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The one-electron theory of impurity-assisted tunneling is extended to a many-electron sys-
tem. A formal derivation of the wave function through second order in the interaction poten-
tial is given for an arbitrary barrier potential and an arbitrary interaction potential. Applica-
tion to a one-dimensional square-barrier model with energy-loss mechanisms confined to the
barrier region is made. The magnitude of the inelastic current resulting from the excitation
of a molecular impurity is in agreement with the results of the transfer-Hamiltonian model
if the appropriate current-carrying wave functions are used to calculate the transfer matrix
elements. Additional second-order terms which give rise to logarithmic singularities and
step-function decreases in the barrier-penetration factor are found for interaction potentials
which are large near the boundaries of the tunnel barrier. Numerical calculations show
that, for a molecular impurity at the boundary, the line shapes in d I/dV versus Vare
fundamentally different from those for an impurity inside the barrier by more than -

2 K.

I. INTRODUCTION

In a previous paper, ' a theory of one electron in-
teracting with a molecular impurity in a tunneling
barrier was given. We here extend the theory to
a many-electron system. The need for a many-
electron theory arises because the tunneling exper-
iments of Jaklevic and Lambe" reveal structure
in the curves of d'I /d V' versus voltage due to the
energy-loss mechanisms in the barrier which ex-
plicitly involve the statistics of the many-electron
system.

In Sec. II, we derive a general theory of many
electrons interacting with a vibrator in first Born
approximation. (As in I, the vibrator is represen-
tative of the molecular impurity, or, in general,
of phonons, magnetic impurities in a magnetic
field, etc. ) Since it is unnecessary to restrict the
formal analysis in Sec. II to one dimension or to
interactions entirely within the barrier, the results
of this section are quite general and may be useful
for problems other than that considered in this pa-
per. For simplicity, however, we first apply the
general theory (first Born approxima. tion) to a one-
dimensional square-barrier model with the inter-
actions confined to the barrier region in Sec. III.
Since it appears that the results of first Born ap-
proximation are sufficient for the interpretation of
the experiments by Jaklevic and Lambe, "and since
this provides a simple picture of the physical pro-
cesses involved, we calculate the current neglect-
ing any other terms which are of the same order
(second) in the interaction potential in this section
for the one-dimensional model. We also discuss
the results for a three-dimensional model. In Sec.
IV, the general theory of Sec. II is extended to sec-
ond Born approximation. In Sec. V, the general

theory (second Born approximation) is applied to
the one-dimensional model of Sec. III. An exam-
ination of the second-order terms omitted from the
current in Sec. III is given and the implications of
such terms for the interpretation of a variety of
experiments are discussed. Our conclusions are
stated in Sec. VI.

II. GENERAL THEORY: FIRST BORN APPROXIMATION

X(1, 2, . . . , N; $) = Q, X, (i)+X„($)+Z;X,„(z,$),

(2. 1)

where X,(i) is the Hamiltonian for the ith electron,
X„(()is the Hamiltonian for the vibrator, and

X,„(i,$) is the interaction Hamiltonian for the ith
electron interacting with the vibrator. We expand
the wave function 4'(I, 2, . . . , N; $) for the system

4' (1, 2, . . . , N; () = Q„y„(1,2, . . . , N)4„($), (2. 2)

where 4 satisfies the Schrodinger equation

X(1, 2, . . . , N; $)4'(1, 2, . . . , N; $)

=E4'(1, 2, . . . , N; $), (2. 3)

the vibrator eigenfunctions C„($) satisfy Eg. (I2. 3)

In this section a general theory of many electrons
interacting with a single vibrator is formulated in
first Born approximation. The direct Coulomb in-
teraction between electrons is neglected except in-
sofar as it can be represented by an effective self-
consistent field which is contained in the one-par-
ticle Hamiltonian. The positions of the N electrons
comprising the system are labeled by 1, 2, . . . , N.
The internal coordinate of the vibrator is $. The
Hamiltonian for the system is given by
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=61'0(l, 2, . . . , N), {2.4a)

Z, X, (I ) )t,(I, 2, . . . , N) + Z, U(f ) )t,(I, 2, . .. , N)

(in paper I) and E is the total energy of the system.
If we restrict the sum in Eq. (2. 2) to the ground
state and the first excited state of the vibrator, we
find

Q; R, (i)){o(1, 2, ~ ~ . , N) +Z; U(i) y q(l, 2, . . . , N)

Equation (2. 9) is inhomogeneous with the sum over
i on the right-hand side representing a number of
sources. Clearly, the solution y'," is a superposi-
tion of solutions, one for each source. Therefore,
we find

~i" {1,2, .",N)=4.'(I)4&(2)" P.(N)

+t. (1)8&(2)" P.(N)+ "+4.(I)48(2) "P.'(N),

(2. 10)

= (e —e(u )){,(I, 2, . . . , N), (2. 4b)
[K,(f) —e„h+&u] g,' (i) = —U(f)g, (f) . (2. 11)

U(f) = J A C'*g (&)&,.(f, k) @o($),

E

AM = E~g —Eqo .

(2. 6a)

(2. 6b)

(2. 5c)

We can find g'„(i) in a manner similar to that used
to find P'(x) in Sec. II of I.

To take into account the statistics of the electrons
correctly, we should write Eq. (2. 7) not as a sim-
ple product but as a Slater determinant. It is
straightforward to show that if

We assume that U(i) is real and we neglect terms
such as

J dg c(0$)z,„(i,()C'o(()

We have not been able to find the exact solution
to Eq. (2. 4) even for as simple an interaction po-
tential as Eq. (I3. 1). The reason is that Eq. (2. 4)
is not separable which means that the exact X o and

X, can not be taken as a simple product (or suitably
antisymmetrized linear combination) of the form

Q; g, (i). We can, however, use a generalization of
the first Born approximation {Sec. II of I).

In lowest order,

+g &.(&) 1'0"(I, 2, ~ ~ . , N) = e )t'0" (1, 2, . . . , N) . (2. 6)

(Nt ) -1/2

4. (1) t) 8(I)

~I. (2) 0& (2)

v'. (N) |18(N)

=- D(t). 08 ~ ~ ~ 4.)

){~o~{l 2 ~ ~ ~ N)

4. (2)

y„(N)

(2. 12a)

(2. 12b)

~&,'&(1, 2, .. . , N) =S„(1)0,(2)" t.(N),

where

X,(i)g, (i) = e,g, (f), p = n, P, . . . , ~,
6=6 ~ +Kg +' ' ++td.

(2. 7)

(2. 6a)

(2. 6b)

We assume that we know the eigenfunctions g„(i)
and eigenvalues e„ofK,(i).

In fll st order,

[Z( K, (i) —&+0(u])t'p (1, 2, . . . , N)

=-Z, U(f)~',"(1,2, . . . , N). (2. 9)

We assume that the eigenvalues for the system z
are essentially continuous so that 6' can be regarded
as a parameter. That is, for every solution of the
unperturbed problem with energy e [Eq. (2. 6)],
there is a corresponding solution of the perturbed
problem [Eq. {2.4)] with the same energy e. A

solution to Eq. (2. 6) is

[we use the symbol D to represent the determinant
in (2. 12a) made up of the functions t) „,g~, . .. . and

t. ],
then

X',"(1,2, . . . , N) =D(g„'P~ g„)

+D(4.4&" 4.)+" +D(4. 48" 0'.) (2. »)
The wave functions g„(i) are to include a spin func-
tion, either spin up or spin down, in addition to a
function of position. We note that P„'(i) has the same
spin function as g, (i) if U(i) contains no spin-flip
terms. In general, U(i) may contain a slip-flip
term if the impurity is magnetic, in which case
g„'(i) will contain a term with a spin function oppo-
site to that of P„(i). The wave function g~(i) is
first order in U and Eq. (2. 13) is called first Born
approximation in this paper.

To calculate the current of the system of elec-
trons through order U (the lowest order of the ef-
fects of the vibrator on the current) we ultimately
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f.(i) = g,'(i) —2„'(q„(y,'))t „(i) (2. 14)

(The sum on q is over occupied states. ) Clearly,
f„(i)possesses the same spin function as ))t„(i) and

g„(i) if U(i) contains no spin-flip terms. Equation
(2. 13) becomes

)ttt'(I, 2, ' ' ', f)i)=D(f ga t))„)

+DR' fa'''g )+ '''+D(g 4 ''af). '(2. 15)

In first Born approximation, then, the wave func-
tion for the system (electrons plus vibrator) is
given by Eq. (2. 2) with X, obtained from Eq. (2. 12)
and X, from Eq. (2. 15). All other )i„(n = 2, 3, . . . )
are set equal to zero.

III. ONE-DIMENSIONAL MODEL IN FIRST BORN
APPROXIMATION

A. Calculation of X[)a)

In Sec. III, we solve for the many-electron wave
function for a vibrator in a square barrier in first
Born approximation, suchaswedid for a single
electronin Sec. IIof I. We again restrict the anal-
ysis to one dimension and ignore the spin of the elec-
trons for simplicity. We first obtain )tiI '(1, 2, . . . , iV) ~

The Hamiltonian for an electron is given by Eq.
(I2. 2). The eigenfunctions of the Hamiltonian in
Eq. (I2. 2) are of two types. The first is a current-
carrying state representing an electron approach-
ing the barrier from the left which we call a left-
hand state,

g, (k, x)= (2L) '"[e'""+I~(k)e-'k"], x&0

must go to second Born approximation (to include
all of the terms of order U ). To do so, we ob-
serve the following. In the first determinant of
Eq. (2. 13), we can replace 8', (i) by

f.(i) = qadi) —Z„'(g„~q.'}q,(i),
where the sum is over all occupied states [.By "oc-
cupied" or "unoccupied, "we refer to states occu-
pied or unoccupied in goto). ] The prime on the sum-
mation sign indicates that only occupied states are
considered. This does not change the value of the
determinant, since we are adding to the first column
multiples of other columns in the determinant. The
term ti= t). can be included because the (g, ~g, ) term
makes a negligible contribution to the sum on q for
the nearly continuous spectrum of eigenfunctions we
are considering, since there is a finite energy dif-
ference Ifo) between g and p,'. In general, then,
we can make the replacement

q„'(i) -f, (i),

where

= (2L) ' [C(k)e "+D(k)e '], 0&x& b

(2L)-t ~aT(k) ikt"-»
b & x. (3. la)

e(k) = k'k /2m, K= (2m[V, —e(k)]/@']'~'.
(3. lb)

We normalize in the interval —L &x&L(L»b).
A(k) is given by Eq. (12. lib), D(k) by (12. llc),
T(k) by (12. 11d), and C(k) by (12. 11e).

The second type of state is that corresponding
right-hand state which is found by replacing x by
b —x in Eq. (3. 1)

y„(k, x)=(2L) '"r(k-)e "", x&0

=(2L) ' [C(k)e ""'+D(k)e ""'] 0&x&b

(2L)-1 /2[ -ik(x b) -It(k) ik(x b)]-
(3.2)

If we restrict k to positive-integer multiples of
tt/L, we find that the states (3. 1) and (3. 2) form an
orthonormal set in the limit L -~ which is com-
plete for our purposes.

In the limit that U-Q, y-yo '. Therefore, the
state Xo

' is the ground state of the electrons at
7= 0 K with a. net current flowing through the bar-
rier when there are no interactions between the
electrons and the vibrator. Such a state is made
up by filling all the left-hand states with energy less
than the Fermi level on the left and all the right-
hand states with energy less than the Fermi level
on the right, One can show that such a choice for
y,

' ' gives the correct independent-particle current
as obtained by more conventional means. To avoid
complicating the wave functions of Eqs. (3. 1) and
(3. 2), the shift of the energy zero on one side of
the barrier relative to the other due to the bias
voltage will be neglected. We instead simulate the
effect of the bias voltage V across the barrier by
increasing the Fermi energy E~ on the side of the
barrier from which electrons flow. Thus, to make
up the state yo ', we fill all the left-hand states
with k (k) & Et, t

= k ka, /2m and all the right-hand
states with ( e)k&Z~„=k k~„/2m. We let EF, —Zk.„
= e V; at equilibrium, E~, = E~„=E~ and V= 0. This
is only a convenient simplification and is not es-
sential, but it is reasonably accurate for the low-
bias voltages of interest.

B. Calculation XI' )

In first Born approximation, we must solve equa-
tions of the following form [see Eq. (2. 11)]for left-
hand states,

[X,(x) —e (k) + If o]q,'(k, x) = —U(x) q, (k, x) . (3.3)

The solution is

q,'(k, x)= J,'dx'Z(e(k)- k d, x, x')U(x')y, (k, x'),
(3.4)



INE LASTIC TUNNE LING: MANY- E LEG TRON THEORY

q)'(k, x)= (2I.) '"R'(k)e

(2L)-1 /ST (k)ei k' &x b)-

where

x&0

(3. 5a)

where K(e, x, x ) is given by Eq, (I2. 14). [Note that
k and K appearing in Eq. (I2. 14) are determined by
Eqs. (I2. 14h) and (I2. 14i) with e = e (k) —ft &~. j We
consider U(x) to be nonzero only for 0&x& b.

Outside the barrier region, we find from Eq.
(I2. 14a)

x J kdx K(e(k) —8&d, b, x )U(x ))I)„(k, x ).
(3. 6d)

We note that T„(k) is found from T,'(k) by replacing
&t&)(k, x ) by &t&„(k, x') and K(e (k) —5&v, 0, x') by
K(e(k) —Nw, b, x ) in the integrand of Eq. (3. 5c).
Similar considerations apply to R, (k) and R„(k).

We now wish to find the f, (i) functions of Eq. (2.14)
corresponding to ))),(k, x). We must subtract out of
&j&, (k, x) its projection on the occupied states. Con-
sider first the occupied left-hand states, letting q
run over the occupied left-hand states, we find

k'= (2m[e(k) —k ~]/k'}' ",
) = (2L)

(3. 5b)

q&k

(&t))(q)
l

&t))'(k))it&)(q, x) = Q (2iL)-'[R*(q)R,'(k)
q&kEl

where

T„'(k)= (2L)'

(2L)-1 /2T &(k) -ik '&& x&0

=(2I.) '"R'(k) '"'"-" b&x
(3.6b)

)&J 'dx K(e(k) —k&d, 0, x')U(x')(„(k, x'),
(3. 6c)

R„'(k) = (2I, )' "

x J'd xK( (ek)- k ~, 0, x')U(x')g, (k, x'),

(3. 5c)

T,'(k) = (2L)' "
x J'd xK( (ke) —kv, b, x )U(x )g)(k, x ).

0

(3. 5d)

In a similar manner, we find for right-hand states

g„'(k, x) = J,'dx'K(e(k) @~, —x, x')U(x')q„(k, x')

(3.6a)

& —e p&
—'&q —&.'')&))+T q Tik

[e""+R(q)e ""],
x(2L) ' [C(q)e "+D(q)e "], 0&x& b

T( )
&e(x-k)

x&0

b & x (3. 7a)

where

(3. 7b)

(L/v) J'~) dq
0

Equation (3.6) becomes

q= (2m[V, —e(q)]/a'}' '
[We neglect terms &)&'(1 —exp[- i(q+ k )I ]}/(q +0 ) since
the denominator never vanishes, and we neglect the
overlap in the barrier which is c& b/L -0. ] Consid-
ering x&0 and b&x first, we see that only those
states with q =k are important, so we can evaluate
the slowly varying functions R*(q) and T*(q) at q = k

(slowly varying on the scale of 1/L). We next re-
pla, ce P (k ~ ~ ~ by

Q (q)(q) l)t&)'(k))q)(q, x)= (2vi) )[R*(k )R, (k)+ T*(k )Ti!k)]
q&k~ )

[e' "I'(k „k, x)+R(k )e ' "I (k „k, x)], x O

x (3.6)

T(k')e"'" k)I'(k„, k', x--b), b&x

where (k &0)

I'(a, k, x)= J' "

diaz

e"'*(1—e "
) (3.Qa)

I

The functions Ci(x) and Si(x) are defined a.s

Ci(x)= dt, x&0cost
C.'3

(3. 1Oa)

= Ci[
l
(a —k)x

l
] —Ci(k

l
x

l
) + i(Si[(a —k)x]+ Si(kx)}

ci[l(a- k)(I. +x)l]+ci(kl I.+xl) and their limiting forms are4

(3. 1Ob)

+ i $Si [ (a —k)(L + x)]+Si[k(L + x)]}. (3. Qb) Ci(x) -0, Si(x) - —,'v sgn(x), x» 1 (3. 11a)
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Ci(x)-lnx, Si(x)-0, x«1. (S. I lb)

I '(a, k, x) = 2((i 8 (a —k)8 (+x), 0«
~

x
~

«L (3. 12)

and 8(f) is the unit-step function. Substituting into
Eq. (3.8) gives

Q &(j,(q)
~
(j,'(k))(j, (q, x) = (It "(k')It,'(k)+ T"(k')T,'(k)]

q&k

In the region of x -1, Ci(x) and Si(x) oscillate
about 0 and —,'m, respectively. We are interested in
the region 0« ixi «L where I'(a, k, x) becomes

calculate quantities such as the current only through
order T . Therefore, we keep only those terms
which contribute to order T in any transmission co-
efficients, to order T in any reflection coefficients
which contains other terms of order 1, and to order
T in any reflection term which contains no terms of
order 1.

Now from Eq. (I2. 11), (I2. 14), (3.1), and fs. 2),
for 0&x'&b

f((e(k), 0, x'1= (- mi/@'k)(2L)'"(j, (k, x') (S. 15a)

Z(k')e-*""

b((2L)-i /R

T(k I) ib' (x b)-b«x«L.
(3. 1s)

Z(e(k), 5, x')= (- mf/k'k)(2L)'"g„(k, x'). (S. 15b)

Thus, substituting into Eq. (3. 15g), we find

r,'(k) = (- 2fmL/k'k') J 'dx'[y„(k', x')

—T{k')It "(k')y, (k', x')]U(x')g, (k, x')
[The factor 8(kz, —k ) is always positive, since k
& k & k» for left-hand states ]Eq. uation (3.13) is
the projection of (j'(kt, x) on the occupied left-hand
states. The projection of r/r, (k, x) on the occupied
right-hand states is found in a similar manner.
Letting q run over the occupied right-hand states,
we find

+ &((„(q)
~
(j,'(k))(j„(q, x)

= [T'(k')z,'(k)+ a*(k')r,'(k)]e(k,„k')-
T(k')e '"

g (2L)-( /3

p(k &) i '( -b)xb

(s. 14)

(2L)-1 /ar &(k)
ib' (x b)-

(S. 15a)

T,'(k) = [r,'(k) - T(k')I~*(k')z,'(k)+ o(r')]e(k'- k,„).
(3. 15b)

These steps follow because

(z(k) ('+
f
r(k) f'= I

T*(k)z(k)+ z*(k)r(k) = 0.
Let us remark that T-e ~«1 and that we need to

Hence, from Eqs. {2.14), (3. 5), (3. 13), and (3. 14),
we see that

f,{k,x) = O(T )8(k k„)e '" ", —L—«x«0

+ o(r'), (s. 17)

From Eqs. (I2. 11), (3. 1), and (3.2), it is easy to
show that

y„(k, x) —T(k)It "(k)y, (k, x) = Z(k)y„*(k, x)+ O(r').

(s. Ia)

Substituting into Eq. (3. 17), we find, then, that

T,'(k) = [(-2fmL/k'k')ft(k') j,'dx'y„*(k', x')

x V(x')g, (k, x')+O(r')]8(k'-k, „). (S. 19)

We note that the matrix element appearing in Eq.
(3. 19) is between a. left-hand state and a right-hand
state with the interaction potential. This result is
similar to the transfer-Hamiltonian model5 except
that Eq. (3. 19) contains orthogonal current-carrying
states, whereas, the transfer-Hamiltonian model
uses nonorthogonal standing-wave states which are
eigenfunctions of a slightly different Hamiltonian
than Eq. (I2. 2). (A complete discussion of this is
given in Ref. 5. ) The result depends upon the re-
quirement of orthogonality of the scattered wave
with the rest of the occupied states. For one elec-
tron interacting with a vibrator, the inelastic-trans-
mission amplitude is just T,'(k), and not T,'(k), which
is a somewhat different matrix element involving
(j~„, and not (j „"[see Eqs. (3. 5d), (3. 16b), and
(I2. 15)]. It is found in the Secs. IV-VI, however,
that first Born approximation is sufficiently accu-
rate for the calculation of the current when all in-
elastic-reflection coefficients are negligible, and
therefore, in this case the distinction between T, (k)
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and T,'(k) is unimportant for k'& k~„. [For k'& kr„,
T,'(k) vanishes. ]

In a similar manner, we find for the right-hand
states

f„(k, x)=(21.)-'"r„'(k)e-*"'",—I,«x&0
=O(r')e(k' k„-), k«x«1. (S.soa)

where

T'„'(k)= [T„'(k)—T(k')ft*(k')ft„'(k)+ O(T')]8(k'- k,).
(3.20b)

%e can also show that

&'(k) = [(-»~f I&'k')ft(k') j 'dx'g, '(k', x')

~ gx')y„(k, x') +o(T')l«k'-k»). (3.»)

When
~
e V) & Nor, all f,(k, x) and f„(k, x) vanish in

the regions —1.«x«0 and b«x«I. because there
are no occupied states where k could exceed k» or
k~„, whichever is smaller. This means that there
are no electrons which inelastically tunnel by exci-
tation of the vibrator when le V ( & hv. In the region
of the barrier, however, f, (k, x) and f,(k, x) do not
vanish, and can serve as sources for the second-
order terms considered in Secs. IV and V.

C. Current, Conductance, and d~ J/d V

The current flowing in the negative x direction
for a system described by a normalized wave func-
tion 4(xy) xap ~ ~ ~

q xg) $) ls

$85
eT(x) = dxg dx2 de 4 ~ [0 (xi' xa& ' ' 'p xtit ~) (xl& xat

2tH

—4'(x„x„~~ ~ x„; () (x„x„~~, x„; &)]O(x, —x)
Bx~

= Jo(x)+ J,'(x),

(3.22a)

(3.22b)

&~(x)= — dxg «g ''' «N Z [)tJ(xg xp ' . , x„) (x&, x2 ~ ~, x&)
tel
2m

—„(x„x,, .. . , x„)-,'"'( „„.. . , x,)]~(x, -x), (3. 22c)

Since 4'(x„xz, . . . , x„;$) represents a stationary
state, J'(x) must be independent of x from the con-
tinuity equation. (In what follows, we retain only
terms through order V . ) The normalization of the
wave function calculated thus far is not unity, but
is

Norm = 1+ g„'(f„~f„) (3. 23)

=Z (f, lf.),
must be small. Now, in this paper we have solved

where the sum on q runs over occupied states [see
Eqs. (2. 2), (2. 14), (2. 15), (2. 32), and (2. 34)].
Therefore, we must divide y 0 as given by Eq. (2. 32)
by (Norm) to be correct. For the wave functions
we have derived in this paper to make sense physi-
cally, P„'(f„~f,} must be small compared to unity,
that is, the probability of finding the system in the
excited state relative to the probability of finding
the system in the ground state,

f dx, f dx, ~ ~ ~ f dx„) X,(x„x,, . . . , x„)]'
f dx, f dx, ")' dx„~ g, (x,,x„.. . , x„)

~

&

for the wave function of the many-electron-vibrator
coupled system. The physical system of interest
contains many electrons, a vibrator, and a contact
with a thermal sink which keeps the vibrator in the
ground state most of the time. Our theory does not
contain a contact with a thermal sink. %e rely
solely on boundary conditions to stimulate the ther-
mal sink. In the one-electron theory, this presents
no difficulties since we imagine an el.ectron as a
wave packet incident on the barrier with the vibra-
tor in the ground state, the wave packet being made
up of states y 0(x) like Eq. (Is. Va). The boundary
condition assures us that the vibrator is in the ground
state for the incident wave packet which, physically,
is what the thermal sink does. So long as the con-
tact with the thermal sink is not so strong as to
modify the nature of the vibrator states, the only
effect that the thermal sink has is to deexcite the
vibrator after the wave packet has been scattered
off the barrier. This subsequent deexcitation can
have no effect on the various scattering probabili-
ties of the wave packet. In the many-electron sys-
tem, if we imagine the occupied P, (x) as represent-
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ing wave packets, the best we can do is to put the
vibrator in the ground state before any wave packet
impinges on the barrier. Then, we scatter all the
wave packets in the system off the barrier. Physi-
cally, we would like to deexcite the vibrator (if ex-
cited) after each wave packet scatters off the bar-
rier, but we can not accomplish this in the solution
of the many-electron-vibrator coupled system. We
must, therefore, assume that the total probability
for the excitation of the vibrator by scattering of
all N electrons in the system is small. Qbviously
in a large system, particularly a three-dimensional
system, this assumption is not valid. This is an
inherent difficulty in our approach, resulting from
our inability to solve the many-electron-vibrator
system with a thermal sink. We proceed formally
by assuming the smallness of g„' (f„~f„)(by making
U as small as necessary), calculating the current
through order U', and assuming that the answer is
correct for physically reasonable values of U.

If kz, & kz„(V & 0), it is convenient to calculate
J(x) in the region b «x «L and if kz, &kz„, it is
convenient to calculate J(x) in the region —L «x
«0. Under these circumstances, we find

(S. 24a)

J,(x) =

kyar &k &kyl
&&(»IJIS(k)&, k., &k., (0& V).

(s. 28)

We recall that f, (k, x) and f„(k,x) vanish for k'
= (k —2mur/0) &kz„ in the region b «x «L. This
means that only the f, (k, x) for which k' &kz„can
contribute to J,(x) (for V & 0), which requires eV
& A& for there to be any inelastic current when
V & 0. Hence,

current in the region —L «x «b when V& 0 (or in
the region b «x «L when V & 0) the proper amount
to ensure current conservation across the barrier.
It can also be shown that these do not give a contri-
bution of O(Ta) to the current in the region b «x
«L when V & 0 (or in the region —L «x «0 when
V &0). So, Eq. (3. 25c) is correct if J,(x) is evalu-
ated in the region b «x «L for V & 0 and in the re-
gion —L «x «0 for V & 0. This means that we do
have current conservation across the barrier in the
inelastic channel.

Consider V& 0 so that k~, & k~„. We calculate
J'0(x) and J,(x) in the region b «x «L. We note
that only those states»)», (k, x), kz„&k & kz„can con-
tribute to Jo(x), since for every left-hand state with
0 &k~„, there exists a right-hand state with equal
and opposite current. Hence,

J'(x) =~. &f. I
J lf. &+&,'&&.

I
J I&.&) (~' &f. If. &) .

(S. 24b)
J,(x) =

kZ'r &k &kFl
&f (k)l Jlf (k)&

(3. 27K)
where

»»[~[»» =,*"- (»" »*» ",'*' -»»*» ","*») .

(3. 24c)

We have taken into account Eq. (3. 23). If we com-
bine the second term of Eq. (3. 24b) with Eq.
(3. 24a), we have

k~„= (k~a„+ 2m»d/If)'~'&k~ (h~ &eV)

=0 0&eV &k»d . (3. 27b)

»»p., & «&»»» I T(k)l V ) 0 (3. 28a)

From Eqs. (3. la), (3. 15b), and (3. 24c), we find

J(x) =J,(x) +J,(x), (S. 25a)

(3. 25b)

(3. 25c)
=0, 0(eV &kv. (3. 28b)

Ak'J,(x)= Z Ii,'(k)l', @~&eV
klan &k&kFl rn
Fr

Now, J'0(x) is the elastic current and is quite clearly
the same for —L «x «0 and b «x «L; whereas,
J,(x) [as given by Eq. (3. 25c)] vanishes for —L
«x«0 if V & 0, and vanishes for b «x«L if
V &0. Yet we know that J(x) is independent of x.
The resolution of the difficulty is that in addition to
the term (f„(J ( f„&, terms of the form

-«~.' &f. lf. &&&. IJI&. &

should appear in Eq. (3. 25c). These latter terms
arise from the nonorthogonality of f„with f„(iL»»»i ).
It can be shown that these terms contribute to the

In a similar manner, we can show that

J.(x)=- Z
I
T(k) I', V&0

kFl &k&kEr 2mL (S. 29a)

hk'J,(x)=- Z IT„'(k)l', eV&-k~
k ~ &k&kgFl Fr

=0, —k&d &eV & 0. (3. 29b)

We recall that F~, —E~„=eV; and for V & 0, E~r
=E/, jp/„—kg, and for V (0, E/l —E/, jp~l —p~,
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where E~ and k~ are the equilibrium Fermi energy
and momentum. We can rewrite Eqs. (3. 28) and

(3. 29) as
levl

J,(v) = sgn(V) — de Do(e),
0

(s. soa)

lev I

J,(V) = sgn(V) — de D,(e, V), (3. 30b)

where

D.(e) =
I
T(k) I' (3. 30c)

D (, V)=(k'/k)
f

T,'(k) f, 0 V

= (k'/k)
f
T„'(k)

f

', V & O (3. sod)

2m e+E~

2m e+ E~-hv
Sa (3. 30e)

G(v) =-dJ
dv

= Go(v)+ G,(V),

(S. 31a)

(3. 31b)

where the background conductance is [Eq. (12. lid)]

G,(v) = (e'/k. )D,(f ev
f ) (3. 32a)

16e k K p~q

k(k' fc')' (S. 32b)

where T, T,', and T„' are given by Eqs. (2. lid),
(3. 19), and (3. 21), respectively. (We drop the x
variable, since current is independent of x, and in-
dicate the dependence on bias voltage V. )

Let us now calculate the conductance in first Born
approximation

and T,'(k) is given by Eq. (3. 5d) and T„'(k) by Eq.
(3. 6c).

Since we have considered a symmetric barrier
potential V(x), the background conductance Go(V)
is symmetric about zero bias. The background is
assumed to be slowly varying for the bias voltages
of interest. (We can also allow Vo to be a function
of V and to fit the background, if necessary. )

The inelastic conductance associated with the ex-
citation of the vibrator G, (V) vanishes for

~ ev~
&h&u (see Fig. 1), where conservation of energy
forbids the excitation of the vibrator (at T=OK).
At e V= k~, a step increase in the conductance oc-
curs which is proportional to the probability for
inelastic transmission

~ T,'(k)
~

~. Likewise, at eV
= —her, a step increase occurs which is proportion-
al to

~
T„'(k)~ . Since T,'(k) is the same as T' in I,

we see that inelastic current is relatively insensi-
tive to the position of the vibrator, and hence, the
step increases in the conductance at e V= +5+ are
approximately the same size, being slightly larger
for e V= Sv if the vibrator is located near the right-
hand edge of the barrier, etc. , which is in agree-
ment with experiment. '

Experimentally, d d/dv =dG/d V is often mea-
sured. The inelastic current contributes a positive
peak for eV=hco and a negative peak for eV= —hen.

The heights of the peaks are, of course, proportional
to the step increases in the conductance. The width
of the peaks depend upon temperature and the dis-
tribution of vibrator frequencies. We emphasize
again, that the above remarks are strictly valid
only when inelastic reflection is negligible.

D. Further Results

Let us quote the results in first Born approxima-
tion for the model which is a generalization of one-
dimensional model of Secs. I and II to three dimen-

and now

k = [2m(f ev
f
+z, )/k'] &',

sc =[2m(v, —fev
f
+E,)/n']".

(3. 32c)

(3. 32d)

G, (V)

In the calculation of G, (V) when first Born approxi-
mation is valid for the calculation of the current, we
can replace T,'(k) by T,'(k) for k' & k~„and V & 0,
and T„'(k) by T„'(k) for k' &kz, and V&0. Hence,

G,(v) = (e/k)(k'/k)[
f
T'(k)I'8(ev- k&g)

+
f

T„' (k)
f

8 ( —e V —8 co)],

where

(3. 33a)

(s. ssb)

0
Bios Voltage, V

FIG. l. Inelastic conductance G~(V) versus bias volt-
age V. No inelastic current flows for l e V l & S~ by con-
servation of energy. Step increases in the conductance
occur at eV=+@& owing to the onset of inelastic tunneling

associated with the excitation of the vibrator.
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sions. We find by techniques similar to those used
for one dimension that for b «x «L

f, (k, r ) =Q I ( 2 LA )
~' T,' (k, p )

x exp[ip„(x —b)+ip, p] 8(e(k) —ke- E~„),
(3. 34)

where the sum on p is over all p with k p /2m
= (k k /2m) —hw. In the plane of the barrier, the
projections of p and r are p, and p. The area of
the barrier, equal to the area of the tunnel junction,
is A. (As before, the barrier extends from 0 to b. )
The amplitude for inelastic transmission from k on
the left to p on the right is

hold for V& 0. The amplitude T', (k, p) is given by
Eq. (3.35).

Finally, we make connection with the results of
Scalapino and Marcus for molecular excitations.
Instead of evaluating the amplitude T,'(k, p) in Eq.
(3. 35), we obtain the inelastic current from the
three-dimensional generalization of I. The one-
electron elastic and inelastic wave functions obey
the coupled equations

[H, (r) —e] yo(r) + U(r)y, (r) =0, (3. 37a)

[H, (r) —e+h&u] y, (r)+ U(r) go(r) =0, (3. 37b)

where U(r) is the dipole (plus image) potential, '

U(p, x) = 2eP„x/(x'+ P')'t2 (3. 38)

(3. 35)

The left- and right-hand states g„(p, r) and g, (k, r)
are obtained from Eqs. (3. 1) and (3. 2) by multi-
plying by the appropriate plane-wave factors A ~

xexp(ip, ~ p) and A ~t expik, ~ p. We assume the
three-dimensional interaction potential U(r ) van-
ishes outside the barrier. Similar results hold
for f„(k,r).

The matrix element T,'(k, p) is similar to that
which appears in the transfer-Hamiltonian model, '
except that orthogonal current-carrying states oc-
cur in Eq. (3. 35), whereas, nonorthogonal stand-
ing-wave states occur in the matrix elements of
the transfer-Hamiltonian model. The difference
in most cases is, however, unimportant.

We conclude the calculations in first Born approx-
imation by remarking that for interaction poten-
tials which do not give rise to significant inelastic
reflection, we can calculate the inelastic current
from the one-electron theory of I (or its appropriate
three-dimensional generalization) by the following
prescription. We calculate the amplitude T' for
inelastic transmission of a single electron by the
methods of I. We then calculate the inelastic cur-
rent for that electron. Now, the total inelastic
current for the many-electron system is the sum
of all the inelastic contributions from the single
electrons consistent with the initial state being oc-
cupied and the final state being unoccupied. Inone-
dimension, the result is Eq. (3. 30b). In three
dimensions, the result for the inelastic current due
to a single vibrator for V & 0 is (including spin)

(3. 35)

The sum on k, p is over all states such that k k/2m
&E«and h2p2/2m = (k ~k~/2m) —hu»&E~„, where
Ez, =Ez+e V and E„„=Ezfor V&0. Similar results

d2
~ (r) Pt &s, ~ p

(2w)'
y2 I j (kg - g&) ~ jf ~

p e

dx' K(e —k ~ —k'p, '/2m, x, x') U(p', x')g(x'),

(3.40)

where the Green's function K(e, x, x') is given by
Eq. (I2. 14). Now, if U(p', x') is slowly varying in
p', only p, =k, will contribute to Eq. (3.40), so
we replace p, by k, in K(e —If+ —k 'p, /2 m, x, x ').
Hence we find for x & b

y, (r) = T'e'"~ '"e'"~'" "
where

T'= f dx' t(e —k(u —k' k, /2m, x')U(p, x') P(x )
0

and

in analogy with Eq. (I2. 15). We note that T' de-
pends upon p, so that the inelastic current due to
a single electron incident from the left with energy
c and transverse momentum k, and one molecule
1S

f d' p (kk„'/ )
~

T'
~

' .

Similar results hold for electrons incident from

(in our notation) and P„ is the dipole moment in the
x direction of a molecule near x=0.

We write go(r) as

e'"& ' g(x), (3. 39)

where k, is the transverse momentum and Xo(x)
is an incoming wave on the left [see Eq. (I2. 11)].
We take the electron energy to be e=k (k„+k,)/2m.
It is straightforward to show that in first Born ap-
proximation
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the right. If we add up the inelastic current from
all electrons that can make inelastic transitions,
our results are equivalent to those of Scalapino and
Marcus.

IV. GENERAL THEORY: SECOND BORN
APP ROXIMATION

%e now extend the analysis of Sec. II to second
Born approximation. In second order,

[Z,ff,(i) —«]x&'&(I, 2, . . . , ~)

not be solved as simply as Eq. (4. 3). Therefore,
we expand f (1) as

f (1)=2„&y.lf.&e.(1) (4 5)

(The sum is formally over all states. ) Since f is
already orthogonal to all occupied states g, only
unoccupied states need to be included in the sum.

Substituting Eq. (4. 6) into Eq. (4. 5) gives

E(I, 2) =z„(l/J„lf &1/)„(I) ka(«+«g —«„, 2), (4. I)

where for any E

=-Z, ~(i) x,"'(1, 2, . . . , lv), (4. I) [e,(2) - ]I,(, 2) =- II(2) q, (2). (4. S)

where X,
"' is given by Eq. (2. 15). As before, the

right-hand side is a sum of sources, each of which
gives a contribution to Xo '. There are two types of
tel'Ills 011 'tile 1'lgllt-llRllcl slcle of Eci. (4. 1), Olle of
which we call direct and the other indirect. As an
example of a direct term, consider a term of the
form

—U(1)f.(1) I,(2) t. (~~)~ .
Such a term gives a contribution to go

' which is

8"(I) 0 (2) . tI.(&)

The contribution of such terms to yo
' is of the form

~.&4. lf &D(&,@t(« +«I «, )8-, . tj ) (4 9)

The above terms involve only replacements in the

(n, il) pair among the states g 58. ~ $„. The total
contribution of indirect terms will involve all other
pairs formed from the occupied states of Xo such
as (y, P), (n, y), etc.

Now the principal contribution to the sum in Eq.
(4. 9) corresponds to the states g„with energies «„
=«„—h&u. This means that for the g„of importance

[If.(I) —«.]4".(I) = —U(1)f.(1) .
We can solve for g (1) in a. manner similar to that
used to find g'(x) in Sec. II of I. Clearly, P", (I)
possesses tile sallle spill Rs f (1) and g (1)[if U(i)
contains no spin-flip terms J. Similar considerations
hold for P, .. . , &d. It is straightforward to show that
the total contribution of the direct terms to Xo

' is

Xo~'(» 2 . . lli41 .1=D(ti" 48 .

+D(/~pe ~ ~ . g )+ +D(( if&~8~~ ~~ ~ 0„), (4 2)

&6 lh8(«. + «8 «, )&
= Q—~I I &(«~+ ~~)) . (4. IO)

hg(«~ + «g —«„,i) Ig{«~ +«g —«q, i)

+(4 I h~(«. + «& —«, )& 8. (i), (4. ii)

Such a term can be neglected in any sum over
states since there is a finite energy difference
S&o between $8 and k~(«~+ S&o).

Hence, in Eq. (4. 9) we can make the replace-
ment

where

[H,(i)-«, ]|j„"(i)=-V(i)f,{i) . (4. 3)

Ig(«„+«g —«q, 'l) =
Ilg («„+«g —«», I)

—2'&l..l (ht («. + «& —«. )& I,(i), (4. 12)
In addition, there are source terms of the following
form which are called indirect,

- U(2)f.(I)y, (2)q,(2) "e.(~) .
The contribution of this source term to go

' is of the
form

the sum being over all occupied states. Substi-
tuting Eq. (4. 11) into Eq. (4.9), we obtain two
terms

Z, &t.if.»(C, I,(«. ", «.) y, "&.-&

&(I, 2) t, (5) 4. (lv), ~ (4 4) -Z, &t, lf. &&0. lla(«. +«~ «,)&D{4k-,4,
(4. iS)

[H,(1)+H,(2) —« —«8]E(l, 2) = —U(2)f (1)y~(2) .

(4. 5)

Unfortunately, Eq. (4. 5) is not separable and can-

The sum on q is over unoccupied states since, ac-
cording to Eq. (2.14), the projection of f„on the
occupied states has been subtracted out. The first
tel'111 111 Eq. (4. 13) 18 doubly 01"tllogollR1 to Xo
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i.e. , both P„and la(«„+ «a —«„) are each orthogonal
to g„and ga. In the calculation of the current, or
of a matrix element of any single-particle opera-
tor, any term which is doubly orthogonal to Xo

'

cannot give a contribution of order U by interfering
with Xo~ '. Therefore, we can drop such a term
because it will give only a term of order U4 in the
current. The second term in Eq. (4. 13) is only
singly orthogonal to yo

' and must be kept.
Consider now all pairs involving P such as (n, P),

(y, P), etc. We can combine these indirect terms
[such as the second term in Eq. (2.28)] to obtain

D(S. V'a4, "t(.),
where

ea(i) = -Z.'g. &t.lf ) &t. I ka(«. +«a —«, )& y, (i)

The sum on p is over all occupied states and the
sum on q need be over unoccupied states only.
[The term v = P can be included in the sum since it
is negligibly sma, ll. ] Now, ka has the same spin as
ga, so q a will also have the same spin as ga [if U(i)
contains no spin-flip terms]. The remaining terms
can be treated in a similar manner which allows us
to write XII'II„a„~, (with doubly orthogona, l terms
omitted) as

where

g, (i) = g, (i)+g,(i)+v, (i) ~ (4. ia)

V. ONE-DIMENSIONAL MODEL: SECOND BORN
APPROXIMATION

A. Calculation of XI,
' l

We now calculate yo
' for the one-dimensional

model of Sec. III. We must first evaluate Eq.
(3.Va) in the region 0&x& b. This we do by eval-
uating C(q), D(q), and tII at tf = k', but we must ap-
ply a cutoff to the tt «k' since g, (4, x) decreases
exponentially as tl decreases (except at x = 0). We
find

From Eqs. (4. 15) and (4. 16), through order U for
any occupied states p, and v,

&4.1 4.&
= 5.. . (4. i9)

since g, and y„are orthogonal to g, . (We assume
the I}lu form a. complete orthonormal set. )

Through order U, XI is given by XI'" [see Eq.
(2. 15)], the next order term being order U'. This
completes the formal derivation of the many-elec-
tron wave function with a single vibrator through
second order in the interaction potential.

XO (I~ 2~ »)taatrect =D(&a 6' ' '4)

+Il(tmti'a 4(o)+ ' ' +D(t}'a 'ks ''9'~) '~

(4. 14)

Z (gt(q) ~gt(k)& g, (tf, x)
(0

= (2 ') '[R*(k')8,'(k) + T*(k')T, (k)] y, (k', )

q, (i) = —Z,'~„&P„If„) &g„lk, («„+«„—«„))g„(i) .
(4.15)

Both g~' and y„are second order in U .
In Eq. (4. 2), we can make the replacement

0,"(i)-g. (i),

where 0, is a cutoff. In a similar manner, we find

&t, (4) is,'(k)& t, (q, )
q (A~

= (2vi)-'[T*(k')II,'(k)+If*(k')T', (k)] y„(k', x)

where

g.(i) =4."(i)—~.'&0,
I P."& 4, (i) . (4. 16)

-u' i

X ln ~" - + j7]e Q&„—Q' 0&@ &Q .
(5.2)

=I~(i 4" & ) {4.17b)

The sum on Il is over all occupied states. [The
II = p, term in ga(i) can be included since we can
abvays add a constant times the homogeneous so-
lution of Eq. (4. 3) to the inhomogeneous solution. ]

Through order U, we can combine Eqs. {2.12),
(4. 3), and (4. 14) to obtain

X,(1, 2, .",~) = Xao'(I, 2, .",~)

+lit"(1, 2, . . . , X}

In Eq. (5. 1), k' is a,lways less than kit for left-
hand states. Hence, we never encounter the sin-
gularity at k'=k» in the ln term or the step in the
8 term. Since we are concerned only with the sec-
ond-order terms which show structure (we cannot
distinguish slowly varying terms from the back-
ground), we can neglect the slowly varying contri-
bution Eq. (5. 1) to f, (k, x) in the region 0&x &it

when we calculate g,"(k,x) using a source involving

f, (k, x). As for Eq. (5.2), we cannot, in general,
neglect this contribution to f, (k, x) since, for eV
& Sm, there exist left-hand states for which k'
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=k~„. This term will, therefore, give structure
to the second-order reflection and transmission
amplitudes. For convenience, we define

0' (k, x, k „)= —(2vi) '[T*(k')R', (k) +R*(k')T,'(k)]

xg„(k x)[I l(kz, -k')/k.
l
-'ve(k'-k. ,)],

0&x &f) . (5.3)

The function q&, (k, x, kz„) differs from the right-
hand side of Eq. (5. 2) only in sign and in the neglect
of a slowly varying term associated with rewriting
the 8 term. Hence, in computing )I)')'(k, x) from a
source involving f,(k, x), we keep only y, (k, x, kz„).
Likewise, we find for right-hand states the most
important contribution to f„(k, x) for 0 &x &f) is

x f dx'K(E(k), f), x') U(x')p„(k, x', k, ). (5.Vd)

where
G, ) = —T*(k) G,2/R*(k) (5.8b)

and

G„=T,"(k) —T(k)R*(k)R", (k)+8(T'), »k,

According to Eq. (4. 16), we must find the func-
tions g~ (i) which correspond to subtracting out of
)j)) '(k, x) and )I)„"(k,x) their projections on the oc-
cupied states. First, for left-hand states, we find
by methods similar to those used to find f, (k, x)

g, (k, x) =(2L) G))e ", L«x-«0
= (2L) ) G)2e+" 2'

I) «x«L (5.8a)

y„(k, x, k, ) = —(2))2)-' [T*(k')R,'(k) +R*(k') T,'(k)]

x)j,(k', x) [In~ (k~, -k')/k,
~

-ix8(k' kp))], -

=0

We can rewrxte G» as

G,2= (-2fmL/k k)R(k)

k &k~„.
(5.8c)

0&x &b . (5. 4)

From Eq. (4.3), we see that the second-order
terms arise from equations of the form

x f'dx'g(k, x')U( x)y, ( kx', k„)+O(T'), k&k,„
0

(5.9)

[H, (x) —&(k)] )j)I'(k, x) = —U(x)f, (k, x) . (5.5)

Neglecting all terms in f, (k, x) except Eq. (5.3),
we find

where we have made use of Eqs. (3.16), (3.18), and

(5.6) . Substituting Eq. (5.3) into Eq. (5.9), we

find

)jII'(k, x) = (2L)-'~'R '(k)) e "", x&0
—2i mI.G»=, , R(k)

0

dx' )j)„*(k, x') U(x') )1)„(k',x')

=(2L)-"'T,"(k)e'"' ", 5 &x (5.6a)

where

R,"(k)= (2L)"'

x f dx'K(e(k), 0, x') U(x') 9), (k, x', k),„), (5. 6b)
0

T,"(k)= (2L)"'

x f dx'K(e(k), b, x')U(x')(p, (k, x', k),„) . (5.6c)
0

Similarly,

dx' )I)„* (k', x') U(x') )jI, (k, x')

&& [InI(k„„k')/k,
~

a~8(k-' -k,„)]+O(T'), -k k„

=0, k &k~„. (5. 10)

In deriving Eq. (5.10), we have made use of the
results leading to Eq. (3. 19). In a similar man-

ner, we find for right-hand states

g„(k, x)=(2L) ) G„2e '", L«x«0-
q„"(k,x)=(2L)-'~2T„"(k)e-*'", x&0

(2L)-) / 2R))(k) e i2(x - 2)

where

(5. Va)

(5.7b)
where

= (2L) ' G„,e " ', b x«L«(5. 11a)

T„"(k)= (2L)"2

x f dx'K(e(k), 0, x') U(x') y„(k, x', k,), (5.7c)

R "(k)= (2L)"2

2

G„,=, — 2- R(k) dx')j),* (k, x') U(x') )1),(k', x')
&kk' e'

0

&& dx' g)*(k', x') U(x') )1)„(k,x')
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x [h ~(k„-k')/k,
~

f-ve(k' k-»)]+G(&'), »k»

=0, k &kg) (5. 11b)

G„,= —r+(k) G„,/R*(k) . (5. 1 lc)

From Eq. (5. 10) we note that G, a contributes struc-
ture to the transmission amplitude (coefficient of
e'" ' terms for x»b) for left-hand states, which
is second order in U and has a logarithmic sin-
gularity for k'=k~„. Likewise, G„2 contributes
similar structure to the right-hand states when
k'=kz&. It has been shown previously that
whenever one has interactions with a boson of en-
ergy h&u (e.g. , optical phonon) in the electrode
region (say k & x &L), it is possible to have logar-
ithmic singularities (suitably rounded off) in the
spectral weight function which is reflected in the
conductance of the tunnel junction in essentially
the same manner as the logarithmic singularities
in the transmission amplitudes above [Eqs. (5.10)
and (5. 11)] are. (We explicitly calculate the con-
ductance below. ) This result indicates that the
pl esence of a logal lthmlc s1ngulal lty 1n the con-
ductance of a tunnel junction can arise from struc-
ture in the barrier-penetration factor as well as
in the spectral weight function. %e note that no
such singularity appears in the one-electron the-
ory' since the singularity results from the sta-
tistics of the many-electron system.

In addition to the Eqs. (5. 10) and (5.11), the

y„(i) terms of Eq. (4. 15) also contribute structure
to the transmission amplitudes in the form of
logarithmic singularities. In the Appendix, we
show that for left-hand states

q, (k, )=(2L) "'&
(2L) 1/2F (xe-N5& k «x«L

(5. 12a)

=0, k &k~„

k" = (k'+2m(u/k)' ',
kF, = (k~, —2m(o/k)'~' .

For right-hand states,

q „(k,x) =(2Z, ) "'r„,-e-"", -f.«x«0

(5. 12c)

(5. 12d)

(5.12e)

where

=(2f,)-"'Z„e"'" ", b«x«L, (5.13a.)

R(k) dx' g (k, x') V{x')y„{k",x')
wkly" I

X)I dx' g,*(k",x') fI(x') g (k x')

0, u~u (5. 13b)

Z„,= —T*(k)Z„,/R+(k) . (5. 13c)

Wenotethatallof these terms [Eqs. (5,10), (5. lib),
(5. 12c), and (5. 13b)] involve essentially reflection
matrix elements of the type f dx g py„or f dx g py,
Although these terms are present in the transfer-
Hamiltonian approach, they are usually not con-
sidered except in the magnetic -impurity scatter1ng

We are now in a position to evaluate the g, (f)
of Eq. (4.18). Combining Eqs. (3.la), (5. 8a),
and (5.12a), we find

Z„= —r*(k)Z„/R*(k) (5. 12b) pg(k, x)=(2L) R (k)e '~ g«x«0

{2f.)-«~ Z (k),"&"-" k«x«f (5.14a)

2i mI-'
Z„= „,R(k) dx' |(+(k, x') U{x') y, (k",x')

"0
where

R, (k) =R(k) —&*{k)(G +& )/R*(k) (5.l4b)
b

x~ dx'y+ {k",x') V(x') y, (k, x')
T, (k) = T{k)+G„+F„. (5. 14c)

if we substitute Eqs. (5.10) and (5. 12c) into Eq. (5. 14), we find through order U
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(5.15a)

M;&(k, (I) = 2I f dx )1)$ (k, x) U(x) (I)~(q, x), i,j = r, l . (5.15b)

For k &kr„, we can see that pt(k, x) =(1)t(k, x) for the regions -I «x«0 and b «x«I, . Inaddition, from Eq.
(5.14b) we see that I R, (k) I can be determined from the condition of current conservation across the barrier
in the elastic channel

(5. 16)

Also, Eq. (5. 16) can be derived from the requirement of orthogonality of )1), (k, x) to states ((),((I, x), (I nearly
equal to k. For right-hand states,

(JJ„(k,x) =(2I) '~'T„{k)e '"" =(2I) ' aB„(k)e"''" "', {5.17a)

where

1"„(k)= r(k)+ a„,+Z„, ,

It„(k)= ~(k) —Te (k)(a„,+Z„,)/~*(k) .

From Eqs. (5.lib) and (5.13b), we find

(5.17b)

(5.1 lc)

(5.16)

Also, we can see that g„(k, x) = t{)„(k,x) for k & kz„I«x «0 or-f) «x « -I, and that an expression analogous
to Eq. (5.16) holds for the reflection coefficient.

B. Current and Conductance Due to X[)~~

By reasoning similar to that of Sec. III C, it is straightforward to show that the additional current due to
X'" is

~ leV )

J (V) = sgn(V)—
h g

de Da(e, V),

Da(e, V)=. . . Re —,M„„(k,k')M„, (k', k) ln
k~

-iwi()'-),
))

——„M„(a",))u„(),i")

k —[ka~ —2m(Ko) —e V)/k ]
~ . „a 2r)t(ko) —«)

k

) . i((i, q 0(,r)i'r )
I q))k,

(5.20a)

k'=[2m(e+E~ — lt)o)/'k]'~',

k"= [2m(~+Z, + f- )/e']'",
(5.20b)

(5.20c)
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&&=[2m(V, -~-Z )/k']"'.
We also find that we can rewrite Eq. (3.30) as

D, (e, V)=„,„, j~„,(k', k)j'8(k'-k, ), V&O

(s. 2od)

, j~,„(k',k)j'8{k'-k„), v«o.

To a good approximation, we can make the following replacements

»I(k k')/k-j»I( -k )/z I kC 0

Also, we note that

e(k' -k~) = 8(c —Aalu), 8[ikz —2m(kw +ev)/I' p -k}=8(+ev —e -k{d) .

Hence,

R,(e, V)=,„„, ; Re —,M„(8,8')M„(8', 8) In —ee(e —Ire))
—4m Ke k 6 —A('d

;—,—m„{k",k)m„, (k, k") ln —f~e(e V —& -e{d), ~ V & O

6 —A(d t

ore(8 -R) Re —,M„{o,ri )M„(8', 8) In'— ' —iee(e —ote))

;, M„(8",8)M„(8,8") In —iee(-eV —I —Ire)), V 0

a, (e, V)=„, , jm„,(k', )kj' (8-e~k), V&O

k= [2m(j evj+ z, )/k' ]'" (S. 24h)

IM, „(k, k)I 8(e —k~), V&0.

(s. as)
The lnelastlc condllctance associated with the

excitation of the vibrator is

c,(v)=,—,(IM„,(k', k)j'e(ev- k{d)

+ j~,„(k', k) I'8(- ev- k ~)], (5. 24a)

Or= —E(ee)Re(8. M„{8,8')M„{8', 8)
e=eV

,V(o) R.(„"„M„(8-,8)M„(8, 8-)),
(S.25h)

O = — F(eV)rrn(—„,M„(8, I )M„(8, 8))

„v(o)r (,l, M„(e-, e)M„(8, 8-),
8,"-0

(5.25c)

k'=[2m(jevj -a~+a, )/k']'". (5. 24c)
Ge= —E( —eV)Re(—M„(r, 8 )M„(8, 8)

e=-e V

The terms i.n the conductance of order U in the
elastic channel are given by

Gz(v) = C, ln + C~e(ev- Are), V&02 1 E

eV+ h(~= C~ln + C,8(-eV- k~), V&0
(s. 2sa)

+P(O)Re( M„(8, 8)M„(8, 8 ))

(s. 2sd)

R.=-.V(-.V)r (
—', M„(8, 8 )M„(8, 8)

6=-e V
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~ wz(0) rm( „M„(a",a)~„(a, a"))
(5.25e)

G~(V) (Log Terms)

r(e) = 2e'm'he "/v'h'h(h'+ SC'),

and in Eq. (5. 25)

h= [2m(a+E )/h']'~'

h = [2m(E' —hN+Ep)/h ]'

h"= [2m(e+ h u+ Z~)/h']' ~',

Z= [2m( Vo —& -E„)/h ]
~

(5. 25f)

(5. 25g)

(5. 25h)

(5.25')

(5. 25i)

Equation (5. 25) represents only those terms which
show some structure. Additional slowly varying
terms occur which have been omitted since they
cannot be distinguished from the background. We
note that if the reflection matrix elements M„„(h, q)
and M„(h, q) (h and q arbitrary) are negligible, then

there are no second-order terms in the elastic chan-
nel which give rise to structure in the conductance.
Furthermore, the inelastic conductance equation
(5. 24) reduces to Eq. (3.33) if the reflection matrix el-
ements (and hence, inelastic-reflection coefficients,
such as R') can be neglected. Hence, the results
of first Born approximation are valid when the re-
flection matrix elements (or inelastic-reflection
coefficients) are negligible. These matrix elements
are large only when the interaction potential U(x)
is sizeable near an edge(s) of the barrier.

The conductance Gz(V) is due to an interference
between the direct elastic-tunneling process, rep-
resented by T(h), and a two-step process involving
the virtual excitation and deexcitation of the vibra-
tor. Such terms give rise to logarithmic singular-
ities in the conductance and step-function changes
in the conductance at et/'= +he. The sign of these
effects depends upon the relative sizes of the vari-
ous matrix elements in Eq. (5.25).

To illustrate these effects, we consider an inter-
action. potential

Gz (V) (Step-Function Terms)

The coefficients of the logarithmic terms are
given approximately by

= [(V,-E,)/E, ]"'v 'C,
(5. 27a)

(5. 27b)

FIG, 2. (R) Logarlthmlcally slngulRl terms ln 62(V)
for the case vrhere U(x) ~ 6(x). Singularities at e V= +I u
arise from the interference of the direct, elastic process
and a two-step process involving the virtual excitation and
deexcitation of the vibrator. (b) Step-function decreases
ateV=+Scu are larger than the increases of t"&(V) at
eV= +I'cu (Fig. 1) for typical metal-insulator-metal junc-
tions. Positive bias voltage corresponds to current flow-
ing in the -x direction.

U(x) = U, a &(x) (5. 26) 64e~m (Uoa) h"h Z px, (5. 27c)

where U, a is a constant (units of energy-distance).
We find that logarithmic terms appear as in Fig.
2(a) and the step-function terms as in Fig. 2(b).
The ratio of the magnitude of the step decrease in
G~(V) to the magnitude of the step increase in

G, (V) is approximately ~2/EVwhich is greater
than unity for typical metal-insulator-metal junc-
tions. (We neglect small changes in the magnitude
of the conductance between V&0 a.nd V&0. ) Hence,
there is a net decrease in the conductance above
threshold () eV)&h&u) in addition to the logarith-
mically singular terms for the interaction potential
(5. 26).

where h, h", and K are given by Eqs. (5.25g),
(5. 25h), and (5. 25i) for e = 0. The coefficient C4 is
approximately equal to C2. We have taken 80=5~
to ensure the continuity of Ga(V) at V= 0 because
we find that if all the terms to order U are retained
(including the omitted slowly varying terms), the
conductance must be continuous at V= 0.

If the interaction potential is changed from a 6

function near x=0 [as in Eq. (5. 26)], «a 6 func-
tion near x = b, the sign of the logarithmic terms
is changed, but the step-function terms remain the

same. Hence, we can obtain a term in the conduc-
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G(V)=w '~Gi(~") I- " ' »(levl -@")
Vp

~z Vp-'~z
ln

Vp Vp eV+SM

where n.G, (ke) is the size of the step increase in
&G~(V) at V=k&u (see Fig. I), 71= 0 corresponds to
the vibrator inside the barrier, and g = I corresponds
to the vibrator at the x= 5 boundary. nG, (h~u) may
be thought to depend upon g, also, since the poten-
tial of a vibrator at a boundary can be influenced
by screening, etc. To account for the finite width
of the spectral line (of the vibrator) we make the
r.epIace ments

we(x) - —,
' w+-,' tan '(x/I")

ln
l
x

l

- —,
' ln (x + I' )

(5. 29a)

(5. 29b)

The results of a numerical calculation for typical
parameters are shown in Fig. 3. We note that the

tance from inelastic interactions near the edge of
the barrier resembling a self-energy effect but
with the sign depending upon which edge gives rise
to the interaction. If the junction is symmetric with
identical interactions at each edge, then we expect
no sizeable logarithmic terms due to cancellation.
[It is possible to have a small symmetric (about
V= 0) contribution from the logarithmic terms in
this case if we make no approximations in the eval-
uation of C, and C,. ]

In the molecular excitation experiments of Jak-
levic and Lambe, ' clear evidence of only G,(V)
has been reported. This is not too surprising since
the reflection-type matrix elements M„and M„„
pick out only a small portion of the interaction po-
tential near the left and right boundaries, respec-
tively, of the barrier. For molecular excitations,
the interaction potential is the dipole (plus image)
potential' [Eq. (3.38)]. Hence, the overlap of U(x)
with g, (k, x) g*, (k, x) or g„(k, x) g „*(k, x) is small.
(Numerical ca, lculations based upon this potential
show extremely small effects which would be diffi-
cult to detect experimentally. Similar results hold
for the induced-dipole potentia. l. ) If these matrix
elements were large enough for Gp(V) to be detected,
the logarithmic singularities in G, (V) would resem-
ble the self-energy effects described by Davis and
Duke for optical-phonon interactions in degenerate
semi-conductor electrodes.

We now make an explicit comparison of the line
shapes in d'I/d V2 versus V for a vibrator inside
the barrier far enough for the G2(V) terms to be
negligible (i. e. , more than - —,'K) and a vibrator at
the x = 5 boundary (using 5-function interaction po-
tentials). The conductance is given approximately
by (omitting the background conductance)

line shape is essentially reversed for the vibrator
at x= b compared to the vibrator inside the barrier.

The occurrence of G2(V) terms associated with

the virtual excitation and deexcitation of phonons
in p-n junctions involving indirect semiconductors
is not allowed due to the lack of the parallel direct
process connecting the same initial and final states.
Only the inelastic current involving the emission
of phonons required by momentum conservation is
observed. ' The same considerations apply to the

phonon structure seen in metal-Ge (n-type) contacts. "
However, in p-n junctions made from direct
semiconductors and metal-semiconductor contacts
involving either direct or P-type semiconductors,
such effects could be important in addition to the
self-energy effects discussed in Ref. 6. The ex-
perimental data' reported for highly doped metal-
semiconductor junctions are interpreted satisfac-
torily by the self-energy mechanism. However,
at lower doping, the changes in line shape with semi-
conductor carrier concentration may be due to the
effects discussed in this paper. '

I

EF /h(u = 25
Vo/War = 35
I /h~=oosl5—

IOL

I I I I I

c[ 5
K

m 0

N

—IO—
M

N —
I 5

U

-20—
I

-I 3 —12 —
I & -IO -9 —8

I I I I I

.8 .9 I.O I. I I.2 1.3

FIG. 3. Curves of d I//dU versus Uare shown for a
typical parameter of a metal-insulator-metal junction.
( The background conductance is omitted. ) g = 0 corres-
ponds to a vibrator far enough inside the tunnel barrier
(i.e. , more than - ~ K) for only the inelastic conductance
G~(V) to be important. g = 1 corresponds to a vibrator
whose interaction potential is confined to a region near
the x=6 boundary of the barrier. 1 is a parameter
representing the finite width of the spectral line of the
vibrator. The relative size of the g= 1 compared to g=0
line shape depends upon screening and other details of
the potential and no attempt has been made to estimate
these effects.

IV. CONCLUSIONS

In this paper we have formulated a many-electron
theory of inelastic tunneling based upon stationary
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current-carrying states. The theory was formally
derived for an arbitrary tunneling barrier with an
arbitrary interaction potential between the elec-
trons and a vibrator, which represents a molecular
impurity, a phonon, a magnetic impurity, etc. An

example of the theory was given for a square-bar-
rier potential with an interaction potential confined
to the barrier. Most of the results were for a one-
dimensional system for simplicity, but these re-
sults can be generalized to three-dimensions in a
straightforward manner as done, for example, for
the dipole potential of Scalapino and Marcus in
Sec. IIID.

Our results for the inelastic current indicate
agreement with the transfer-Hamiltonian method'
if the appropriate matrix elements of the interaction
potential are taken between orthogonal current-
carrying states instead of the nonorthogonal stand-
ing-wave states used in the transfer-Hamiltonian
method when the interaction potential is confined to
the barrier region. (Other cases were considered
only formally in Sec. II and IV. ) The results of
Scalapino and Marcus are in approximate agree-
ment with the transfer-Hamiltonian method and the
results of the present work.

By keeping all terms of second order in the
interaction potential, logarithmic singularities in
the elastic-transmission coefficient were found.
These singularities result from an interference be-
tween the direct elastic process (ordinary single-
particle tunneling) and a two-step process involving

the virtual excitation and deexcitation of the vibrator
(molecular impurity, phonon, etc. ). Such terms
also occur in the transfer-Hamiltonian approach
but have never been considered except for magnetic-
impurity scattering. ' In addition to the logarithmic
singularities, step-function terms also occur in the
elastic-transmission coefficient as well as in the
inelastic-transmission coefficient.

The processes leading to the logarithmic singu-
larities and step-function terms in the elastic-trans.
mission coefficient are probably not important in

the molecular excitation experiments ' because
the relevant matrix elements are not expected to
be large unless the impurities are sufficiently close
to the boundaries of the barrier. In this latter case,
the line shapes in daI/dV' versus V are fundamen-

tally different. In some metal-semiconductor ex-
periments involving the optical phonons of low-
doped semiconductors such processes might be
important. '

APPENDIX

I et us repeat Eq. (4. 15) as (v and q interchanged)

q.(x) = -&.~. (&.lsd(t. lh.«.+" e.»& (x»-
(A1)

We need to consider only p, equal to a left-hand
state g, (k, x) since u equal to a right-hand state
would give (g, (p) lh„)- T and since (g„(u)

l

g', (p))- T,
this would give y„- T which we can neglect.

From Eq. (A2), we then find for left-hand states

h, (k, e, x)=(2L) "'H„e "", x&0

= (2L) H»e"'" ', b & x (A3a)

H„= (2L) ia f ~ dx'K(e, 0, x')U(x') g, (k, x'),
(A3b)

H»= (2I.) 'i' f dx'A(e, b, x') U(x') g, (k, x'),
0

(A3c)

q = (2m'/h')'i'

Equation (A2) becomes

cp, (k, x)=(4a') ' j" du f 'dp[R*(p)H„
kp

+ T*(P)H „][r*(u)R', (P) + R+(u) T', (P) ]

1 —e '('')L 1 —e ~(u-P )r,
-

X
P —q u —P'

q = [p'+k'-u']"'

P' = (Pa —2m(u/ri)'i 2

g„(u, x),
(A4a)

(A4b)

(A4c)

The quantities H„and H» are evaluated for &

=h q /2m in Eqs. (A2b) and (A3c). (We limit the
range of integration so that q & 0. ) Now those states
for which u =p' and for which P =q contribute the
most to the integral. This is equivalent to q = (ka

+2m&v/h) =P, u=k. We evaluate the slowly
va.rying functions R(p), H„, etc. , accordingly, so
that

where the sum on g is over all occupied states and

Khe sum on v is over only unoccupied states. We
note that (g„l f„)= (g„l g„') for p unoccupied and q

occupied. Consider first the case where k~, & k~„.
For g„(x) equal to a right-hand state g„(P, x), there
exist no unoccupied states g„(x) = g, ( u, x) or g„(u, x)
which overlap appreciably with g„'(p, x), since p'
= (P —2m&v/h) i & kz„and all the unoccupied states
have u &kz„. Hence, the sum over q in Eq. (Al) is
a sum over left-hand g„(x) = g, (p, x), p & kz, , only.
In the sum over p, only the unoccupied right-hand
states g„(x) = g„(u, x) can have appreciable overlap
with g', (P, x), since the unoccupied left-hand states
have u & k~, &P'. So,

y, (x)= — Z Z (g„( )lg', (p))
P & ky ) ky ~ & u

x(g, (p)lh„(&(p)+e„—e(u))) 4„(u, x), kzi&kz.
(A2)
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'A» x = [R ((b + 2~'~/@) )Hp&+ 2'"({b + 2m(u/0) ) H»][T+(k) R(((Q + 2~&/@)~~2)+R+(b) z,'((y~ ~2 mfa/@)~~ 2)]

&(b)e ""f(-x) g&Q

y (2f )-1 /2

where

[e '"""f(b —x)+R(k)e'""-"I(x b)]-, x & b (A5a)

-i(P-e)I. - -1 -s(u P" g-
f(v) = («')-' «i dp P-q u-p'

Ew

(A5b)

We evaluate H„and H» for e = e(y)+ @&q in E&s
{»b) and (»c) and we limit the range of;nt, g„
tion so that q - Q. We define new variables of in-
tegration

&a=& —(&~, -2m'/h)'",

I'=kJ k~+-@

(ASc)

t=u —k, s=u-P .I
(A5)

Clearly, only those states where t =Q and s = Q are
important. To a good approximation,

We also apply a cutoff k, since we have retained
nothing in the integrand to limit the contribution
from large s. For Q« ty j « I., we find

Substituting into Eq. (A5b), we obtain

f(i) = 0(v)9(I —u) - in-
k C

~ 'me{(a', —2 v/a)'" —a&). (A9)
-jg'g

y
-tsr

f(i)=(4v')-' dt dse'"-

(Aga)

Substituting into Eg. (A5), and making use of Eqs.
(2. 15), (2. 15), and {2.19), we find the result
quoted in Eq. (5. 12) of the text. p„(k, x) vanishes
for p, &gz„(except near the barrier) as discussed
previously. Similar results hold for k~„&k~,.
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