrams in the expan-
sion of D;'&' are shown in Fig. 2.

The various graphs in Fig. 2 are correlated
parts of the two-, three-, and four-point density
correlation functions for the homogeneous electron
gas. The analytical expressions which correspond
to the diagrams shown in Fig. 2 are

k;k&U„y(k; p)

Zg (k, +z, )(k, +z, )U. f,gq(k+K), (41b)

-~ z,.z,U,'q(z), (41c)

Z„- (k, +Z;)k)Uf„any(k+K, —K, —k)Ur, (41d)

gg k, (k, +Z,.)U„U„„q(k,K, -k- K)U, , (41e)

~ Zg k(k;U„y(k, K, -K, —k)Ur (41f)

In (41), y(k) is the density-density correlation func-
tion for the homogeneous electron gas and the con-
nected parts (cumulants) of the three -and four-
point functions are denoted by y(q„qa, q„~ ~ .) where

q„qa, q„.. . are the momentum transfers at the
external vertices. A prime on a sum over recip-
rocal-lattice vectors means that the null vector is
to be excluded. %e have also introduced the nota-
tion U»= nzV, . In (41a) we have exhibited explicitly
the dependence of y on the chemical potential p, ,
since, as we shall see below, it is important to
take into account the fact that the chemical poten-
tial of the electron gas is changed by the electron-
ion interaction. Equation (41a) is the only termwhere
the corrections to the chemical potential are impor-
tant„ in all other terms the effects are of higher
order in the electron-ion interaction than the terms
we are considering. The shift in the chemical po-
tential p, —p. due to the electron-ion interaction
may be found by calculating the energy of the elec-
trons in the presence of the ionic lattice and then

differentiating with respect to the electron density.
To second order in the electron-ion interaction,
the energy density of the electrons, measured with

respect to the Hartree energy when the ions are
distributed uniformly, is given by

g, = g,"&+ -,' Pq U,'q(Z),

where h', 0' is the energy density of the electron gas
in the presence of a uniform background of positive
charge. By differentiating (42) with respect to the
electron density n, one finds

(43)

Thus to the required degree of accuracy we may
write (41a) in the form

k,k, U, X(k, p)=k;k, U„y(k, g)

I'IG. 2. Diagrams for the electron-ion contribution
to the dynamical matrix. Only those diagrams con-
taining no more than two electron-ion umklapp processes
are shown. The circles represent connected parts
(cumu1ants) of the two-, three-, and four-point density
correlation functions for the homogeneous electron gas.

From now on in this section all correlation func-
tions are to be evaluated with the chemical poten-
tial put equal to its value for the homogeneous
electron gas. Adding (41b)-(41f), (44), and the ion-
ion contribution D', &, one finds the following expres-
sion for D&&.
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D (k). =D' .(k). +k, k~U. »'X(k)+ sk;k, U»' r, U» +~ [(k +K )('kd+KJ)»-xX( +K)

+Q [(k(+K;)k, +k;(k, +K,)] U„,ffU»X(k+K, —K, —k)U»+ s Z k;k, U»X(k, K, —K, —k)U»

The ion-ion contribution may be written formally
as follows:

D, &
= k;k;nr'U»+ Q'nl [(k;+K;)(k, + K,.)U„,if —K K, g»], .

TV

(48) U»= U»/e(k), (4V)

To facilitate the discussion of the long-wavelength
limit we introduce a screened electron-ion interac-
tion and proper correlation functions. The screened
electron-ion interaction is defined by the equation

where 'U, is the Fourier transform of the bare ion-
ion interaction.

In previous calculations of phonon spectra the
last two terms in (45) and the term due to the chem-
ical potential shift have generally been neglected.
The possible importance of such terms has been
pointed out by Brovman and Eagan, and numerical
calculations which include these terms have been
carried out by Johnson and %estin2' and by Fehlner
and the author; even for Na, K, and Al these terms
have appreciable effects on the phonon frequencies.
Next we consider the behavior of the dynamical
matrix in the long-wavelength limit.

V. BEHAVIOR OF DYNAMICAL MATRIX AT LONG
WAVELENGTH

The elastic constants may be determined from
the long-wavelength limit of D;, (k) and it is instruc-
tive to compare these results with ones obtained
from calculations of the energy of the uniform
metal. As k -0 the bare electron-ion potential U,
behaves as 1/k2 whereas the various three- and
four-point correlation functions behave as k or k .

where

x(x)= (r ~, x(x) = r —
x x..(x)

4' ' 4@e
(48)

jW

( )
Xss(q2) qsx 11) Xss(ql) qsx q2)

Xq»q2)q3 =
( )

=
( )

etc( )
e (q, )e (q, )

(5o)

The arguments of y„ to the right-hand side of the
semicolon refer to the proper vertices.

On expanding Eq. (45) to second order in k, and

using Eqs. (47), (48), and (50), one finds

is the static dielectric function for the homogeneous
electron gas. X„(k) is the screened response func-
tion for the homogeneous electron gas. It is well
known that in the long-wavelength limit 27

lim X„(k)=- dn
(49)

0 dP

The proper response functions are defined by the
relations

k
D;,(k)=D';;(k)+ k;k~ n —U»» +Q U»X(K)+ 2 Q sK [U»X(K)] +Q Kr K K — [U»X(K)]

Z'(rr,'x (rr, -rx;o) ,'rr, rr S„(rr; xx. (rr ~ —-rx;- r)x)-l, x.I ~ l '(„"—",- 2'rr ',', r

d2

(51)

The indices l and m refer to two different cubic axes of the system. Equation (51) may be further simpli-
fied by using the following identities discussed in the Appendix:

X.(K, -K;0)=- X(K), (52)

lim X„(K,—K; k, —k) =-8'X(K)

0

B2
K &»X,.(k+K, —K; —k)= —,'K, X(K) .8E B)L(,

(58)

(54)
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Substituting Eqs. (52)-(M} into Eq. (51) we find

D(1(k}=D(1(k)+ k(k1 —U), 2 + n - + Q Ur X(K)+ 2 Q —,'K = Ur X(K)' 4me2 dn g
K

+-.s Z U, , +a,5„Q —— ', —K, = U,'X(K)-K U—,'X(K)l Ua ~'X(K), , 1 5K[K' 1 s

K2 2 1 8 2

~ IPI), f Z —P — K . U'l(K) —lf U f(K) +()K IU f(K))I (55)

The long-wavelength dynamical matrix for a cubic material may be expressed in terms of the elastic con-
stants by means of the relation

D(1(k) = (C1z+ C44)k(up+ (C11 —C13 —2C44)k(5(1+ C440 511

Comparing Eqs. (55) and (56) and using Eq. (46) for D;& one finds for the bulk modulus

fi= K(C11+2C13)=lim n1 1,
—U„4 2 +n —y 1+ —K- — + —K-=-- [n1'Ux+ UrX(K)]

2GP, I 1 8 1 8

~.0 4' dn . 2 ~K 18 ~K

~l UR sX(K) ~l 1K 8 8 sX(K}, 2 ~l U2 ~X(K)
(57)

The bulk modulus may also be determined from
the change in the energy of the electron-ion sys-
tem under uniform compression. To second order
in the electron-ion interaction the energy density
ls given by

X [U„'X(K)+11',mr], (59)

2 2 2
c Kl Km j. KC44=+ 4- K K —K [UrX(K)+n1'Ur]2

$(N)= ,n lim a+,—-+'U 4m@ 2'U~

~-0 ~ +fK — (U f(K) ~ )'U
)I (60)

+ —,'g,'V~-nIV r=O ~ 8,"'n +-, U~2y K

(58)

The first term in (58) is the long-wavelength con-
ti lbutlon to the Hartree energy the second term
is a formal expression for the Nadelung energy
['U(1 = 0) is the electron-ion potential for zero spa-
tial separation], the third term is the energy den-
sity of the homogeneous electron gas, and the final
term is the correction to the energy due to the
periodic part of the electron-ion interaction (the
band-structure energy). 8 is given by n' d$( s}/nd,

and using Eq. (58) for 8(n) one obtains Eq. (5V)
for B. Thus the calculations of 8 from the phonon
dynamical matrix and from the second-order per-
turbation theory expression for the energy are con-
sistent with each other.

Expressions for the other elastic constants may
be obtained from Eqs. (55) and (M); the results

2 ~I

C11+ 2C44 &(t'44+ 2C1)++ 3K + KK
g eE 8K

The important conclusion of this work is that one
must include in calculations of the dynamical matrix
terms of third and fourth order in the electron-ion
interaction if results are to be consistent with cal-
culations of the elastic constants based on the
second-order perturbation expression for the en-
ergy. The reason for this is not difficult to see:
Jt is that the long-wavelength screened electron-ion
interaction depends only on electronic response
functions and is independent of the details of the
bare electron-ion interaction; consequently some
terms in D of third and fourth order in the elec-
tron-ion intexaction reduce to second-order terms
in the long-wavelength limit. The only electron-
ion interactions which appear explicitly in the long-
wavelength limit are ones which involve umklapp
processes.

As we noted above, in the long-wavelength limit
the screened electron-ion interaction U~ tends to
-Ndg/dn. Such energies are comparable to typical
excitation energies of the homogeneous electron
system, and consequently long-wavelength compo-
nents of the electron-ion interaction cannot be
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treated as a small perturbation. However, the elec-
tron-ion interaction at an umklapp process always
corresponds to a wave number lying outside the
first Brillouin zone, and the magnitude of the
screened interaction for such a process will be con-
siderably less than n dp/dn T. hus, at least for
long-wavelength phonons, the total number of um-
klapp processes is a useful parameter for ordering
contributions to the dynamical matrix. For wave
numbers near the boundary of the first Brillouin
zone the situation is less clear; U~ is then com-
parable to the screened interaction for some um-

klapp processes, and therefore the total number of
electron-ion interactions will probably be a better
ordering parameter.

The fact that second-order perturbation theory
calculations of the dynamical matrix are inconsis-
tent with calculations of the elastic constants based
on second-order perturbation theory calculations
of the energy of the uniform metal has previously
been pointed out by Wallace, who evaluated the
magnitude of the difference between the two expres-
sions for the elastic constants for a number of
simple metals. In the above calculations we have
to obtain consistency between the two ways of cal-
culating the elastic constants.

VI. DISCUSSION OF RESULTS FOR PHONON
DYNAMICAL MATRIX

Let us first consider the expression for the bulk
modulus, Eq. (57). The first term is the difference
between two divergent quantities and results from
the dependence of the energy of the bottom of the
conduction band on the volume of the system. The
second term is the bulk modulus of the electrons in
the absence of the periodic lattice and the final
term is a correction to the bulk modulus of the elec-
trons due to the periodic lattice. The third term
in (57) is the contribution from the bare ion-ion
interaction 'U~, as well as a contribution from what
may be regarded as an electron-induced ion-ion
potential V» y(k). The remaining terms come from
the density dependence of li(K); neither these terms
nor the corrections to the bulk modulus of the elec-
trons would appear if contributions (41d)-(41f) were
omitted in the calculation for the dynamical matrix.

As has previously been pointed out, ' if the
terms (41d)-(4lf) are omitted, D;, is given by '~e
same expression as D', , [Eq. (46)j but with the bare
ion-ion potential & „replaced by an effective ion-ion
potential U»+ V» li(k). In other words in this approx-
imation the electron-ion interaction gives rise to
an additional force which acts only between pairs of
ions and which depends only on the separation of
the ions. When (41d)-(41f) are included in the cal-
culation the effect of the electron-ion interaction is
not so simple —the force between two ions depends

not only on the separation of the ions but also on
the position of the two ions relative to the other
ions in the system.

Next we return again to the long-wavelength
limit to show how the low-order perturbation cal-
culation above is related to more general results.
As one can see from Eq. (36), the contribution to
D', , '(k) which does not involve umklapp processes
at the electron-phonon vertices is given in general
by

n kl, k)Vl»i(k, k) . (61)

Just as in our earlier discussion of the transverse
response of electrons moving in a periodic lattice,
one can define a dielectric function e (k) which is
given by the ratio of the applied electrostatic field
of wave number k to the total electric field at the
same wave number, the ratio being evaluated when
the only component of the external field has wave
number k. This dielectric function is given by

[e(k)j '= 1+ (4xe'/k )g(k, k) (62)

One can also define a screened response function

l7„(k) given by

l7.,(k) =q(k, k)~(k) . (63)

li„(k) consists of all contributions to y(k, k) which
do not involve a, polarization process of momentum
k. As we show in the Appendix,

dn
lim y„(k) =-

p

(64)

Thus in the long-wavelength limit we may write

k;k, U, g(k, k)= —k;k, U, —

q +ktk; 1+0' ' ' 4me' ''dn, u~

(65)

If in the calculation of the bulk modulus we had
used the full expression for li(k, k) instead of an ap-
proximate expression, the terms

»d& i »~IU2 eX(A)n, + ~n ~ UEan g 9n

in (57) would have been replaced by n' dg/dn. In
fact,

dg ~ pl 2 & lf(K)
dn g gn

is dP/dn calculated to second order in the electron-
ion interaction.

The compressibility z of the electron system s
is given by

1 ~dp=n
K dn

If one defines a macroscopic sound velocity s for the
electrons s by the relation
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3 dpms =n —=—
dn nK

the contribution to D', &' may be written as

ns k;k) (68)

which is an obvious generalization of a result of
Pines to the case of electrons moving in a periodic
potential. It should be noted that in (66) the variation
of the electron density is to be performed leaving the
configuration of the lattice unaltered. Our discus-
sion could have been couched in terms of diagram-
matic techniques and Nard identities, as stated by
Heine, Nozieres, and Wilkins, ' but we prefer to
exhibit the physical meaning of the results by de-
riving them from macroscopic considerations.

It is instructive to examine in a little detail the
origin of the term

2. U, a)i(ff)

which occurs in (5V). In the calculation of the bulk
modulus from the dynamical matrix it arose from
two contributions —the correction to the chemical
potential in (41a), and from (41f). The latter term
describes the effect of the scattering of electrons
from the lattice, the chemical potential of the elec-
trons being held fixed; if all possible scatterings
of electrons from the periodic lattice were taken
into account the result would be equivalent to re-
placing all the plane-wave electron propagators in
the expression for y(k) by Bloch wave propagators.
If the chemical potential is held constant, the den-
sity of electrons in the presence of the ionic lattice
will generally be different from its value in the
homogeneous electron gas. The change in the
chemical potential ensures that the density of elec-
trons remains constant.

VII. CONCLUSION

Most calculations of properties of metals entail
rather lengthy calculations, and it is frequently dif-

ficultt

to know which particular assumption is re-
sponsible for any discrepancy between theory and

experiment. Is it due to many-body effects, to the

inadequacy of the bare electron-ion interaction
used, or to the use of low-order perturbation theory
in calculating the effects of the electron-ion inter-
action? The work described above may be used to
provide a partial answer to this question since it
shows how, within the framework of a local, en-
ergy-independent pseudopotential model, one may
take into account electron-ion interactions and

many-body effects. The identities derived in the
Appendix also provide a consistency check on ap-
proximations for the correlation functions for the
homogeneous electron gas.

A number of extensions of the above work may be
easily carried out. First, higher-order electron-
ion interactions can be included, and second, the
effects of anharmonicity can be included in the pho-
non calculations. A third less str'aightforward
extension is to the case of nonlocal and energy-de-
pendent pseudopotentials. One way to proceed is
formally to calculate quantities in terms of Bloch
wave states for the electrons, and then to expand
the Bloch wave propagators in a plane-wave basis. ~'

Another method, closely related to the orthogona-
lized-plane-wave (OPW) method for calculating
single-electron states, has been described by Bas-
sani, Robinson, Goodman, and Schrieffer. ' In
both these methods one has to exercise caution in
estimating the magnitude of terms, since projection
operators which appear in the formalisms have
the property that I' = I'; iri other words the order-
ing of terms in a perturbation expansion is ambig-
uous,

Note added in proof. A discussion similar to
our own of the long-wavelength phonon spectrum
has recently been given by E. G. Brovman and
Yu. Eagan, Zh. Eksperim. i Teor. Fiz. 57,
132V (1969) [Soviet Phys. JETP 30, 721 (19VO)],
and E. G. Brovman, Yu. Eagan, and A. Kholas,
Zh. Eksperim. i Teor. Fiz. 57, 1635 (1969)
[Soviet Phys. JETP 30, 883 (1970)] .
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where 5Ug is the screened potential and X„and e
are defined in Eqs. (62) and (63). Now in the long-
wavelength limit, equilibrium will be reached when

the sum of the local chemical potential g( r)and the
local screened potential are constant; that is,

p (r)+ U(r) = const. (A4)

APPENDIX

Here we derive a number of long-wavelength prop-
erties of response functions. First, we consider
}t(k, —k). If a weak external potential 5UI is applied
to a system of electrons moving in a periodic lat-
tice, the response of the system at wave number k
is given by

5(p"„)= g(k, —k)5U„ (Al)

= X„(k)5U„-/r(k} (A2)

= y„(k)5UI (A3)
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Thus, using (AS) and (A4) we may write

lim g„($)=lim—6(p„-) d n dn

~o " ao &Ui dU
(A6)

from which it follows immediately that

6q(A) Sq(K)
(AO)

y„(K, —K;0)=-
ep,

(A6)

which is the first of the required identities.
The remaining identities are for response func-

tions for the homogeneous electron gas. The first
two of these are s'x(z)

2K V"y(@+K, —K; —&}=K
8KBp.

To prove this we first observe that

(Alo)

which is Eq. (A6). Equation (A7} follows from
(A6) by a second application of 8/Bp.

The third identity is

lim y„(K, —K;k, —k) =
&'X (K)

(Av)
sAs

=
sZ XSK&p, 8K

(All)

6g(r)+ 6U(r) = 0 (A8)

One way of proving these identities is to use dia-
grammatic methods T.he operator S/Sp acting on

an electron propagator generates a density vertex
carrying zero frequency and whose wave number
tends to zero. Moreover, since the zero-wave-
number Hartree terms have been eliminated from
the calculation of properties of the homogeneous
electron gas, the vertex generated by &/Sp. is
proper.

A second approach has a more physical interpre-
tation. y„(K, -K;0) is the linear response of y(K)
to a long-wavelength screened field 6U(r). Now,
as we mentioned above [cf. (A4)], equilibrium will
be established when

which follows from Eq. (A6). Consider now the

quantity y„(K+K, -K —k;0) —y„(K, —K;0), which

we write in the following way:

y„(K+k, —K —k;0) —y„(K, —K;0)

=y„(K+k, - K —k;0) —y„(K+k, —K;-k)
+ y„(K+k, —K; —k) —)(„(K,—K; 0)

= 2[y„(K+k, —K; —k}—y„(K, —K; 0}] 1+ 0

(A12)
In deriving (A12) we used the invariance of the re-
sponse function under the parity transformation.
Equation (A10) follows immediately from (A11) and

(A12).
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The thermodynamic potential of a metal in the presence of a weakly nonuniform magnetic
field of induction B(r) is evaluated. The calculation is a mean-field theory for the interac-
tion between the magnetization at different points in the metal, and is restricted to magnetic
field strengths for which the Fermi energy is large compared to the separation between
I.andau levels. An integral equation for the spatially varying part of the magnetic induction
is obtained by minimizing the appropriate thermodynamic potential of the system. The sol-
ution of this integral equation is studied. Both domain-type and magnetization-density-wave
solutions can be obtained for appropriate Fermi surfaces. The nature of each of these sol-
utions as discussed.

I. INTRODUCTION

There has been considerable interest recently in
the effect of the magnetic interactions among the
conduction electrons on diamagnetism in metals.
This problem first arose with the study by Shoen-
berg' of the wave shape of de Haas-van Alphen
oscillations in silver. Shoenberg suggested that
the magnetization M of the real metal as a function
of the magnetic field strength H could be approxi-
mated by the magnetization of a system of nonin-
teracting electrons in the presence of the field
B=H+4mM. This conjecture agrees with a simple
self-consistent-field calculation of the magnetiza-
tion. Pippard showed that this prescription for
determining the magnetization could lead to a
multiple-valued function M(H), and he investigated
the thermodynamic behavior of the system as a
function of H. He found that the path of minimum
free energy led to an abrupt jump in the magnetiza-
tion in the region where M(H) is multiple valued.
In Pippard's work, the sample was implicitly as-
sumed to be a long thin rod oriented parallel to
the applied magnetic field. A very interesting sit-
uation, first pointed out by Condon, arises when

the sample has a finite demagnetizing factor. In
that case, there can exist a region of applied mag-
netic field strength in which no portion of the H- 8
isotherm is thermodynamically stable. As shown

by Condon, the sample must in this case spontane-
ously divide into regions with different values of
the magnetization, and a domain structure results.
The domains are regions in which the magnetiza-
tion is uniform; in the domain walls the magnetiza-
tion changes smoothly from its value in one do-
main to its value in the neighboring domain. The
behavior of the system is analogous to the conden-
sation of a gas, with the two different states of
magnetization playing the roles of the liquid and

gas phases.
Another interesting possibility, the magnetiza-

tion-density-wave (MDW) state was first suggested
by the study of the wave-number-dependent sus-
ceptibility' y(q). If we define r(q) =dM(q)/dB(q),
then the wave-number-dependent permeability p(q)
=dB(q)/dH(q) is equal to [I—4vy (q)] '. When

4m'(q) becomes equal to unity, p(q) diverges. This
implies that the system is capable of sustaining a
nonvanishing spatially varying magnetic induction
dB, without any driving force dH, . For the free-
electron modele X(q) is given by

(FjM /aa ) [2J,(qr, )/qr, ]',
where Mo and 80 are the spatially uniform magne-
tization and induction and r, is the cyclotron ra-
dius of the extremal orbit on the Fermi surface.
J,(x) is the Bessel function of order unity. In


