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The coherent-potential approximation, which has been successfully used to describe the elec-
tronic structure of a nondilute binary alloy A„B& „, is reformulated in a diagrammatic way suit-
able for the calculation of more complicated transport coefficients. This approach is applied
to the calculation of three elementary transport coefficients; the conductivity o., the thermo-
electric power Q, and the low-field Hall coefficient R~. The appropriate response functions
are evaluated for a simple cubic tight-binding model. The rigid-band limit is considered in detail,
with emphasis on the role of critical points. As the random alloy potential increases, devia-
tions from rigid-band behavior —for example, Nordheim's rule —become more pronounced
for unexpectedly small scattering strengths. However, the usual relations among the trans-
port coefficients, e.g. , Mott's equation between Q and o, are maintained. The conductivity
is no longer symmetrical with respect to electron and hole concentrations. Furthermore, the
change in sign of Q and RH may not occur when the band is half-full. Therefore, the identifi-
cation of the carrier sign becomes ambiguous. For the model treated, numerical calculations
are quite tractable. Examples are given which illustrate the behavior for a wide range of
alloy parameters.

I. INTRODUCTION

The coherent potential approximation (CPA),
which was originally formulated' to provide an
approximate description of the equilibrium proper-
ties of nondilute random substitutional alloys
AQ, „having arbitrary concentrations and scat-
tering strengths was recently extended ' to apply
to transport properties. In Ref. 4 attention was
focused on the electrical conductivity which was
calculated for a simple band model. The present
paper extends these considerations to more general
transport coefficients, the thermoelectric power,
thermal conductivity, and Hall coefficient, and
presents a diagrammatic way of calculating trans-
port properties within the CPA. While this ap-
proach and that of Ref. 4 are identical for the case
of the conductivity, the diagrammatic approach is
to be preferred because it is easily applied to
transport in the presence of an additional external
field, e. g. , the Hall coefficient. As in Refs. 3
and 5, we consider the band to have a simple cubic
tight-binding structure. This will permit an inves-
tigation of the inQuence of critical points on trans-
port properties and how this alters upon alloying.

The CPA is a self-consistent description, closely
related to effective field theories formulated in
connection with other physical problems and based
on a single-site approximation. Independent elec-
trons propagating in an effective crystalline med-
ium, characterized by a complex self-energy Z(E),
are scattered by randomly distributed atomic po-
tentials measured relative to Z(E). The equilib-
rium properties are obtained from an approximate

representation of the single-particle Green's func-
tion for the alloy derived using multiple-scattering
theory. The response functions characterizing the
transport coefficients are calculated by means of
similar approximations for the two-particle Green's
function, and, in the case of the Hall coefficient,
for the three-particle Green's function.

The single-site approximation assumes that the
total scattered wave in the medium is a sum of ef-
fective waves each coming from a single atom.
Fluctuations in the effective wave coming from a
particular atom in a given configuration are neg-
ligible when referred to the configuration averaged
wave of that atom. This provides an equation for
the self-energy in the CPA and motivates the two-
and three-particle decoupling schemes which form
the basis for an approximation of the transport
coefficients.

In connection with both equilibrium and transport
properties, the CPA is applicable to alloys of ar-
bitrary concentrations and moderate scattering
strengths. It produces correct results in the weak
scattering and the dilute alloy limits and yields
the third-order correction to the rigid-band calcu-
lation of the conductivity as well. ~ It is to be
emphasized that it can be applied to alloy systems
whose components have arbitrary band shape.
However, it is restricted in its present form to
short-range scattering potentials and to alloy com-
ponents which have only a single band. As in Ref.
1, the electrons are assumed to interact only with
the fixed atoms of the alloys. The effects of pho-
non scattering are neglected.

The paper is divided into five sections. In Sec.
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II the macroscopic and microscopic transport co-
efficients are defined and the necessary apparatus
needed to calculate the latter is discussed. We
adopt a simple cubic tight-binding band model for
the pure crystal and neglect the electron-electron
interaction. The alloy is also assumed to be in a
weak uniform magnetic field which is treated
quasiclassically. The ingredients needed to cal-
culate the microscopic coefficients are just the
unperturbed alloy Hamiltonian in an external mag-
netic field and the perturbation terms which rep-
resent the effect of external electric fields and
temperature gradients. Using time-dependent
perturbation theory the transport coefficients are
expressed in terms of single-particle correlation
functions and the Kubo formulas for the magnetic
field-dependent (Hall) and field-independent con-
ductivities at zero frequency and wave number are
derived. It is shown that Mott's relation between
the conductivity and the thermoelectric power is ob-
tained simply from the field-independent conduc-
tivity.

In Sec. III the approximate coefficients are de-
fined as configuration averages of the exact trans-
port coefficients evaluated in the CPA. A brief
review of the single-particle CPA is given in Sec.
III A. In Sec. III B a diagrammatic two-particle
decoupling scheme consistent within the CPA is
introduced, which reduces to that of Ref. 4, and in
Sec. III C it is extended and applied to a three-par-
ticle decoupling. It is shown here that the approxi-
mations are consistent with such general properties
of response functions as the Onsager relations. In
Sec. IV a brief proof is given that the vertex cor-
rections in the magnetic field-dependent and field-
independent conductivities vanish. Physically this
is equivalent to the statement that there is no back
scattering within a Boltzmann equation context,
and results from the assumption that the scattering
is short range and therefore isotropic.

Finally, in Sec. V, easily evaluable expressions
are given for the conductivity, the thermoelectric
power, and the Hall coefficient. These are dis-
cussed and compared with the Boltzmann equation
results. In Sec. VA the conductivity, thermoelec-
tric power, and Hall coefficient are numerically
calculated and displayed graphically as functions of
Fermi energy E~ for fixed scattering strength 6
and impurity concentration x at zero temperature.
The rigid-band limit is discussed first, for com-
parative purposes, and the role of critical points
in the pure crystal density of states is emphasized.
It is seen that because of their dependence on the
relaxation time [(ImZ) ], the conductivity o and
thermoelectric power Q vary rapidly in the energy
region around the critical points, whereas the Hall
coefficient which depends primarily on ReZ is not

II. TRANSPORT COEFFICIENTS

The exact linear phenomenological relations be-
tween induced macroscopic electrical and thermal
currents, J and J' and external driving forces, in
this case, an electric field E and temperature
gradient VT are

J=L~EE+L@z VT

J'= LzEE+Lzz, VT . (lb)

The L's are the transport coefficients; L~~ is the
electric conductivity, —Lzr /Lzz the thermoelec-
tric power, L»/Lzz the Peltier coefficient, and

L»+ L»L»-/Lzz the thermal conductivity. The
coefficients are tensor quantities, in general.
However, in a cubic crystal and in the absence of
an external magnetic field, the thermoelectric
power and the conductivity are scalars. If a weak
magnetic field is then applied, the diagonal ele-
ments of L~~ to first order in the field II will be
unchanged, but the off-diagonal elements will con-
tain field-dependent terms. These off-diagonal
elements of L» having both components trans-
verse to the field play an important role in the
Hall effect since the Hall field E~ is given in terms
of the Hall coefficient R„by

strongly affected by them. Variations in each of
the three coefficients with increasing 5 are then dis-
cussed. Here it is observed that for unexpectedly
small 5, the rigid-band approximation is not valid.
As 5 is increased, the most striking behavior is
seen in 0 and Q; R~ as a function of E~ does not
appreciably change with alloying. It is also evident
that the signs of Q and R„are not directly related
except at the band edges.

In Sec. V B the g dependence of two transport
coefficients 0 and R„for fixed electron concentration
per atom is discussed. It follows from Mott's re-
lation that Q can be obtained from o(x) and from the
Fermi energy as a function of x. While this dis-
cussion is more pertinent to actually encountered
experimental situations than that of Sec. V A, the
results are more difficult to interpret because they
depend on the variation of the Fermi energy with x.
The weak scattering limits for the resistivity,
p= o ', i. e. , the Nordheim x(1-x) dependence, and
for the Hall coefficient are considered first. As 6

increases, significant departures from rigid-band
behavior are apparent in both the resistivity and
Hall coefficient as functions of x. These are dis-
played graphically for several values of the elec-
tron concentration per atom and for fixed 5. It is
again seen from this discussion that the behavior
of the resistivity is dependent on that of ImZ while
R„depends primarily on ReZ.
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Lzz(H) = —Lz'z(H),

L~g= L~g,ij

Lzr= —Lrz/T ~

(4a)

(4b)

(4c)

which are consequences of time-reversal symmetry
and independent of the nature of the system consid-
ered. In Eq. (4a), as throughout the paper, the
field-dependent conductivity is assumed linear in H.

The system can be described microscopically by
defining time- and space-dependent coefficients,
for example, Lzz(r, r'; t, t') where y and y', t and
t' refer to the point and time at which J and E are
measured, respectively. Analogous definitions
can be made for other microscopic coefficients as-
sociated with L», L», and L». Taking Fourier
transforms of the microscopic coefficients leads to
quantities L(k, k'; v) which describe the wave num-
ber and frequency response of a system. This re-
sponse is assumed to be translationally invariant
in time but not necessarily in space,

The calculations of the microscopic coefficients
are specified by the following assumptions about
the alloy system:

(i) The alloy has a, single band. In the pure crys-
tal it is simple cubic tight binding, has width 2u,
and is characterized by an energy wave-number
dispersion relation relative to its center given by

E~=R~Hx J,
which involves current components perpendicular
to the magnetic field. In the weak-field approxi-
mation, it can be shown' that if the field is in the
g direction,

Rz ——H 'Lzz/(Lzz)

For free electrons, using the Boltzmann equation
Rz is given by Rz = (nec) '.

While the Hall coefficient is frequently used to
determine the density and sign of the charge car-
riers, its interpretation is not entirely clear-cut
for general band shapes when ne becomes a com-
plicated function of the Fermi-surface geometry.
The thermoelectric power also depends linearly on

e, the electric charge. But because of its different
dependence on band shapes and scattering mecha-
nisms, the nature of the predicted charge carriers,
as obtained from the sign of Q, may not agree with
that of R~.

The transport coefficients satisfy the Onsager re-
lations"

and is given to first order in H by

J=e(v —eA" M /c), (lob)

where the velocity and the components of the effec-
tive-mass tensor are, respectively, given by v(k)
= V~ W(k) and M&I(k) = B W/Bk, Bk& in units for which
h= 1. In the case of a simple cubic tight-binding
band Eq. (5), A and M ' commute. For more
complicated band models it would be necessary to
include symmetrized terms in (10b). For the sake
of simplicity, the discussion is limited to models
for which the off-diagonal mass components vanish.

The magnetic interaction term in the weak-field
case is

X = —J A /c= —ev ~ A /c.

Consequently, to first order in H, the Hamiltonian
equation (8) may be written

X= W(p)+ V(R)+X =X +X

X = V(R)+ W(p),

where E„=e" or & depending on whether an A or a
B atom is at site n, and b„ is assumed independent
of alloy composition. W(p) is the pure crystal
Hamiltonian in which &"= & =0. R is the site coor-
dinate. Such a model has the obvious shortcoming
of assuming the "atomic energy levels" E" and &

to be independent of alloy composition, which, in
general, is not the case. This particular model
has been adopted here as well as in previous pa-
pers" ' to avoid complications. "

(iii) Only external fields which are slowly vary-
ing relative to the unit-cell dimensions will be con-
sidered. Consequently, the difficult questions
which arise concerning the meaning of local ther-
mal equilibrium of a system subjected to a nonuni-
form thermal gradient are avoided. Furthermore,
the quasielassical Hamiltonian

X= W(p -eA™/c)+V(R) (8)

for the magnetic field may be used under these
conditions. Here A™is the vector potential corre-
sponding to the magnetic field. H= Hz and R is re-
garded as a continuous variable.

A is written in the symmetric gauge at the outset
as

A =-,'HxR. (8)

The single-particle current operator is'

J= eVPC (10a)

W(k) = —3w(cosak„+ cosak, + cosak, ),
where a is the unit-cell dimension.

(ii) The Hamiltonian is given by'

X =g
~
n) E„(n~+ P ~n) b„(m~

n |iP m

(6)

The present discussion will always be limited to the
weak-field approximation, and no powers in H high-
er than the first will be considered.

Additional terms must be added to X if an exter-
nal electric field and temperature gradient are ap-
plied to the system. The effects of the electric
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field are given by

X (t) = —c 'f d R J(R, t) . A {R,t), (13)

where J(R, t) is the single-particle current density
operator in the interaction representation

8-k e(f -t')
g(t —t') = lim —d(o

2m M +26
(23)

integrating both sides of Eq. (19) over all R. It
may be shown, '3 using the transform of a step func-
tlonp

J(t) =e' 'J(0) e '

E
= V'U= —Eet

(14) that

(is)

L@s{0&(&)) (() Xgg (0& K)

x f „d~'X&'~' (0, (~) [(&—~ )~ ] &

(24a)
Similarly,

TLET(0& +) ~ X J J'(&(0& (()) + tv

To describe the slowly varying thermal gradient
(5T/T« I), we introduce the following Hamiltonian:

X'(t) = —f d'R J'(R, t) ~ A'(R, t), (16)
&& f„der 'Xzz, (0, & ) [((() —~ )~ 1

(241)
where x~~, is given by Eq. (21) with the second J
replaced by O'. The Cartesian indices on y~~, have
been omitted because we are interested only in its
diagonal elements (H independent) which are the
only ones that appear in a cubic crystal. In the
same way L» and L» may be calculated by de-
fining the appropriate response function y" and
using the perturbation Hamiltonians discussed
above.

As a consequence of their analyticity in a half-
plane, the response functions can be shown to
satisfy properties which a,re listed in Appendix A.
Using these properties we may conclude that for
static (~= 0) responses which are of interest here,
the imaginary contributions to L» and L» will
vanish. Thus,

eJ' = —,
' [R, J],—pJ

is the thermal current and p, is the chemical po-
tential. In analogy with the electric vector poten-
tial

L~'s(0, o) = ~ ' X~i'(0 ~)
I .=0

—TLsr(0& 0) = ~ Xg J ~(0& (&')
I (&=0 &

(25b)

L'@~@(0& 0; H) = —i v (P

&f du)'X,"~"(0, (u'; H)/~" . (25c)where the current response function

8A' V'T

Bt T (i6)

Although (16) differs from the usual form of the
Hamiltonian describing thermal disturbances, '3 it
is equivalent in the sense that all thermal trans-
port coefficients derived from ' are identical to
those derived from the other Pamiltonian.

Using (13), it follows from time-dependent per-
turbation theory that the expectation value of the
current at 8 and t induced by a weak external elec-
tromagnetic potential A is

(&(», ))), c'f&&R f=»' »,",()))')'; & &)'-
xA*(&)', &')&(- ) X*(&&&), ((&),

X~~(RR'; t —t') = —,
' Trp(X) [J(R, t), J(R', t')] (20)

-=—,'
& [J(R, t), J(R', t')]), (2l)

is a tensor quantity having ij elements y~z . The
brackets ( )r denote a thermal average and

p(R) = [expP(X —p)+ 1] '

The arguments H in Eq. (25c) refer to the fact that
these quantities depend linearly on the magnetic
field H. '

The onsager relations may be verified for the
microscopic coefficients L»(0, ~) and Lsr(0, u&)

using the results in Appendix A. Because

is the single-particle density matrix, where P
= (t,T)

Identification of X~&(k, (()) with Lss(k, v) is made
possible by taking Fourier transforms. The prob-
lem of reducing a double Fourier transform con-
taining two spatial coordinates to a single txans-
form for small but finite wave vectors k may be
circumvented in general along the lines summarized
by Ehrenreich' by taking spatial averages of the
response functions. However, the zero-wave-vec-
tor response functions may be obtained directly by

xz~i (0& (()) =xz~J (0& (()) &

XJ z'~ (0, ((); H) = —Xz'J'(0, u&; H),
and in analogy with (25b),

Lrs(0& 0) = ~ 'Xz'z(0& ~)
~ ~=0 &

It follows that,

L,",(0, o; H) = L~*,(o, o; H), -
L",,(0, o) = Lg, (0, o),

(As)

(A6)

(26)

(2Va)

(27b)
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and

Lzr(0, 0) = —Lrz(0, 0)/T, (27c)

which are identical with Eqs. (4).
The macroscopically observable quantities corre-

spond not to the transport coefficients for a given
alloy configuration, but to the configuration-aver-
aged coefficients (L). To calculate these quantities
it is convenient to separate thermodynamic and con-
figuration averages. This simplification can be
made by use of the identity

p(X) = f d)}p(n) 5(7}-X) . (28)

From Eqs. (20) and (25a), we then obtain for the
configuration-averaged conductivity

(L'z~z(0, 0)) = -,' lim f f dpi dte'"" ' '
tel t 0

x (d 'Trp(q)(6(q -X) [d'((t), Jq(t')]).
(»)

The temperature-dependent factor p(q) is thereby
seen to be separated from the configuration-aver-
aged quantity appearing in the brackets on the right-
hand side of Eq. (29). From now on we shall drop
the arguments in (LJ~z (0, 0) ) and write simply
(L'zz). Performing the t integration and evalua-
ting the limit yields for the field-independent con-
ductivity

(Lzz) = —zf dip'(q) Trev, ( 5(q -X ) ev, 5(q -X )).
(30)

(5(q -X)d, 5{q-X)), (34)

which contains all of the dependence of the (L)'s on
the random Hamiltonian. However, because this
average is difficult to perform exactly, it is the
purpose of Secs. III and IV to evaluate (34) approxi-
mately. The remainder of this section is devoted
to rewriting Eqs. (30)-(32}in a form suitable for
approximation. We introduce the magnetic field-
dependent and field-independent Green's functions

and

C(If, z) = (z -X)-' (35)

equation is sometimes referred to as Mott's rule.
This simple result derives from the application of
Eq. (28) which makes it possible to separate ther-
modynamic and configuration averages.

Mott's relation is an exact result for noninteract-
ing electrons independent of the details of the sys-
tem considered. It should be emphasized that the
weak scattering assumptions which are ordinarily
used in its derivation are not necessary, nor are
any of the assumptions made earlier concerning a
specific band shape.

Except for the single-particle picture, no approx-
imations have been made up to now. The disordered
system has been treated exactly. However, Eqs.
(30)-(32) are very difficult to handle because of
their dependence on the complicated random alloy
Hamiltonian. To evaluate the averaged coefficients
explicitly, we need to consider

Similarly, one obtains,

T(Lzr) = ve [f d)}p'(q)q Trev, (5(q -X')

x ev, 5(7}—X')) —p(L, z'z) j, , (31)

G( ) = (z -X') ', (s8)

where X=X +K is the Hamiltonian for the alloy
in a magnetic field. To first order in the field

and the field-dependent conductivity is given by

«," (zf)f) =-t(y ff end(d'~' '['p(n) -p(n+~')1

G(H, z) =-G(z)+(-"(z)X G(z) .

By defining

(3&)

xTrd, (6(q+(O'-X) J&5(q-X)). (32)

Because the first two expressions are field inde-
pendent, they contain the Hamiltonian X in Eq. (7).
The last expression contains the field-dependent
Hamiltonian X of Eq. (12) and the field-dependent
current operators (10b). Equations (30)-(32) are
just the configuration-averaged Kubo-Greenwood
formulas. '

At this stage it is possible to eliminate (L»)
completely and to solve for the thermopower Q in
terms of (Lzz). Using the low-temperature ex-
pansion of the single-electron density matrix p,
one may conclude that, for small T,

(Lzr) z kzT din(Lzz)
( Lzz) se dE„ (33)

where k~ is Boltzmann's constant, E~ is the Fermi
energy, and T is the absolute temperature. This

Z) ='g+ SS ~] ~ (38)

+ I' '(- e A, M, , /c, ev&, z, + (d ', zz) + I ' '

x (eve, eve, X;zz+& ) zz) z&)

where A., =+1, i=1, 2, 3 and s is an arbitrarily
small positive number, we may write Eqs. (30)-
(32), using Eqs. (35)-(37) as

(L*' ) = (4z) ' f d)}p'(q)

I '
'(ev&, e v&,

' zq, zz) (- 1)' ~

(sea)
and

( ( ))I= ())) (f2dndt~p'( -'') 'I(s(n) n(n ')I-
()t& - A, 2) / 2 (2)

Xy X2
j,
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+I' '(ev;, K, ev;;z, + &a', z~+ u&', zz)„, (39b)

where

I' (Cg ~ Cz,' z, z2) —TrC, ( G(zg) Cz G(zz) ) (40a)

and

theory, T may be written as a sum of single-site
contributions,

T=QT„+ Q T„G T + Z T„G T G T +
n n~m n &m, mW l

(43)

where
I '(, , C„„z„z„z,)

= TrC, ( G(z, ) C2G(z2) C3G(z3)) (40b)
T„=[ (

n) (e„—Z„) ( n
f ] (1+G T„) (44)

To derive Eq. (39b), all of the linear terms in H in

(32) have been explicitly extracted from J and

G(z, H).

III. DECOUPLING SCHEMES IN CPA

A. Single-Particle CPA

The quantity we wish to determine first for the
alloy is

(G(z)) =— G(z) = [z —W —Z(z)] '
(41)

the configuration average of the single-electron
Green's function. Here the operator W is the sec-
ond term on the right-hand side in Eq. (6). 0 has
the crystal translational symmetry. Z is the self-
energy operator which for the short-range model
Hamiltonian [Eq. (6)] depends only on z and is in-
dependent of k.

The T matrix for the electrons is defined by

Since
G(z) = G(z)+ G(z) T(z) G(z) .

(G(z)& = G,
(T(z)&=o

(42a)

(42b)

This is a self-consistent equation for determining
G. The CPA consists of applying to Eq. (42b) a
single-site decoupling. From multiple-scattering

It is the purpose of this section to develop an ap-
proximation scheme for evaluating I' ' and I' '."
The discussion will be divided into three parts in
order of increasing complexity. First, the CPA
will be applied to the one-particle Green's function
G(z) so that the propagation of a single particle
may be understood. Next, it will be applied to I' '

which is related to a two-particle Green's function,
and, finally to I' ' which is related to a three-par-
ticle Green's function. Section IIIA will briefly
summarize recent work'; Sec. III B will introduce
a diagrammatic technique for obtaining I' ' which
leads to the same expression as was found by an
analytic, rather than diagrammatic, technique in
Ref. 4. Section III C will use the diagrammatic ap-
proach to calculate I"', which previously has not
been considered. W'hile this last calculation would
be difficult if performed along the lines of Ref. 4,
the diagrams for I' ' provide a more tractable
framework.

Equation (42b) then leads to the condition

&T„&=0.

Writing

T (z)= l~& f.(z) &~I

(47)

(48a)

we find from Eq. (44) tha.t

f„(z)= [&„—Z(z)] (I —[e„—Z(z)]&n~ G n&} ', (48b)

and from (47),

Z(z) = e+ xy5 E [z —Z(z)] (I+ [e+ Z(z)]E[z —Z(z)]) '

(49)

where we have dropped the subscript n on Z„(z) and
written simply Z(z). Since the self-energy is a
multiple of the unit operator, Z„(z) is independent

of n In Eq. . (49) y= 1 —x, 5=(z" —e )/2nr, E(z)
=(nIGIn&, and e=xe" +ye is the average "atomic"
energy level of the alloy. The energy origin is
chosen so that e =-,'6, & =-&", and re=1, so that
the bandwidth is 2. Equation (49) implies that only
three parameters are necessary to determine the
self-energy in the CPA. These are x the concen-
tration of impurities, 5 the scattering strength
parameter, a,nd g(E) = —~ 'ImE(E) the density of
states in the pure crystal.

B. Evaluation of I('~

In transport phenomena, the correlated motion
of several particles or particles and holes must
be taken into account. The expressions appearing
in the transport coefficients involve configuration-
averaged products of tw o Green' s functions for the
field-independent conductivity and three Green's
functions for the field-dependent conductivity.

We shall now evaluate I' ' (C» C» z, , zz) analyti-
cally as was done in Ref. 4 using a decoupling sug-
gested by the single-particle decoupling in Eq. (46).
This will be followed by the introduction of a dia-

(46)

for the Hamiltonian in Eq. (6). The single-site ap-
proximation for ( T) consists in averaging indepen-
dently each individual scattering event,

( T) = Q (T„)(I+ 6( T~& +G (T ) G(T, )+ ~ ~ ~ ).
n&m, mW l

(46)
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It follows from Eq. (5la) that

p(2) Q p(2& (53a)

where

I'„'"= ( T„GC,GT„)+ Q ( T„G( T GC,GT ) GT„)+ ~ ~ .

grammatic representation of I' '. A detailed dis-
cussion of its analytic properties can be found in
Ref 4. Comparing the diagrams and the explicit ex-
pression for I' ' will yield a set of diagrammatic
rules physically consistent with the single-site ap-
proximation in multiple-scattering theory. These
rules are then used as a starting point for the cal-
culation of I' '.

We first make the substitution 6 =6+ GTC in
Eq. (40a). Then'6

I'"(C) Cz z) zz)=»C(G(z))CzG(zz)

+ TrC, G(z, ) ( T(z)) C(z, )C,C(z,) T(z,) ) V(z,). (50)

In order to evaluate Eq. (50), we use (43) and apply
a decoupling consistent with the single-site approxi-
mation in (46). The results of this decoupling are

Trc,G(TGC, CT) G=»C, G Q„(T„GC,GT„)C

+ TrC) G Q(T„C( T GCz&T )GT„)G+ ~ ~ ~,

(5la)
where we average over each pais of scattering
events separately. It is thus seen that the motion
of two particles in the medium is correlated only
if they both scatter from the same site. The con-
sistency of this factorization with the CPA to the
single-particle Green's function may be verified
by demonstrating the existence of a type of Wards
identity which relates I' ' and Z. In addition, vari-
ous identities involving the approximate linear re-
sponse function (X) (see Appendix A) may be shown

to be satisfied so that this two-particle decoupling
appears to be physically reasonable. These iden-
tities wiQ be discussed shortly in connection with
I (3)

We define the vertex operator I"' ' by

I(2)(C„C„z„z,) = Trc,CC,G+ Trc,CI (2)(C,)C,
(51b)

where

I ("(C,) =& TGC,CT) .

C) I C2 =C)(a}
Cz + C) N Cs + C) ((I Ce+ ~~~

= C, C, +-C, j'} C,

FIG. 1. Diagrammatic representation of the de-
coupled form of I ' tEq. (50}]. The second equation
defines I' ) the vertex corrections for tern particles.

I' ' may thus be written as a sum of single-site con-
tributions.

Equations (51) may be combined and written dia-
grammatically as in Fig. 1. The diagrammatic ex-

pression for I' ' is also shown. The first line in
the figure illustrates the sequence of scattering
events which contribute to I' '. The first term on

the right-hand side is the first term in (50); the
second represents two particles scattering at a
single site and the third, two particles scattering
at two sites which are different from one another.
These last two terms are written analytically in

Eq. (5la). The infinite series of diagrams is
summed diagrammatically in the second line in the
figure in terms of the vertex corrections I'" de-
fined in (51b). Solid lines are to be associated
with the average propagator C and dotted liney with

two particles scattering from a single site denoted

by a cross.
The rules for obtaining this diagrammatic decou-

pling are the following:
(i) No crossed dotted lines are allowed. This is

equivalent to the neglect of clusters.
(ii) Two adjacent unconnected dotted lines always

refer to different sites. This reflects the fact, ex-
pressed mathematically in Eq. (43), that the parti-
cle is never allowed to scatter twice in succession
at the same site.

(iii) All disconnected dotted lines are averaged
over separately. These three rules represent a
two-particle decoupling which is a natural general-
ization of the single-particle decoupling, expressed
in Eq. (46).

C. EUaluatlon of I

With the rules given in Sec. III 8, we now have a
simple means of obtaining I' '. Substituting G = 6
+ GTC into (40b), where G is defined in (41) and
using the fa.ct that ( T) = 0, one finds that

I'"(C„C„C»z» z» z, ) = TrC, CC,GC, G+ TrC, G( TGC,GT) GC, C+ TrC, GC,G ( TGC,GT) G

+ TrC, C( TGCzGCSGT) G+ TrC, C( TCCzCTGC~GT) G .

All the terms in Eq. (53) but the last can be evalu-
ated according to the two-particle decoupling

scheme discussed in Sec. III 8 because they involve
processes in which two particles are coupled while



the third propagates independently. The corres-
ponding diagrams can be written down at once. For
example, the second term on the right-hand side
which involves a factorization of a product of two
propagators may be mritten diagrammatically as in
Fig. 2(a). The vertex at C~ corresponds to F~" (C~),
defined analytically in Eq. (5lc& and diagrammatic- |

ally in Fig. 1.
In the last term in (53), which involves three T

matrixes, the motion of all three particles is
coupled. Some diagrams contributing to this last
expression in (53) are shown in Figs. 2(b) and 2(c).
The corresponding analytical expressions for each
of the diagrams in Figs. 2(a)-2(c) are as follows:

Fig. 2(a) = P Trc,Gr„'"(C,)GC,C,

Fig. 2(b)= Q Trc,G(Z„GC,GT„)G(Z.GC,GT.)G
num

+ Q Trc,C(T„GC,GT„)G(Z.G(T,GC,GT, ) GT.)G+ ~ ~ ~

num, mA l

= ~ Trc,Cr„"'(C,)Gr.'"(C,)C, (54b)

Fig. 2(c) = Q Trc,a(T„VF.'" (C,) CT„GC,CT„)C,
n9 m

(54c)

where I'„' ' is defined in Eq. (52a). For the term
represented by Fig. 2(b) some individual diagrams
as well as the sum of the infinite series correspond-
ing to this term are shown. This diagrammatic
equation represents Eq. (54b). The dotted line
having a Y shape in Fig. 2(c) corresponds to three
particles scattering at a given site and, thus, in-
volves three factors 7.'„. It is clear from this last
example that the diagrammatic rules must be ex-
tended to include dotted lines having a Y shape as
mell as simple dotted lines. Prom the rules, it
follows that they must not cross (hence, there can

be at most one dotted Y), and they are averaged
separately from all other dotted lines.

Fig. 3(a) shows the complete diagrammatic ex-
pression for I"' given by Eq. (53) in decoupled
form. This includes the three diagrams in Pig. 2.
These three examples [see Eqs. (54a)-(54c)] show
how analytical expressions in terms of T„and r„"&

may be determined for all the diagrams in I'3'.
For this reason, as mell as the fact that there are
a large number of contributing terms, the complete
analytic expression for I"' will be omitted here.

It is convenient, finally, to introduce the vertex
corrections corresponding to I' ', defined in ana-
logy with Eq. (51b),"
I (Cg, C2, Cs; z), z2, z, )

(3)

= Tr C,GC,GC,G+ Trc,Gr "'(C„C,)G . (55)

Cs

C3 C)

(b)

+ ~ ~ 0

Cs C) C3

Cs

(c)

Cs

Frc. 2. Some diagrams contributing )or"' I.see Eqs.
(54].

Diagrammatically, this may be written as shown
in Fig. 3(b). Fig. 3 may be given the following
simple interpretation, The vertex corrections I"' '

are composed of "pair-wise correlations" [repre-
sented by 1' ' (C;), i= 1-3, where i can be associ-
ated with the pair of particles whose propagator
lines intersect at C;] as well as correlations be-
tween the entire triplet of particles (represented
by a dotted Y). These correlations in a single-site
approximation occur only if the pair or the triplet
of particles scatters from the same site.

We shall now verify that the three-particle de-
coupling scheme introduced here is consistent with
the known analytic behavior of the field-dependent
correlation function defined by
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&X(C1 C2 z'C3))=(2112) f f&n«'[I1(n)-It(n+z')](z'-z) 'Z (-l)'" ""'

(Cli C3» C2» z1+ z» z1+ z i z2) + I (C1» C2» C3» Z1+ z» Z2» z2)]]' i

where A.„A.2, z&, za are the variables defined in
Eq. (SS). This expression is obtained using the
response function y" defined in Eq. (21), and ex-
panding to first order in the external field C3.
Equations {Al) and (A2) express y(z) in terms of
X"(z). It is assumed for simplicity that C, and C2
are independent of C3. The four properties of the
field dependent X that we wish to verify are

&X(C1 C2 z C3)) &X(C1» C2» zi C3))i (5VR)

(11) &X(«, @', @C26'; Z;@C, 6'))

=&y(C„C„Z; C,)),

(iv) lim &X(C„C2,z, C3)) = z '(Tr[C„CZ]p(&)),

where X=X + C3 is the field-dependent Hamiltonian

and C3 is treated linearly. Comparing Eqs. (5V)

with (AV)-(AQ) in Appendix A, it is seen that the

quantities y(C„C2, z) satisfy the same identities as
&y(C„C2; z; C,)). While the external field C, is
treated linearly in (X(C„C„z;C,), the identities
(AV)-(A9) ill fRct R1'e valid 'to Rll 01'del's ill C3. I't

follows from (i)-(iv) that I" should obey the follow-

ing relations if the approximation is to be physically
reasonable:

where 8 is a translation operator belonging to the

crystal symmetry group.
(iii) The Onsager relation

&Z,,",{O, O;II)) =-&L„*J,(O, O;II))

is obeyed;

[I (C1, C2, C3; Z1, z2, Z3)]*

{C1»C3» C2t Z3» Z2 i Z1 t »
(3)

= I"'(C„C„C„.z„z„z,),

(5Sa)

I' '(C„C2, C3, Z„Z2, z3) = I'3'(C3, C„C2;z3, Z„Z2)
(3)= I (C2» C3» C1» Z2» Z3, Z1) i

(5Sc)

Cp

C2

C;?

Cp

C2

C&

Cp C)

C)

C2

C2

C3

lirn I13 '{C„C2,C3; z„z2, Z3)
gw oo

=(z,) ' TrC, C,&G(z,)C,G(z, )) .
As shown in Ref. 4 analogous ldentltles hold for
r"' as well.

The first three identities may be verified term by
term by writing each term in I' ' in terms of the 7„
and performing the averages explicitly, making use
of the identity

&T„)= xr„"+yre

where T„" is given by (44) with e„=e". To prove
(5Sd) requires an extra argument: as z -~, C-z '

and, from Eq. (49), Z(z)-e; therefore, r„(z)-z'.
Then, the only terms which contribute to the left-
hand side of (5Sd) are those in which V{z,) appears
lineax ly. Therefore, it follows that

lim I' '(C1, C2, C3,' z„z2, z3)
8 w 00

1

= (Z, )-' Trc, czc(22)C3C(Z3)

Cp C)

FIG. 3. Diagrammatic representation of the complete
decoupled form of I(~) [Kq. (53)). Figure 3(b) defines
the three-particle vertex corrections 1 (3'.

+ (z, )-' TrC, C,C(z, )&r(z, )V(z, )C,G(z, )r(z, ))C(z,)
(SOa)

(SOb)= (z, )-' Trc,C,&C(z, )C,C(z,)),
which proves (58d). This last relation is of parti-
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IV. VANISHING OF CONDUCTIVITY VERTEXCORRECTIONS

We now specialize to the three operators C„C2,
and C3 which appear as arguments of I~' and I' ' in

Eqs. (39a) and (39b). It is important to note in the
case of I' '(C„Cz, z„zz) at least one of the opera-
tors C, , will be a velocity operator v. In the case
I"'(C„Cz,C„z„zz,z, ) exactly two of the operators,
C;, will be velocity operators, the third is Ã . The
purpose of this section is to show that for each
term in Eqs. (39) the vertex corrections vanish so
that the appropriate I is given simply by

and

I~a'(C„Cz; z„zz) = TrC, G(z, )CzG(zz) (6la)

cular interest because it demonstrates a consistency
of the two- and three-particle decoupling schemes.

and

o = (Lz'z& = (n „,e /m) (2a) ~,

(L"' (II)& = v, (2~) '[(n"„e /m)(2~) ],

&R„&= (ec) 'n"„,/(n„, )'

(62a)

(62b)

(62c)

and Eq. (33) for Q. Here 6= IimZ(E~) ~, where Z

is defined in Eq. (49). The expression for cr is
identical to that found in Ref. 4. The quantities n, f f
and n",«are defined by

V. DISCUSSION AND NUMERICAL EXAMPLES

Using the results of the decoupling schemes of
Sec. IV and evaluating the integrals in Eqs. (39a)
and (39b) as outlined in Appendix B, the configura-
tion-averaged conductivities, the Hall coefficient at
zero temperature, and the thermoelectric power at
low temperatures can be obtained from

I '(C» Cz, Csi zi, zz z3)

= TrC, G(z, )CzG(zz)C3G(z3) (6 lb)

""'= 1 —A —Im@"'[Ez —ReZ(E~) —ih(E~)] (63a)
nz

and

Each I+~ listed in Eqs. (39) can be handled easily.
Using the cyclic property of I+' discussed in Ref.
4, it will be sufficient to show F„'z'(v)=0. To see
that I'~ '(v) vanishes we substitute Eq. (48) into
(52a). It follows then that each term in Eq. (52a)
involves (n l GvG in). Then it can be seen that
I'+'(v) is proportional to (n ~GvG In) and vanishes
because

GvGln&= &0IGvGI0&=0

where

Q2

xlm+"'[E„- Rez (E,)- iz(E,)],

@"'(z)= mm ' J d&(z- ]) '
J d'k

4'"(z)=v-' J d~(z-()-' J d'k

x (2w) ' [v,(k)]'5[( —W(k)],

(63b)

(64a)

since the velocity operator v is odd under parity
transformation and G is even.

To show that the vertex correction in I' '(v„, K, v )

vanish, we use two facts. The first is that I'„"'(v)
= 0. This eliminates all diagrams on the right-
hand side in Fig. 3(a), except the first, second,
fifth, and eleventh. The second and eleventh
diagrams are, respectively, given by Tr[C,G

x(T„GCzGT„CCsGT„&G] and Eq. (54c) with C„Cz, Cs

equal, respectively, to v„,K, v, . They vanish be-
cause they also involve T„GvGT„which, using Eq.
(48al, is proportional to (n!GvG [n& =0. The fifth
diagram contains 1'@'(K ) which is not zero. But
this diagram is just that in Fig. 2(a) with C„Cz, CB

replaced by e„K,e„respectively. The appropriate
analytical expression, from (54a), is therefore

P „Trv„GI'„'(K )Gv, G

which vanishes, because the trace when evaluated
in the Bloch basis I k) becomes proportional to

P„&n l
F„"'ln&P, v„(k)G(k) v, (k)G(k) = 0.

Similar arguments hold for I'~'(v„, v„X ). Equa-
tions (61) thus follow. '

x(2m) '[v, (k)] M '„„(k)5[)—W(k)] . (64b)

(Z)z= +ex y5(F-z)e. (65a)

The parameters of this equation were defined fol-
lowing Eq. (49). E(E) is simply related to the den-
sity of states per atom in the pure crystal g(E& by

—m
' ImE(E+i0) =g(E) (65b)

The Fermi energy for a given alloy, which plays an
important role in the transport coefficients, can be
expressed in terms of the electron concentration
per atom c by means of the relationship

c = —z ' J dElmE[E —Z(E)] (66)

Here the symbol c should not be confused with the
other traditional use of c as the velocity of light.
Because the CPA is inadequate at the band edges, '

Here v, is the free-electron cyclotron frequency
eII/mc, W(k) is the energy wave-number dispersion
relation for the simple cubic tight-binding crystal,
Eq. (5), and c is the velocity of light.

In the rigid-band limit, 5«1, which will be of in-
terest for comparison purposes,
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we shall consider only the case where the Fermi
level is sufficiently far removed from the edges that
the carrier concentration is in the metallic range.

Equations (62a) and (62b) are similar in form to
analogous expressions for the transport coefficients
resulting from the Boltzmann equation, when the
identification with the relaxation time 7 = [24(E~)]
is made. The reason for this simple result which
involves only the imaginary part of the single-par-
ticle self-energy is that the vertex corrections
vanish. Physically, this follows from the fact that
there is no backscattering term in the Boltzmann
equation and is a consequence of our assumption that
the scattering is of short range only and therefore
isotropic.

The quantities n,«and n,"«play the role of the ef-
fective number of carriers in the transport coef-
ficients. From Eqs. (63) and (64), it is easily seen
that they depend in complicated but different ways on

the pure crystal band shape as well as on the self-
energy Z. Furthermore, Eqs. (63) demonstrate that
they both depend on the imaginary part of the self-
energy ~ only to order b, and higher. For all alloy
parameters considered here ~ & IReZ I where 6
and Z are dimensionless, and consequently the de-
pendence of n, «and n,«on ~ will be neglected.
This implies that the only effect of alloying on n,«
and n,« for the cases of interest here is to shift the
energy of an electron at the Fermi surface by an

amount —ReZ(Ez).
Following Koster and Slater, "the expressions

for n,«and n,«may be reduced to single integrals
involving Bessel functions for the ease of the simple
cubic tight-binding band. The Fermi energy depen-
dence of n,«and n,« is given by

n,« ~ f~"dt cos[Ez —ReZ(Ez)]t[JO(t) +J3(t)]JO(t)

(67a)

n«~ ~- f~" dt sin[E~ —ReZ(Ez)]t[Jo(t) + J2(t)] Jo(t)J, (f),
(67b)

These integrals have been tabulated.
The remainder of this section will be devoted to

evaluating transport coefficients for various alloy
parameters x, 5, and c. Section V A will discuss
the behavior of o, Q, and R„as functions of the
Fermi energy EF for several choices of x and 6.
Section V B will contain a discussion of these coef-
ficients as functions of x when c and 6 are held
fixed.

This latter case clearly corresponds more closely
to what is observed experimentally. Anisolectronic
alloy with two fixed components A and 8 has constant
electron concentration c per atom and a fixed scat-
tering strength parameter 5 independent of the rel-
ative proportions of the two types of atoms.

Several general statements may be made about the

parameters n,«, n,"«, and A=(2r) ' at the outset:
(i) o varies at 6 ' and therefore depends strongly

on ~.
(ii) Q, since it is a derivative of o, will be even

more sensitive to the behavior of ~.
(iii) Because the scattering is isotropic, n drops

out explicitly from the expression for the Hall coef-
ficient. Furthermore, because n,«and n,«depend
primarily on ReZ, the imaginary part oi' the self-
energy does not contribute significantly to R„[see
Eq. (62c)].

A. Variations of Transport Coefficients with EI; for
Fixed x and 6

Many of the results in this section and in Sec.
V B will be compared to those of the rigid-band the-
ory. Consequently, the behavior of the three trans-
port coefficients and the subsidiary quantities 4,
n,«and n,«at small 6 will be discussed first with
emphasis on the role of critical points in the pure
crystal band. To exhibit our results in the common
units, we adopt a model crystal with a bandwidth of
10 eV and a unit- cell dimension a = 2 A.

Equation (65a) shows that the critical points ap-
pear in 4= lImZ I. Vfe shall now show that they also
influence the behavior of 0' and Q as functions of E~.
From Fig. 4(a) it is clear that n,«(E~) is slowly
varying with energy in the neighborhood of the criti-
cal points at + 3 for the rigid-band case. By con-
trast, as will be shown shortly, just below the
lowest critical-point energy ~ increases sharply.
Therefore, o which depends on n,«(Ez)/A(EF) must
decrease rapidly. The other point at + 3 will give
rise to an analogous behavior.

These results are illustrated in Figs. 5(a) and

6(a). In Fig. 5(a), n/6 is plotted in the rigid-
band case. ~ is the maximum value of ~ for
given x and 5. ~ is proportional to the density of
states g(E) as seen in Eqs. (65). The critical points
M»M»M2, and M3 are labeled on this curve and it
is seen that ~ is zero for energies in units of half-
bandwidth greater than +1 and less than —1. Figure
6(a) illustrates the role of critical points in the con-
ductivity for the small 5 «1 case. The first dip in
o is due to the critical point M» the second is due
to M3. The conductivity is appropriately zero at
the band edges since the number of carriersvanishes
there.

Because the thermoelectric power is the deriva-
tive of 0, the effects of critical points are even more
pronounced in Q. It will change sign when the con-
ductivity has a local maximum or minimum. It is
clear from Fig. 6(a) that this occurs five times in
the rigid-band case. Consequently, as shown in

Fig. 7(a) these five extrema are evident in Q as five
sign changes. Just as the two dips in 0 were seen
to arise from the &ritical points M, and M3, four of
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"ett [EF-Re X(EF)]/n'
1.0

-1.2 -1

.2

0
(o)

EF/W

no =5.5& 10 cm

.8 1

sign at e which in our rigid-band example equals
zero. But, comparing Fig. V(a) and 8(a), it is clear
that Q and RH differ in sign for appreciable regions
of EI". Even in the case of very small 5 the sign of
the charge carriers are determined from the ther-
moelectric power and the Hall coefficient will not
be the same except near the band midpoint and

edges.
To discuss the coefficients for 5 not small, the

change in structure of n,«and n,"«and ~ upon alloy-
ing must be investigated. Figures 4(a) and 4(b)
show n,«and n,« for the rigid-band case and the
case of moderately large 5 (= 0. 5). They demon-
strate that, except for a shift along the energy axis,
these functions do not change very much with in-
creasing alloying. However, Figs. 5(a)-5(d) show
that ~ does change appreciably. It is of interest in
connection with Fig. 5 to compare the rigid-band
behavior discussed above with that of 5 = 0. 05 and
x = 0. 1 which presumably represents the case of
weak scattering. It is somewhat surprising that
the rigid-band description of the alloy is not ap-
plicable, for 6 is not proportional to the (symme-

—.2

-1,2
I

0
EF /w .8 1

IP =1~ 11» 10 sec

FIG. 4. Carrier densities for the (a) field-independent
and (b) field-dependent conductivity versus EI' (in units
of half-bandwidth) at T=O. The two curves in each figure
correspond, respectively, to the rigid-band limit 6«1
and x=0.5 and to the case 6=0.5, x=0.05. The model
alloy adopted has bandwidth 2' =10 eV and unit-cell di-

0
mension a = 2 A.

1.05 EF /w

gMox 475 1pl4

these sign changes may be seen to arise directly
from them. As shown in the figure, the thermoelec-
tric power is asymptotically —~ and +~ at the
lower and upper band edges, respectively.

Because R~ is weakly dependent on 6, the critical
points in the pure crystal are not expected to in-
fluence the behavior of RH appreciably. The Hall
coefficient will change its sign when E„=ReZ and
in the rigid-band limit this occurs at E~=e. This
is evident from the rigid-band curve in Fig. 4(b)
which shows that n,«[E' ReZ(Er)] is zer—o when its
argument vanishes (ReZ = e is chosen for simplicity
to be zero in the rigid-band ilLustration). As shown
in Fig. 8(a), E„in comparison to Q behaves very
simply in the case of 5 «1. It changes sign once,
as anticipated above, and it asymptotically ap-
proaches —~ and + ~ at the band edges. It should
be noted that in this special case Q also changes

-1.2 EF/w

gMox gP3x 1P2

EF/W

--5

AND

Er/w

FIG. 5. 6/4 ~ (proportional to the inverse relaxa-
tion time) versus E+ at T=O. (a) rigid-band limit; (b)
scattering strength 6=0.05 and impurity concentration
x=0.1; (c) (5=0.5, x=0. 1; and (d) 6=0.5, x=0.4.
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-1.15

-1,2 9

Max 3.5x10 Cu, Q cm

1X)5 EF/w

cr = 1.8x 10

EF/w

cy "=5.7 x 10

1 EF/w

= 25) since 5 is constant in Figs. 5(d) and 5(c).
Instead it is associated with the fact thai as x in-
creases from 0. 1 to 0. 4, the density of states nearer
to the middle of the band rises, ' thus causing the
damping to increase in this energy region.

After having discussed the basic quantities n,«and
n,"«, and ~ for general alloy parameters and the
transport coefficients in the rigid-band limit, we
next focus attention on the three transport coeffi-
cients for the more general case. It was seen in
Fig. 4 that n,«and n,"ff change little with alloying:,
consequently, one expects that the structural changes
in 0 will be due primarily to 4. Therefore, Figs.
6(b)-6(d) which show o versus EJ; can be almost en-
tirely explained in terms of Figs. 5(b)-5(d) which

plot ~ versus E&.
Figure 6(b) shows that for 5 =0. 05, x = 0. 1, the

conductivity reflects the asymmetry in ~ becoming
smaller in the top half of the band where b, is large
relative to its value in the lower half. The critical
points are still evident in o at 5 = 0. 05. In Fig. 6(c)
for 5=0. 5, x=0. 1 just as in Fig. 5(c), the critical
points no longer appear and the conductivity has de-
creased in magnitude by a factor of several hundred

I EF/w

FIG. 6. Conductivity versus E~ for same four choices
of (&, x) asin Fig. 5. Thetwo dips in Fig. 6(a) appear near
critical-point energies and are washed out as 6 increases.

tric) pure crystal density of states and therefore is
not given by Eq. (65a) as Fig. 5(b) shows. The
asymmetry which is apparent here is due to the fact
that when 5 &0, so that e &e, the impurity level
lies in the top half of the band. This gives rise to
increased damping of electrons whose energies are
in this region. The critical points are still evident
for this small 5 and the bandwidth is not appreciably
different from Fig. 5(a).

The sharp critical-point structure in 4 is no
longer visible when 5 is increased ten times to 0. 5
but x is maintained at 0. 1, as shown in Fig. 5(c).
The damping is much more localized near the top of
the band than in the previous case for the reason
that the fairly strongly scattering impurity atomic
energy level lies in this region. The band edges
have shifted so that they lie at —l. 2 and 0. 9 and the
magnitude of ~ has increased by a factor of 100.

Now, to compare the results obtained with the
same 5 but different x, we refer to Figs. 5(c) and

5(d). In Fig. 5(d) 4 is plotted for x=0. 4, 5=0. 5.
It is seen that the damping is no longer localized in
the top half of the band when x is increased from
0. 1 to 0. 4. This is clearly not to be associated
with a shift in the impurity atomic energy level (e

Q/Qo

1.15 1.05

-4

FIG. 7. Thermoelectric power Q versusE+ for the
same four choices of (5,x) as in Figs. 5 and 6. The
upper and lower band edges are indicated by vertical
lines at which Q approaches + ~and —~, respectively.
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RH'= 5.14&10 emu

RH/RH
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I
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' (b)
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I
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I

I

0
(a)

RIGID BAND

EF/w 1

FIG. 8. Hall coefficient versus Ez for same alloy
parameters as in Figs. 5—7. The upper and lower band
edges are indicated by vertical lines at which RH ap-
proaches + ~ and —~, respectively.

pears in the conductivity [Fig. 6(d)] is reflected as
a sign change in Q as Fig. 7(d) shows.

It is clear from Figs. 7 that the TEP is extremely
sensitive to changes in the band structure due to
alloying. As Fig. 8 shows, A~ is not nearly as sen-
sitive. Furthermore, its behavior as a function of
E~ in the rigid-band limit is simple compared with
that of Q [see Figs. 7(a) and 6(a)].

A comparison of Figs. 8 and 7 illustrates the fol-
lowing general properties of the two transport coef-
ficients as functions of E~. The Hall coefficient
and the TEP do not have the same sign except in
the upper and lower regions of the band when both
asymptotically approach + ~ and —~ correspond-
ingly. In this region, the effective-mass approxi-
mation may be used to determine the sign of Q and

BH. The TEP reflects critical points and changes
in the imaginary part of the self-energy; the Hall
coefficient does not. The primary effect of alloy-
ing on the latter quantity is to shift the energy at
which As changes sign by an amount —Rez,'(Ez)+e.
This shift, although not very big, corresponds
physically to the fact that the "carrier sign" changes
when the symmetric band is not exactly half-full.
For example, at 5=0. 5, x=0. 1, the electron con-
centration per atom c, at which the sign of the
charge carriers is reversed occurs at c =0. 49.

B. Variations of the Transport Coefficients with
x for Fixed c and 6

from the previous case. The effects of increasing
x for fixed 5 are quite pronounced as seen by com-
paring Figs. 6(c) and 6(d) in which 5 is fixed at 0. 5

and x changes from 0. 1 to 0. 4. The maximum in
6 in Fig. 5(d) is reflected as a minimum in o for
the latter case. It occurs because 4 has a maximum.
in an energy region where n,« is not inappreciable.
By contrast, for the smaller x=0. 1, the energy of
highest damping occurs too near the top of the band,
where n,« is very small, to be apparent as a min-
imum in the conductivity.

The thermoelectric power (TEP), because it is a
derivative of in@ can be easily interpreted from the
previous discussion. Increasing 5 from the rigid-
band value [Fig. 7(a)] to 0. 05 and keeping x fixed at
0. 1 does not noticeably alter the shape of the Q-
versus-E~ curve except to change the position of
each of the five zeros as shown in Fig. 7(b). Upon
again increasing 5 to 0. 5, for fixed x =0. 1, Q
changes appreciably and crosses the energy axis
only once, reflecting the single extremum in the
conductivity [Fig. 6(c)] as shown in Fig. 7(c). How-
ever, the small dips in Q indicate that residual
critical-point behavior is present even for this
rather large 5. As x increases from 0. 1 to 0. 4
and 5 remains equal to 0. 5, the minimum which ap-

Section V A discussed the behavior upon alloying
of the three transport coefficients as the Fermi
energy was continuously varied. In this section we
shall fix the electron concentration c and allow x,
the impurity concentration, to vary continuously;
using Eq. (66), the Fermi energy may be deter-
mined in terms of e, 5, and x for each point x. In
contrast to the previous section, the results ob-
tained here, although more relevant to experiment,
are fairly complicated to interpret. They depend on
the variation in E& with x for fixed c as well as on
the behavior of the coefficients as functions of E~
for fixed x as discussed in Sec. V A.

Two curves of E+ versus x for 5 =0. 5, c =0. 2,
and 5 =0. 5, c =0. 5 are plotted in Figs. 9(a) and
9(b). Also shown are the straight lines which
would be obtained if the Fermi energy were com-
puted in the rigid-band limit as the average of the
Fermi energies of the two components in their re-
spective pure crystals. The end points x = 0, x = 1
of the curves of E~ versus x must coincide with
those of the straight line. At 5 = 0. 5, Fig. 9 show
that departures from rigid-band behavior are sig-
nigicant. For c= 0. 5, the Fermi energy is antisym-
metric about x =0. 5 as expected from our assump-
tion that the pure crystal band density of states
Z(E) is symmetric about the band midpoint. The
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EF/w 10— P = 106PQ cm

{C=.Z, 8=,5)

P/Pp

-.6
,5

FIG. 9. E& in units of half-bandwidth versus x for
~=0.5 and two electron concentrations per atom, c =0.2

[Fig. 9(a)) and c=0.5 tFig. 9(b)j. The straight lines
are the rigid-band limits.

p —= o 2vx(1 —x)6 g(Ez )/net f (Ep )e m (66)

In this expression the x dependence of EJ; is ne-
glected for small 6, so that the resistivity varies
as x(1 —x). Also for small 6,

detailed behavior of these curves can be understood
by looking at the function F[E—Z(E)] [see Eq. (66)]
which will not be discussed here. '

As in Sec. V A, it will be convenient to refer the
x-dependent behavior of the coefficients to the weak-
scattering limit. The discussion will be limited
to R„and o since Q can be determined from a and
the functional dependence of E~ versus x. The
resistivity p is given by the Nordheim rule in
this limit,

FIG. 10. Resistivity versus x for 6 =0.5. Dotted line
is Nordheim x(1-x) approximation. Solid curves refer
to CPA results for electron concentrations per atom of
c=0.2 and c=0.5.

the band ends. For the electron concentration
c = 0. 2, the peak in the resistivity appears at x= 0. '

Its origin is the same as that discussed in connec-
tion with Fig. 6(d). This curve is clearly not sym-
metric about x = 0. 5 as the Nordheim rule suggests.
As in Sec. V A, ~ plays an important part in de-
termining the behavior of 0.

The Hall coefficient, on the other hand, reflects
the behavior of Re(Z). Figures 11(a) and 11(b)
show the x dependence of E~ —ReZ(E„). While the

ecRH = n",«[Ez(x) —e(x)] /n„, [Ez(x) —e(x)] . (69)
(c=.s, S=.s)

[Ep-Re X (EF )] &w

Since E~(x) —e(x) is x independent in the rigid-band
limit RH is also.

If 5 is then increased to moderate values, the x
dependence of the two transport coefficients js no

longer simple. Figure 10 shows the resistivity
for c = 0. 2 and 0. 5 and 5 = 0. 5. The dotted line is
the Nordheim limit in the same units for this 5 and
c = 0. 5. It is clearly not a good approximation to
the resistivity. The most striking deviation from
the rigid-band behavior for c =0. 5is the sharp peak
at x=0. 5. This is due to a minimum in the conduc-
tivity which appears for 5=0. 5, c =0. 5 at this x.
This minimum in o like that shown in Fig. 6(d)
occurs for values of x away from 0 and 1 and re-
sults, as discussed earlier, from the appearance of
a maximum in the imaginary part of Z, away from

(b)

RIGID BAND

(c=.z, S=, s)

FIG. 11. Ez —ReZ(E&) versus x in units of half-band-
width for c=0.2 t.Fig. 11(a)j and c=0.5 [Fig. 11(b)).
The scattering strength 4 is 0.5. The rigid-band hori-
zontal lines are indicated by arrows.
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curve for c =0. 5 is antisymmetric about x=0. 5 for
the symmetric density of states, that for c = 0. 2 is
not. The straight lines shown are the rigid-band
approximations to this function. Deviations from
the lines are significant. Using Figs. 11, Eq.
(62c), and the rigid-band curves in Fig. 4, it is
possible to predict the x-dependent behavior of B+.
The sign of A~ and its zero coincide with that of
(EF —ReZ). Figure 12(a) shows B„vers usx for
c =0. 2. Figure 12(b) shows the curve for c = 0. 5.
The straight lines are the rigid-band limits. The
behavior of Ez ReZ(E-z) of Fig. 11 is clearly mir-
ror ed in that of the Hall coefficient shown in Fig. 12.
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(A8)

(A4)
APPENDIX A: SOI",IE PROPERTIES OF RESPONSE

FUNCTIONS

%e define the correlation function y for electrons
in an alloy by

X(tt, ;z) -=Xe~(0, z)=Xaa (0, z)+iX,", (o, z),
(Al)

XJ'J (0i +) XJi (0~ M) (A5)

because both these functions are odd.
(v) Using time-reversal invariance, it follows

that

where

x'(o, z)=v' r X (0, & )
{(g'-g) (A2)

XJJ' (0) ~)H) XJJ

For C„C2 arbitrary we have

(A6)

Here z is a complex frequency and y is a tensor
quantity. X is defined in Eq. (20). We now list
certain properties of X and y(H). ' This last func-

(AV)(vi) X(Cli Cz, z) = X*(C„z;— *),
(vii) X(6 C, ~, & Cz &;z; & C, s ) = X(C„C2;z; C,),

(A8)
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RH/RH
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—.00t
R = 3.14x 10' m~/C

H

X
Jl~t

RIGID BAND

where 8 is any translation operator of the pure crys-
tal symmetry group. It is assumed here that X

is the exact configuration averaged-response func-
tion for the random alloy in the presence of an ex-
ternal field C, . (The configuration average restores
the lattice symmetry. ) This equation is valid to all
orders in C3,

(vii) lim X(C„C2,z) =z '([C„C,])r, (AQ)
g wOO

where the subscript T denotes a thermal average.

APPENDIX B: EVALUATION OF (L |H)& AND (L","-&

C =.2, 8=.5

,5
(II )

X

---3

FIG. 12. Hall coefficient versus x for same alloy
parameters as in Fig. 11. Straight lines are rigid-band
limits ~

In this section we briefly outline the manipulations
involved in evaluating Eqs. (89a) and (39b). ' Be-
cause the vertex corrections were shown to vanish
for each I' ' and each I' ' in these equations, the
problem of calculating (LPz(H)) and (Lzz) is reduced
to treating a system of damped electrons in a per-
iodic crystal with Green's function G(z) = [z —W
—Z(z)], where W is the pure crystal Hamiltonian
given by Eq. (5) and Z is defined in Eq. (49).

To obtain (LP~(H)) we proceed in three stages.
First, we evaluate explicitly



ELECTRONIC TRANSPORT IN ALLOYS: COHERENT-POTENTIAL' '

I (Vxe 3C v V)() = Q Vx . (GX G)RReVy ~ GR'R '

BB'

x{-eh~„„/c,v„) (81)

in the rystal coordinate representaion. It is seen
that Block transforms of I"' may be simply eval-
uated since I"is a sum of translationally invariant

I

I" )(v„,v„x ) .

These expressions involve (GR G)RR. which has
been determined for free electrons. %e extend
the arguments of Ref. 23 to calculate the field-de-
pendent Green's function for electrons in a crystal.
Second, we combine the I's in Eq. (39b) and evaluate

I"'=I' '(V„-, X v,)+I' '(v„, V„R )

+I (v, —ed4 M /c)+I

quantities. Third, we perform the X summations
and the (c and q integrations implied by (39b). At
the end of the discussion of {Lgs(H)), we shall
briefly sketch the calculation of (LRR} which is con-
siderably simpler.

To evaluate I' '(V„,R'", v, ) we first consider

G(R)-G+GX'G'")-G+GX V+s (H')

G' ' can be expanded in a power series in H, Fol-
lowing Ref. 23 we write

GR("R' -=exp(- ieH RxR /2c)(G+G, +Gz+ ~ ~ ~ )»
(BS)

where the subscripts RA refer to matrix elements
in%annier space, and G, is defined to be linear in
H, GR quadratic, etc. From Eq. (82), it follows
th'at

'

exp Z —Z(Z)+ " V(Z)RR. + Z- Z(Z) —W —. G, (Z)„R.+ (8 (H )
-ieH Rxa eA(Ii) v(VR/i) a

2c C z

—ieH- R &R-W .' exp - — C(Z)„„.=5(R-It') .2c
(84)

We obtain from (84) that

—{e/2c)(R- R') &H v(V /i)V(Z}

= [z —w- z(z)]c,(z),„. (85a)

We next evaluate I"' [Eq. (Bl)]. If we consider
only terms linear in H, the following equation is
valid:

I' '(V„,R, v, )+I '(V„V„SC )= Trv„c'v, c'"'.
This equation is satisfied if

Gi(z}R ~ = o (85b)

To obtain (85a) we have substitued dt(R) = ~H &R
into (84) and equated terms linear in H. Equation
(851) follows by taking Bloch transforms of (85a).
The left-hand side of (85a) involves

Q, v(k)xv(k) = 0,

since V„V{Z)„d v(k}. Thus, from (85b),

G~~'= exp =-- — C~„.+ 6 H . B6
2c

Using (86),
—jeH RxR

—e(R' &&M)„, V~ g 6 (HR)
2c

(88)

A similar equation may be written for v„G' '. Then,
using (81), (88), and the definition of I '[Eq. (40a)],

("'= Z (-"—)(((„—((,')M '„(—)G„.v, (., "') ( „—Z (-—) v„(—"')

"&R R(&x- Iix"i)f '„&RR
Z

(89)

Taking Bloch transforms of I"', inserting the energy arguments as in Eq. (391), and performing the X sum-

mations, one obtains

(d,,', ((()) ee(((e'v) off d*'dqI=(o(q') —o(q ')](' )'TM'..(O)v'(O)&l'(q+' ') —(:,(q)"(810}
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after some manipulations. Here

G, (q) = 1m[@—Z (g)+ in, (71) —W(k)] ' = ImG, (q)

where Z =ReZ and 6= jImZ ).
We next do the integrations implied by (B10).

Because G, (7i+ u) is analytic in the upper half-plane
and zero at (~ = ~, '

(P dry 'G~"(ri+ u ')(&u ') = —ReG~(g) . (Bl1)
~ oo

This identity can be used to perform the ~ integra-

tion. The q integration in (B10) is carried out by
writing the integrand in terms of o (q) = —6(q —Ez).
Equation (62b) then follows.

To evaluate (Lz~), we use the results of the de-
coupling, the expression for G,"(q) given following
(B10), and the fact that o (q) = —6(q —E~) at 7=0.
Equation (62a) follows after some simple manipula-
tions.

Additional details of these somewhat lengthy cal-
culations will be presented in Ref. 21.
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