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A new theory of inelastic tunneling through insulating barriers containing impurities with
vibrational modes is presented. The method is based upon a stationary-state formulation
of the problem, and is a direct extension of the conventional treatment of elastic tunneling
which appears in standard texts. In this paper the inelastic processes for one electron are
studied in first Born approximation and compared with the results for a model interaction
which can be solved exactly. The physical implications of the treatment are discussed and
certain results are established for later use in the many-electron theory to be presented in
the following paper.

I. INTRODUCTION

Inelastic-tunneling processes involving the ex-
citation of vibrational modes of molecular impur-
ities in the insulating barrier of a metal-insulator-
metal tunnel juction were discovered and identified
by Jaklevic and Lambe. ' Experimentally, each
such process is manifested as a narrow peak in a
plot of the derivative of the conductance with re-
spect to voltage versus voltage at the value eV
= A&, where A~ is the excitation energy of the
mode. It occurs because beyond the thresholdvolt-
age it is possible for an electron to tunnel from
one metal through the barrier, give up energy 5+
to the impurity en route, and still have sufficient
energy to find an unoccupied state in the other
metal electrode. The onset of this additional chan-
nel produces a (roughly) linear increase in current
with voltage, and hence a peak in the second de-
rivative.

Following the initial explanation, Scalapino and
Marcus formulated a theory of the process by in-
corporating within the WKB approximation the
dipole potential (plus image) of the molecule for in-
frared-active modes. This approach was later
extended by Lambe and Jaklevic to include Raman-
active modes. More recently, Duke has discussed
the problem in terms of the transfer Hamiltonian
formalism, the inelastic channel being viewed as
a transition, from a left-hand-metal state to a
right-hand-metal state, whose strength (i. e. , ma-
trix element) is determined by the overlap of the
product of a left- and right-hand state with the po-
tential of Scalapino and Marcus.

Both of these methods are able to account sat-
isfactorily for the experimental observations.
Nevertheless, it appears that they are unnecessarily
approximate in their treatment of the inelastic
process. The WKB approach necessitates the val-
idity of the adiabatic approximation for computing

impurity-assisted barrier-penetration factors,
whereas, the transfer-Hamiltonian approach entails
approximations in its formulation which are dis-
cussed extensively by Duke. ' The purpose of this
and the following paper is to present a theory of
inelastic tunneling which is free from these defi-
ciencies. It is based upon orthogonal current-
carrying states which are eigenfunctions of the en-
tire noninteracting one-electron system (it does
not depend upon the construction of model left- and
right-hand systems) and treats the coupling to the
impurity without appeal to the adiabatic hypothesis.
In addition, the method allows us to examine the
modifications in the elastic-channel current due to
energy-loss mechanisms in the barrier, an effect
which is not encompassed by other theories of the
over-all tunneling process.

The theory is derived for a square-barrier po-
tential and arbitrary interaction potential, but our
main applications are to a one-dimensional square
barrier with the impurity interaction confined to
within the barrier region. We consider a "vibra-
tor" as giving rise to the energy-loss mechanism,
this being representative of a molecular impurity
or, in general, of phonons, magnetic impurities
in a magnetic field, etc. The analysis can be
generalized to include impurity interactions ex-
tending beyond the barrier regions and to three di-
mensions in a straightforward manner.

Our method is essentially an extension of con-
ventional treatments of tunneling using stationary
eigenstates in which we include the dynamics of
the scattering centers. For the one- electron prob-
lem this can be achieved readily by adapting
standard techniques of inelastic scatteringv to the
problem. Unfortunately, this is still far from ex-
periment since the Fermi statistics obviously
play a vital role in determining the threshold be-
havior of the inelastic process. Consequently, it
is necessary to extend the analysis to a many-
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II. BORN APPROXIMATION

In this section we consider one electron interact-
ing with a vibrator in a potential barrier. We re-
strict the electron to one-dimensional motion per-
pendicular to the barrier (x direction) and denote
the coordinate describing the internal motion of the
vibrator by $,

The Hamiltonian for the system is given by

K(x, t) =K,(x).K„(t).K,„(x,t),
where

K (x)=- —+ V(x) ~

2m dx

(2. 1)

(2. 2)

electron system. This has proved to be a consid-
erable undertaking requiring extensive analysis.
For this reason, and because the method is new
and may have separate application outside the scope
of the present problem, it is presented separately
in the following paper. The present manuscript
deals exclusively with the one-electron aspects of
the theory. These are a necessary prerequisite
for understanding the many-electron problem and
allow us to analyze some of the approximations
which seem unavoidable in the latter case.

The paper is organized as follows. In the Sec.
II we formulate the one-electron problem in terms
of stationary eigenstates and derive the first-order
Born-approximation result for a fairly general
impurity interaction (its main characteristics are
defined in the text). This scheme is essential to
the development in II and, consequently, in Sec.
III we compare the results of the method with those
for a model impurity potential for which the exact
solution is derived. Finally, in Sec. lV we discuss
the physical content of the method in relation to the
stationary states we have obtained. This concludes
the preparatory study for the many-electron treat-
ment in II.

two terms in Eq. (2. 5) corresponding to the ground
state and the f1rst excited state of the vlbratol
since this is sufficient to encompass the inelastic-
tunneling processes of current interest. (Further-
more, it would entail no approximation were the
vibrator a, magnetic impurity of spin —,'. ) Thus,
denoting the ground state of the vibrator by Co($)
and the first excited state by C'&(5), Eq. (2. 5)
becomes

+(x, t) = }(,(x)c,(k)+ y, (x)C,(t), (2. 6)

and upon substituting Eq. (2. 6) into (2. 4), we find

the following coupled equations for 10(x) and }(,(x):

K,(x)y, (x) + V(x)li, (x) = ego(x)

K,(x)y, (x)+ tr(x)y, (x) = (e —hro)}(,(x) ,

where

U(x) = j«C,*(t)K..(, r)c.(t),
E =E- E~

(2. 7a)

(2. 7»)

(2. Sa)

(2. Bb)

(2. 8c)

In the case of molecular vibrations, the interac-
tion potential U(x) is a dipole potential plus its
image. ' In general, it will be real as assumed in
(2. 7). Terms such as f d& C,*(g)K,„(x,&)4', (&),
which are additional static potentials, are of no
interest here and have been omitted.

We first solve Eq. (2. f) approximately for a
small, but otherwise arbitrary, interaction po-
tential U(x). The accuracy of our approximation
is tested in Sec. III by comparing with the exact
results for a model potential. We use notation
which allows us to extend the results of this section
to the many-electron system considered in Paper
II.

For simplicity we consider only a square barrier,
i. e. , V(x) = V, for 0 & x & 0 and V(x) = 0 otherwise.
The Hamiltonian for the vibrator is H„($) and the

interaction of the electron with the vibrator is de-
noted by K,„(x,$). We assume that the eigenfunc-
tions of K„($) are known,

K.(&)c„(&)=E C.(t) .

To zeroth order in U, we have

[K,(x) —e jli,"'(x)= O,
which has the solution

y(')"(x) = y(x)

where

g(x)=e' "+Re ' ", x&0

(2. 9)

(2. lo)

The electron-vibrator coupled system is closed,
so that stationary states of K(x, $) can be found,

K(x, t)e(x, ~)=re(x, t) . (2. 4)

We can expand 4(x, $) in terms of the complete set
4„($) as follows:

e(x, &)= Q„y„(x)C'„(&) . (2. 5)

We further simplify the problem by retaining only

with

=Ce "+De ", 0&x&b

(1 -REb)g
2k

(2. 11a)

(2. 11b)

(2. 11c)
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and

2zK
8

A'+ iK

2k 4' —iX
8

k+ iK &+i K

(2m'/@2)1/8

(2. 11d)

(2. lie)

(2. 11i')
and

zK 2Kb

b = ( 2me/n')",

K= [2m(VO —e)/5 ]'

(2. 14g)

(2. 14h)

(2. 14j)

K = [2m(V, —e)/e']'" (2. 11g)

We have chosen boundary conditions corresponding
to an electron incident on the barrier from the left.
There is also a solution obtained from Eq. (2. 11)
by replacing x by b —x. Such a solution corre-
sponds to an electron incident from the right. Sim-
ilarly, to first order in U, we have

[3~ (x) —e+ @~]XI '(x) = —U(x)yo '(x) . (2. 12a,)

To simplify the notation, we write lt ["(x) = y'(x).
Then, Eq. (2. 12a) has the solution

The above result is obtained by requiring the con-
tinuity of K(e, x, x') and (S/Sx)K(e, x, x ) at x = 0 and
x= b, by requiring that K(e, x, x ) is continuous at
x=x, and that

BK(e, x, x ) " " ' 2m

ex „„.0+

this last condition being obtained by integrating
(2. 13) over a, vanishingly small interval centered
at x= x . Furthermore, we have required that

K(e, x, x ) obey the boundary condition of an out-

going wave. Thus, from Eq. (2. 14), we see that

g'(x) = f dx K(e —h~, x, x')U(x')g(x'), (2. 12b)

where the Green's function K(e, x, x') satisfies

[K,(x) —e]K(e, x, x') = —5(x —x') . (2 13)

and

rj'r (x) = R e '

z
I »'&~-»8

x&0 (2. 15a.)

(2. 15b)

K(e, x, x') = r(e, x')e "", x&0

=c(e, x')e "+d(e, x')e ", 0 &x&x'

=f(e, x')e x"+g(e, x')e»", x'& x& b

f(e I) ik(x-bj b&x

(2. 14a)

Since we are restricting our attention to cases
where U(x) vanishes outside the barrier, we need
to find K(e, x, x ) only for 0& x & b In thi.s case
the solution of (2. 13) is

where

R =
fo dx r(e —h(u, x )U(x')y(x')

r'= J,'"dx'f(e —@(u, x')U(x')P(x')

k'= [2m(e —b&u)/b']"'

The wave function for the system is then

q(x, &) = )i."'(x)4,(&).X,"'(x)C,(~)

= q(x)@o($)+ ('(x)C', ($)

(2. 15c)

(2. 15d)

(2. 15e)

(2. 16a,)

(2. 16b)

r(e, x') = — . —c(e, x') (2. 14b)

d(e, x')=- ". c(e, x'),
0 —iK (2. 14c)

(2. 14d)

t(e, ')=,
k+ zK (2. 14e)

(2. 14f)

where the functions r(e, x ), etc. , are found to be
given by

in first order. We have chosen boundary conditions
corresponding to the following situation. When an
electron is incident upon the barrier, the vibrator
is in the ground state. The electron can be elas-
tically reflected or elastically transmitted, the
vibrator remaining unexcited. This is represented
by g(x)CO($) in Eq. (2. 16b). In addition, the elec-
tron can excite the vibrator by being inelastically
reflected or inelastically transmitted. In this case
the electron loses energy Izv to the vibrator. This
is represented by P (x)C, ($) in Eq. (2. 16b). The
amplitude for elastic reflection is R, elastic trans-
mission T, inelastic reflection R, and inelastic
transmission T .

Equation (2. 16) is the wave function for the sys-
tem in first Born approximation. We could proceed
in a similar manner to obtain second- and higher-
order Born approximations. We will not do this
now although we show in Sec. III that it is essential
if one is to obtain the elastic-tunnel current to
order U, which is required in Paper II.
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III. EXACT SOLUTIONS FOR MODEL INTERACTION
POTENTIAL

and

Xi(x)=R'e "", x&0

U(x) = 0, x& xg

= Uo, x, &x&x,

=0, x, &x

where 0-xi X2-b

(s. 1)

Outside the barrier (x& 0 and x& b) particular
solutions of Eq. (2. 7) are of the form

}(,(x) = e"'", b = (2me/a')"'

y, (x) = e"'", k'= [2m(e —k(u)/b']'i'; (3.2b)

(3. 2a)

whereas, inside the barrier, in the regions where
U(x) = 0(0 & x & xi and x2 & x & b), particular solutions
are

Since the Born approximation is the basis of the
many-electron treatment it is desirable to check
its accuracy and also to examine some of the
qualitative features of inelastic tunneling for an ex-
actly soluble problem. Accordingly, in this section
we analyze the solution of (2. 7) for a model inter-
action potential U(x) given by

=A e "+8 e ", 0&x&x,

=).,(C,e ' +D,e '
) +A&(C2e +Dze "),

Z'x +i E'x

&i ik'(x y)

x, &x&x~

X2&X& b

b&x . (S. 7b)

INELASTIC- TRANSMISSION PROBAB I I I TY

Vo/ "~ = 70
2.5— I/2

By requiring the continuity of yo(x), dyo/dx, y, (x),
and dy, /dx at x=0, x&, x2, and b, we obtain 16 equa-
tions to determine the 16 unknowns (i. e. , R, A,
8, . . . ) in Eqs. (3.7). In general, these 16 linear
simultaneous equations are most easily solved
numerically.

In Fig. 1, some typical results are shown for
parameters characteristic of a metal-insulator-
metal junction and for an electron incident from
the lef t. The inelastic-transmission probability

and

y, (x)=e' " K= [2m(VO —e)/@ ] (S. 3a.)

2.0
X,(x) = e ", K'= [2m(V, —e+ h&u)/N ]. (3. sb)

In the region of interaction (x, & x& xz) we note that
a solution of the type

I.5
y|(x) = X)(0(x) (3.4) INELASTI C —REFLECTION PROBABILITY

is possible, since U(x) is constant in this region.
Substituting Eq. (3.4) into Eq. (2. 7), we find such
particular solutions exist when

-10—

x = x, ~
= (R(o + [(5(u) + 4UO]' )/2U0

and are of the form

(s. 6) -20—
CV

Ol

3 0~ -50—

)(,(x) = e""+Re-"", x&0

and y, (x) is given by Eq. (3.4) for each va, lue of X.

We let Q=Qj for X=A,
y and @=@,for ~=~&. In

the limit of small Uo/h~, Q, -K and Q2 K [see
Eq. (3.3)]. For a wave (incoming) from the left,
the general solution of Eq. (2. 7) is then -50

0
I

.5
I

I.O

(2mu) jh&"2 X,

I

l.5 2.0

= Ze-~" + Ce~"

ik(&-b)

Xg& X&Xp

xa&x&b

b&x

=we ~"+Be~", 0&x&x,

= Cje ' +Dje ' + Cze ~+a e

(S.7a)

FIG. 1. (a) Inelastic-transmission probability I
T"

1

as a function of xo, the distance of the vibrator from the
leading edge of the barrier. The interaction potential
is the model potential of Sec. III. (b) The logarithm of
the inelastic-reflection coefficient i

R' [ versus xo.
The results for both )T' ) and )R' ( scale with Uo

accurately for (UoiS'~) & 1.
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j T '
i and inelastic-reflection probability I 8 '

l

are plotted as a function of the distance of the
vibrator x from the leading edge of the barrier.
%e have found that the results scale with Uo to
better than 1/q over a wide range of parameters
when Uo/k&v&1. Calculationsof iT I and IB'I in

first Born approximation agree with the exact re-
sults over the same range of parameters, which

confirms the validity of the first Born approxima-
tion in this regime.

The inelastic-transmission probability increases
slowly as the position of the vibrator is changed
from xo = 0 to xo = b, except for a small region
near b. Somewhat larger relative changes in j T j

versus xo can be found for lower wider barriers. In
contrast to this, the results for the inelastic-re-
flection probability j8 j indicate a nearly expo-
nential decrease with increasing xo for an electron
incident from the left.

%'e can understand these results by examining
Fig. 2, where l(o(x) and y, (x) are shown schemat-
ically. An electron impinges on the barrier from
the left at energy e according to the boundary con-
ditions imposed upon l(0(x) [see Eq. (2. 23a), x & 0].
Most of the incoming wave is reflected, but a small
portion is transmitted elastically to the right due

to the penetration of the wave function into the
barrier. The vibrator acts as a source at xo for
the inelastic wave function )(,(x), which is an out-

going wave beyond the barrier region at energy
& —A~. The inelastically transmitted part results
from an electron going from 0 to xo with energy &,

being scattered at xo by the vibrator, and going
from xo to b with energy e —k~. Since the electron
suffers less attenuation with energy e than mith

j T j mill be larger the closer xo is to b,
except for x, = b where more detailed considera-
tions of the wave functions must be made. On the
other hand, the inelastically reflected part results
from an electron going from 0 to xo with energy e,

~ )(, (x)

being scattered at xo, and going from xo back to 0
with energy E —A~. The exponential decrease
of jB j with 1ncreaslng xo Is due to the attenuation
of the electron going from 0 to xo with energy c and

going from xo back to 0 with energy e —A~.

IV. DISCUSSION OF STATIONARY-STATE METHOD

In Secs. II and III we have shown that the sta-
tionary-state method provides a description of in-
elastic tunneling, and through the exact solution
of a model problem, me have shown that the first-
Born-approximation treatment is adequate for the
inelastic channel for the range of parameters of
physical interest. Certain conservation conditions
are inherent in the coupled equations (2. 7) which
are important in the physical interpretation of this
method. In this section these conditions are de-
rived and analyzed.

The first condition must clearly be that the num-
ber of particles is conserved. This follows from
the initial equations (2. 7). Let x, & 0 be a point to
the left of the barrier and x„&b be a point to the
right. Multiplying Eq. (2. 7a) by l(o*(x) and inte-
grating from x, to x„, we find

J„"~dx)(,*(x)[X,(x) —e]y, (x) = —j,' (fx li,*(x)U(x)y, (x).

(4. 1)

Subtracting the complex conjugate of Eq. (4. 1)
from Eq. (4. 1), we have

(fx y '(x) "' —
1( (x) — ~'(f'y (x) (f' * x)

2m (fx (fxX
$

(fx V(x)[)(,~(x)l(, (x) —y, (x)g,*(x)] .(4. 2)

Integrating by parts gives

,( )
sx, (x)

( )
&).;(x))*'

d

dx U x Xo* x Xi x —
Xo x Xi' x

Similarly, from Eq. (2. 7b), we find

))',
)

d), (x)
( )

d),"(x))"'
2m ' dx ' dx

dx V(x)[l(,*(x)l(,(x) —)(,(x)g,*(x)] . (4. 4)~ ~

adding Eqs. (4. 3) and (4. 4) gives conserva. -
tion of current across the barrier,

FIG. 2. Elastic wave function yo corresponds to a
wave incident from the left which is partially reflected
to the left and partially transmitted to the right. The
inelastic wave function y& represents an outgoing wave
with a source for the wave at the position of the vibrator
X() ~

Z(x„)= Z(x,),

J'(x) = ——li,'(x) "' —lf, (x)
fa, dl(, (x) d +(x)

dx

(4. 5a)
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&y, x dy~x

and to the left,
I

(e &~)
I

R'I'—.(4. 6)

Now by making use of Eq. (4. 6), we find

—a(u(l T '+ IR I') . (4. 9)

This represents the power absorbed by the
vibrator as it makes transitions from its ground
state to the first excited state. At first sight this
presents a paradox, for how can such a situation
lead to a stationary state? The resolution lies in
our use of the boundary condition for the incident
wave; for if we interpret the y's as describing

Now, for any interaction potential U(x), the as-
ymptotic form of y, (x) and y, (x) will be the same
as in Eq. (3.7). From Eq. (4. 5), we have there-
fore

(4. 6)

We note that if R' and T' are found in first Born
approximation, they give a contribution to the cur-
rent of order U, this being the lowest order in

which the vibrator affects the current, Therefore,
we must also calculate R and T through second
Born approximation for current conservation to
hold through order U . This is of importance in

connection with the further analysis of Paper II.
The second condition is related to the energy

flux. To the right of the barrier this is
I

e
I
~l'+ —,„(e &~)

I

T'—I' (4. »

beams of particles, it is implicit in our use of an
incident wave with C'0($) only, that the vibrator be
in contact with a heat sink which reverts the vi-
brator to its ground state after each inelastic event.
It is only because it is possible to idealize this
situation in terms of a boundary condition that the
stationary-state method can describe inelastic
processes. Naturally this idealization ignores the
possibility thai the excited vibrator energy levels
may be broadened as a result of this interaction
with the thermal bath but this effect is regarded
as extraneous in the present context.

Probably the best physical picture is obtained
by imagining a wave packet made up of these states.
Such a wave packet would approach the barrier
from the left with the vibrator in the ground state.
After the wave packet has been scattered from the
barrier, measurements of the position of the elec-
tron would reveal there is a probability of )R I

that the electron was elastically reflected and of
I T i it was elastically transmitted, the vibrator
remaining in the ground state. Concomitantly,
one would find a probability )R ) that the electron
was reflected inelastically with the vibrator making
a transition from the ground state to the excited
state, and a probability ~T ) that the electron was
transmitted with excitation of the vibrator.

In summary, we have formulated a theory of in-
elastic tunneling of one electron in terms of the
stationary states of the coupled electron-vibrator
system. The resultant coupled equations for the
elastic and inelastic electron wave functions were
solved in first Born approximation. The results
of first Born approximation were found to be quite
accurate by comparing to the results of an exact
model calculation. This one-electron theory forms
the background for the many-electron theory given
in II.
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