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8. Kngelsberg and G. Simpson~
Department of I'hysies, Union"sity of Massaehgsetts, &mheest, Mass&ehlsetts 01002

(Received 2 March 1970)

The thermodynamic potential and magnetization are calculated for a system of electrons
interacting with phonons in the presence of a magnetic field. The results are used foranumer-
1CRl evRluRt1on of the de HRRS —VRn Alphen RIGplitude of the osclllRtlons of the magnet1KRt1on Rs
a function of temperature in mercury. The calculated results show that although we are deal-
ing with a strong-coupling system, the experimental observations of the de Haas-van Alphen
effect should be very similar to that expected for free particles. %'8 also apply the techniques
used in the derivation to the case of nearly ferromagnetic electron systems and calculate the
enhancement of the argument of the spin-splitting factor. The analysis for nearly ferrornag-
netic systems leads to the prediction that the cyclotron frequency which enters the amplitude
of the oscillations is reduced by the same mass-enhancement factor as that which enters the
speclflc heat,

I. INTRODUCTION

In this work we consider the influence of elec-
tron-yhonon interactions on the de Haas-van
Alphen (DBVA) effect (the oscillatory magnetic
properties of a metal as a function of applied field).
There have been a number of works on the effect
of electron-electx on and electron-phonon interac-
tions' 3 on DHVA oscillations in electron systems
which conclude that at sufficiently low tempera-
tures a quasiyarticle yicture should be applicable.
Howevex', Rs the temperature 18 x'Rlsed, the tem-
perature dependence of the effective mass (deter-
mined by the real part of the self-energy) and the
temperature dependence of the damping of elec-
trons (determined by the imaginary part of the
self-energy) should enter to break down the quasi-
particle picture, It has been conjectured that
these deviations from quRslpRX'tlcle behRvlox' wouM
be observable in the DHVA effect.

For mercuxy, with its strong-coupling and
loW-lylllg ( 21 K) p11011011 nlode, 0116 nllg11't expect
rather large departuxes from free-particle be-
havior for temperatures gxeater than about 4'K.
In expeximents by Palin, the behavior of mercury
wRS folllld to be quaslpartlcielike (witll Ilo devia-
tions from free-particle behavior) over consider-
able temperature and field variations. The Dingle
temperature, which ordinarily is interpreted as a
measure of the scattering rate of electrons on the
Fermi surface, was found to be essentially tem-
perature independent. In this work we show that
the results of Palin are in agreement with pre-
dictions based on the theory of electron-phonon
interactions.

In Sec. II we start with a general expression for
the thermodynamic potential of the interacting
electron-phonon system. Arguments similar to
those made by t uttinger' are used to obtain the

leading oscillatory term of the thex'modynamic
potential, neglecting terms of order (&o,/11)I~'
smaller than the leading term. (a&, is the cyclo-
tron frequency, p, is the Fermi energy, and we
use units Wllel'6 a= l. ) It ls 6110WI1 'tllat 'tile effeC't

of electron-phonon interactions can be incorpo-
rated in the oscillatory part of the thermodynamic
potential by replacing, at a certain stage, the non-
interacting single-particle electron energies by
the noninteracting energy ylus the full self-enex'gy.
The lack of obsex'vable deviations of the DHVA

amplitude from the free-particle result is a con-
sequence of a theorem which was first given in
limited form by Fowler and Prange. The limited
't11601'6111 states tllRt the analytic COIltlllllatloll Of

the full self-enexgy onto the first pole of the
Fermi function on the imaginary axis has only R

linear temperature dependence. The constant co-
efficient of the temperature is directly related to
the zero-temperature effective mass. For
kaT/v, & l, only this first pole contributes signifi-
cantly to the DHVA effect, hence, the observed
quasiparticle behavior, The general form of the
theorem gives the analytic continuation of the full
self-energy onto all the poles along the imaginax'y
axis. These results are used in conjunction with
electron-tunneling data for mercury to show that
the experimental results' may be explained by the
theory of electron-phonon interactions. Our re-
sults show that since it does not incorporate the
effects of electron-yhonon scattering, the Dingle
temperature is not a true measure of the fuQ scat-
tex'lng x'Rte of electx'ons on the Fex'ml sux'fRce.
This conclusion ls not ln contlRdlctlon with the
statement that the Dingle temperature measux'es
the scattering rate from impurities.

We px'esent calculations of the DHVA amplitude
for mercury as a function of temperature under
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the optimal present-day experimental conditions,
which indicate that maximum deviations of 15%
from free-particle behavior are expected. If one
were to use the calculated results of Grimvall '
and Allen and Cohen in the free-particle formula
with m*(T) replacing m* in the cyclotron frequency
and the inverse lifetime I/r(T) repla, cing the con-
stant Dingle temperature, one would expect devia-
tions by several orders of magnitude.

We also indicate briefly how, for nearly ferro-
magnetic electron systems, Luttinger's' assump-
tions break down; we give the results expected ig
this case. The use of the theory of nearly ferro-
magnetic systems leads to an enhancement of the
spin-splitting factor equal to that of the electronic
spin susceptibility.

In the Appendix the shift in the thermodynamic
potential to second order in the electron-phonon
coupling is calculated in a model for which the in-
tegrals may be evaluated analytically. It is shown
that the results for the oscillatory part of the ther-
modynamic potential are in agreement with the
general formulation presented in Sec. II.

The phonon contribution to the oscillatory part of
the thermodynamic potential may be neglected,
because of the weakness of the coupling between
density fluctuations and a magnetic field (in most
models this coupling is taken to be zero"). The
electronic contribution to the thermodynamic po-
tential may be written'

0, = —(I/P)Q tr[ln[- G (m„)]
n

+ Z((u„) G((o„)]+ 0'(G] . (2. 2)

The argument which Luttinger uses to neglect
the oscillatory part of the self-energy applies also
to electron-phonon interactions. It is based on
neglecting terms of order (u&, /p, )'~' smaller than
the leading contribution. We will show this explic-
itly in a second-order perturbation calculation in
the Appendix. We may also use Luttinger's ap-
proach to obtain an expression similar to his Eq.
(14) for the oscillatory part of the thermodynamic
potential:

= (- (I/O) 2 tr[»k, .+ ~o(~.)]

II. FORMULATION ~n osc gart &
(2. 3)

In this section we outline a derivation of the
formula which we use to calculate the DHVA am-
plitude.

Our analysis will follow that given by Luttinger'
for the case of electron-electron interactions.
However, since we will be concerned with the elec-
tron-phonon interactions and the temperature de-
pendence of the DHVA amplitude, we will include
the temperature dependence of the electron self-
energy. Luttinger's arguments [Eqs. (6) and (8)
of Ref. 1] for neglecting the temperature depen-
dence of the self-energy are not valid, since we
now have a new energy, that of the phonons, which
sets a scale other than the Fermi energy p. for
temperature variations. This may be seen explic-
itly in the calculations of, e. g. , Grimvall. Actu-
ally, even in the case of electron-electron inter-
actions, Luttinger's arguments are not valid for
nearly ferromagnetic electron systems. In this
case the new energy scale for temperature varia-
tions of the self-energy is the Fermi energy di-
vided by the enhancement of the spin susceptibility.
We will return to this point at a later stage.

The thermodynamic potential 0 may be obtained
following the arguments of Abrikosov, Gorkov,
and Dzyaloshinskii, ' where, in their notation,

&=-(I/P)Zt (»[-G '( .)]+~( .)G( .))
n

~ (1/2P) Q tr(ln[- D (u„)]
n

+ II((o„)D(~„)jf+ 0'(G, Dj . (2. 1)

where Zo(&u„) is the nonoscillatory part of the elec-
tron self-energy which in our case has rather
strongly temperature-dependent real and imagi-
nary parts when evaluated at the Fermi energy.
The noninteracting single-particle spectrum is
chosen to be described within a Hartree-Fock
effective-mass approximation

ep ...,=Pg/2m+ (I+ —,') (u, + —,
' ogpeH —p, . (2. 4)

The magnetic field H is chosen to define the g di-
rection, 0 = + 1 indicates the spin orientation of
the electron, pe is the Bohr magneton e/2m, c,
where mo is the bare-electron mass, and g is the
band g factor.

The band structure of at least some metals can
be approximated by an effective mass m in the
region of the Fermi surface. The band mass m
that enters &o, in (2. 4) is thus not quite the mass
which enters the experimentally observed cyclotron
resonance frequency ~*, = eH/m c. The electron-
phonon interaction enhances m by a factor which
is estimated to be as large as 2. 6 for mercury.

It is well known that the electron-phonon inter-
action does not influence the spin susceptibility.
This is reflected in the fact that the spin factor in
(2. 4) will not be renormalized. However, within
almost all models which include electron-electron
interactions the spin factor is enhanced. We will
return to this point later in treating the short-
range model for electron-electron interactions.

We continue in the standard way by transforming
the sum over complex frequencies i&@„=i(2n+ 1)n/P
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into a contour circling the real axis, which may
be rewritten as

Q„,=tr f„(dx/x)(e~+1) '

xta -'lr, (x)/[x-e. , ...-z,(x)]j, (2. 5)

using Z,(x+ i5) = Zo(x) 7 iI', (x) I.n taking the trace,
we sum over the spin o; the component of momen-
tum parallel to the field p„and the Landau levels
/. The number of states associated with each
Landau level is (m&o, /2m) I,„L„where I,„I,, is the
area of the system perpendicular to the magnetic
field. Thus the thermodynamic potential {2.5)
may be rewritten

I)
oo

Pg

x tan-'fl, (x)/[x-&. . .—Z,(x)]). {2.6)

We now go through a sequence of steps that rein-
troduces the single-particle spectrum p /2m and

eliminates the Landau levels from the single-par-
ticle spectrum. Firstly, we make use of the
Poisson sum formula

Q E(l)=f dyE(y)[1+2 Q (-l)icos(2)sky)],
3~0 ))I e1

wh1ch, when E(y) is real, may be rewritten as

Q E(I) = Re j, dy E(y) [1+2 Z (-1)'e"'"].
(2 7)

We then introduce the variable p'„which plays
the role of the momentum squared perpendicular
to the magnetic field p, = 2m+, y. The result for
the oscillating part of the thermodynamic potential
ls

Substitution of this result into (2. 10) yields

g 2~3/ 2 1/ P.

OSC C

v (2w)'
(-1)' 21(iki1 miRe& Z „,exp

1 (k) &o, 4

+&)' 1
dec'""I"

Xt I'0(x)x tan 1
X —6 —g Vgi1 sH —Z()(X) j

(2. 11)

Here we integrate by parts on &, neglecting the
end-point contribution of the integrated term,
which leads to

X (e A(+ 1)-1 e8()())e/(gq
2ri 7r

[x-~-2caesIf-Zo(x)]'+I'o(x) '

CO

xZ (-))' exp (c ~ g)() —cos'9)). (). 10)
COc

We perform the integral over cos8 by the meth-
od of stationary phase. This technique is appli-
cable since c will be limited to values close to
zero by the Fermi function and arctangent which

appear in the integrand, thus leaving the large
coefficient 21(kg/&u, as a prefactor to cos28 in the
exponent. We obtain

1

d(cose) exp[-(27(ik/(o, ) (&+ p, ) cos'8]

n.
2 Repj dp, dp', I —(e ++ I) ' Since the region « —p. will give a negligibly small

contribution to O„„we extend the c integration
to —.~ and perform the integral

1 0( ) Q ( 1)))
x-ep q2, —Zo(x) ),

0, (m(o,)'~' ~ g (-1)"

X exp (2. 8)

where I/' is the volume of the system.
We convert the integrals over momenta to an

integral over energy by defining

2' kg, mi imkog rn
X exp-

Q3c 4 2

DIPLO

x . (e ~+1)"'
"

dx
2wi

x exp ((2xik/(u, ) [x-Z()(x)+ iI'()(x)]], (2. 12)
{2.9)

where we have used the fact that p, s = e/2m, c.
This result is identical with that which would be
obtained for noninteracting particles except for
the replacement of the noninteracting energy spec-
trum x by the fully interacting spectrum x- Zo(x)
+ iI'0(x) in the oscillatory exponent. Here we may
take the sum over spin o, observing that the self-
energy for the electron-phonon interaction is inde-

and cos'8 =p"./(P,'+p', ),
glvlng

v (2(()', J
Re+ de d(cose)(g+ i1)'i'

Ir x —f — tlap. H Zg(x))-
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pendent of spin. Then we obtain

(m(o,)'/' ~ (-1)' 2mik p wi
Re --

3~q exp
coo 4

sky m dx
Rl p 27Tz

&& exp{ (23ik/v, ) [x —Zp(x) + iTp(x)]}. (2. 14)

osc ~&/2 & y Z

Z exp[(-2n'k/(o, )[(o„+l((u„)]}.

III. ELECTRON SELF-ENERGY

(2. IV)

Mosc m3/2~ 1/3 ~
~

( 1)3H" ~ k/jr k=1

x exp - ——cos-

x dx e ++1 exp 2mik co, x —Zp x +il'0 x

(2. iS)

This result is consistent with the expression (25)
obtained by Fowler and Prange.

Closing the integral of (2. 15) in the upper half-
plane and defining the analytic continuation of the
full-electron self-energy onto the imaginary axis

g((u„) = imp(i&o„),

we obtain for the oscillatory magnetization

(2. i6)

We see that the "spin splitting factor, " cos(3xkg
&&m/mp) does not contain the mass-enhancement
factor due to the electron-phonon interactions.

A major aim of this work is understanding the
predicted temperature dependence of the amplitude.
If we were to use rather naive arguments, we

might consider the integral in (2. 14) and treat it
in the usual Sommerfeld-Watson way; i. e. , inte-
grate by parts giving the derivative of the Fermi
function times some exponential function of the
self-energy. The derivative of the Fermi function
will pick out that part of the function multiplying it
evaluated at the Fermi surface. However, both
the real and imaginary parts of the electron self-
energy have rather large temperature variations
even when evaluated at the Fermi surface. The
imaginary part changes its temperature behavior
completely in going f"om low to high temperatures
(T' for T«&u »D„ndaT for T» &on,»,). Such

variation is completely absent in the DHVA am-
plitude for mercury where, because of the strong
coupling between electrons and phonons and the

low-lying phonon mode, we should expect rather
extreme deviations from free-particle behavior.
The result (2. 14) for the thermodynamic potential
can be used to obtain all of the oscillatory mag-
netic properties. We will, however, focus atten-
tion on the magnetization M= —BQ/sH In taking.
the derivative of 0„,with respect to field, the
dominant contribution (to order v, /p) comes from
the oscillatory term e "~k" "~,

In this section we will consider the electron
self-energy within the theory of electron-phonon
interactions and prove the theorem which is used
in evaluating the amplitude of the DHVA oscilla-
tions. We will then go on to consider briefly the
case of electron-electron interactions for nearly
ferromagnetic systems.

We have stated in Sec. II that we need only con-
sider the nonoscillatory part of the electron self-
energy. However, there is still the question of
the field dependence of the self-energy. Fowler
and Prange have given arguments to show that the
entire field dependence of the self-energy may be
neglected. In the Appendix we show that within
the constant-coupling Einstein model, the nonoscil-
latory part of the second-order self-energy has no
field dependence. For this particular model the
field dependence is negligible to the same order as
the vertex corrections, namely, (m/M) (square
root of the electron-to-ion mass ratio). We will
continue our analysis neglecting the field depen-
dence of the self-energy. Using the definition
(2. 16) we write the function t (&o„) in an integral
representation which may be evaluated once the
product of the electron-phonon coupling interaction
o.'(v) and the phonon density of states F(v) has
been obtained, e. g. , by use of superconducting tun-
neling data, e'3

g((o„)=i ( dvo. '(v)F(v)
0

1 — E +nv 6+nv
zv —E —v zoo —E+ vn n

where f (e) and n(v) are the Fermi and Bose distri-
bution functions, respectively. The analysis pro-
ceeds by first closing the & integration in the upper
half-plane:

I -f(e)+n(v) f(e)+n(v)
2(d~ —6 V ZM~ —E'+ V

ce

=-wi 4vk, T Q [(23mk, T)3+v3] '
m=p

n

+ Q [(2n'mkpT) + v ]
' —2n(v)- 1 . (3.2)

m=1

However, one may prove that

4vkaT Q 3 3 —2n(v) —1=1 2k~T
~ „p 21TmkaT + v v (3.3)
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Hence (S.1) becomes

i( r) ar =( ~ '"'"'""'

&Z((o) =m*
8QP

0 g 0
SZ

(S. 6)

We will return to these results in Sec. IV, which

includes numerical work using the phonon spectrum
of mercury.

We now consider brief lythe case of nearly ferro-
magnetic systems. The model chosen for the elec-
tron-electron interactions is the same short-range
interaction that was chosen originally. '" The
diagrams summed in A' are the closed loops and

ladders, also chosen originally ' (the closed
loops, or o, fluctuations were omitted in Ref. 9)
and in the work of Amit, Kane, and Wagner. ' The
Hartree single-particle energies have the term

x i.2 Z i.( '""~)'
(S.4)

which is the generalized Fowler-Prange theorem
that we use to evaluate the amplitude in the DHVA

effect. For n= 0 we obtain the limited form of the
theorem first given by Fowler and Prange'.

f(wkeT, T) = wkeT dv — = wksTX,
2n (v) E(v)

(S. 5)

where X may also be defined by the equa-
tions '

Thus the argument of the syin splitting factor is
enhanced by the same amount as the electronic
spin susceptibility. This result was also given by
Byehkov and Gorkov' on the basis of Fermi liquid
theory arguments.

The rest of the analysis for the ease of nearly
ferromagnetic systems follows through in analogy
with the electron-phonon case. The temperature
dependence of the electron self-energy cannot be
neglected, but we do neglect its magnetic fieM de-
pendence. The neglect of the field dependence is
consistent with the model calculations; however,
experiments' indicate a greater sensitivity of
nearly ferromagnetic alloys to the application of
a field than the model yredicts.

The final result is a formula for 0„,of the same
form as (2. 14) with (S. 9) replacing the unenhanced
syin splitting factor and the syin fluctuation contri-
bution to the self-energy replacing that of the elec-
tron-phonon interaction. This result implies that
if one could do DHVA amylitude measurements on

a series of nearly ferromagnetic alloys as, for ex-
ample, Ni-Rh or Pd-wi, one should see the same
changes in mass enhancement of the cyclotron fre-
quency as observed in the y value obtained by spe-
cific-heat experiments. '

IV. NUMERICAL RESULTS

In this section we will use superconducting tun-

neling data to present the results of numerical
work on the DHVA amplitude ft.. z a lom-mass orbit
in mercury. From Eq. (2. 17), considering only
the first harmonic in the sum, i.e. , 0 = 1, we may
define an amplitude

added to (2. 4) as, e. g. , given in Ref. 11. This
term may be combined with the term &ogp, &H in
(2. 4) to give a magnetic term in the single-particle
energies:

kog~eII/(1 -I), (S. 7)

(S.8)

where I= IN(0) and N(0) is the density of states at
the Fermi surface for a single spin. This equa-
tion follows on using the fact that the magnetiza-
tion ls given as

M = —,og pe (N, —N, ) = yII= (2 g p, e) 1
II2N(0)

(S.8)

and substituting for (N, -N, ) in the expression
for the single-particle energy. If the Hartree
term of (S. 8) rather than the noninteracting term
of (2. 4) is kept in the analysis the resulting "spin
splitting factor" is

A, = Zexp(- (2w/(o, )[(o„+l((o„)]].
n=0

(4. 1)

only the first term in the series for A. willcontrib-
ute significantly. However, we have seen in
(S. 5) that

g(wk, T, T) =
wkly = wk, T(m*/m- 1),

2w keT m*) ( *g )„A=exp — - ~=8, for x»1
(4. S)

a result first given by Fowler and Prange.
If we plot lnA. as a function of temperature, then

at high temperatures me will obtain a straight line

This amplitude contains all the effects of the elec-
tron-phonon interactions. Vfe mill consider the
behavior of A as a function of temperature and

magnetic field.
For temperatures high compared to the cyclotron

frequency, i.e. , x»1, where

(4. 2)
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of gradient proportional to m*/m. We now define
an amplitude A for free particles of mass m~ by

200

'$(~„T)/k ( K)

A' = [2 si nh( 2 v' k T/a),*)]-', (4. 4)

from which we see that the high-temperature limit
of A is identical to A . As has been pointed out

previously, we find that the electron-phonon en-
hancement factor does enter the amplitude of the
oscillation, while the oscillation frequency
(kpH/&u, ) is not affected by the electron-phonon
interaction, since the electron self-energy at the
Fermi surface is negligible.

For temperatures such that x $'1, terms other
than the first contribute to the sum (4. 1); it is
these terms which will cause A to differ from A .
We have not been able to obtain an analytic form
for A (even when using an Einstein model for the
phonon spectrum), but we can make some qualita-
tive remarks. From Eq. (3.4) we note that

g((o„, T): (2n+1)a~k T,
and hence

(4. 5)

l. e. ,

» g exp[- (2m/(u, )(~„+&~„)],
n=0

A+A . (4. 6)

To maximize these deviations, using Eqs. (3.4) and

(4. 1), we see that for a given temperature we re-
quire a large magnetic field to increase the num-
ber of terms in the series (4, 1) and small phonon
frequencies to increase the ratio 2mmkaT/v in the
expression for g(&u„, T). This latter condition is
most favorable in mercury, with its low-frequency
phonon mode.

Using a computer program and the experimental
phonon density of states for mercury, shown in
Fig. 1, we have calculated the amplitude (4. 1) as

IOO

0
0 IO 20 30

FIG. 2. The analytically continued electron self-
energy in mercury evaluated at &n= (2n+ 1)7[:Tas a func-
tion of temperature for n = 0, 1, 5, 10.

0.5

ln(AC)

—I.O

a function of temperature, for various values of
the magnetic field. In Fig. 2 we have plotted the
analytically continued self-energy g(~„, T) in mer-
cury, as given by Eq. (3.4), for several different
values of n.

The results of the calculations indicate that, ex-
cept at the highest fields, deviations from free-
particle behavior are small and unlikely to be de-
tectable. We show, in Fig. 3, two cases of the
amplitude as a function of temperature for mer-
cury. We plot lnA, and lnA, against temperature,
where

I.O

LU

~p.s
UJ

8O6 —3.0

0.4 .

0.2
IO

T( xi

I5

50 I 00 150

E/k, K

FIG. 1. The product of the electron-phonon coupling
interaction and the phonon density of states e2E as a
function of energy for mercury, taken from the work of
McMillan and Rowell (Ref. 6).

FIG. 3. The temperature dependence of the amplitude
of the DHVA oscillations in mercury:

A, =[i —e " ' '"]Z exp{—(2~/~, )[~„+t(~„)]),
n=o

where x = 2~ k~T/(d, . A cyclotron mass m* = 0.183 is
used. The dashed lines correspond to free-particle be-
havior.
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A =A(1 —e & '")
(4. 7)

~0 ~OI. 1 -(Rm /m )x] -(m /m)~e, e

The effect of the factor [1-e '~ "'"] introduced
in (4. 7) is to make 1nAO, a, linear function of tem-
perature for all temperatures, and lnA, will show
deviations from this straight line.

We use a cyclotron mass (that is, the band mass
times the electron-phonon enhancement m*/m) of
0. 183, corresponding to a P orbit in mercury. The
first case, for a field of 40 kG, shows a maximum
deviation of about 5/o, but seen only at the lowest
temperatures. These values of magnetic field and
cyclotron mass correspond fairly closely to ex-
periments of Palin, who found no appreciable de-
viations from linear behavior over the tempera-
ture range 1-10'K. The second case, also plot-
ted in Fig. 3, for afield of 100 kG and a cyclotron
mass of 0. 18S shows deviations of up to 15%%up over
a range of temperature to about 10 'K. However,
for much of this range lnA, looks close to a
straight line, corresponding to a cyclotron mass
only 5% different from the true cyclotron mass.
Hence, in order to see the deviations unambigu-
ously, one would have to perform an experiment
over a broad temperature range up to and includ-
ing the region where the deviations disappear
(x& 1). In Fig. 4, we show the deviations for
H= 100 kG on a larger scale. The curve does not
quite reach T= 0 because for temperatures such
that x« I, the summation (4. 1) converges only
very slowly and eventually becomes unmanageable.
However, within an Einstein model and for fields
such that co, is not large compared with the Ein-
stein frequency, we are able to expand A about its
T= 0 value, given by Fowler and Prange~ [their
Eq. (S5)], and obtain a smooth curve for A over
the full temperature range.
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the phonon density of states in mercury. We
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fessor J. Hopfield, and Professor M. Wortis for
helpful discussions.

APPENDIX

In this Appendix we calculate the shift in thermo-
dynamic potential to second order in the electron-
phonon coupling constant. We use an Einstein
spectrum, i. e. , constant phonon frequency coo, and
a wave-vector -independent coupling constant g.
For this special model all the integrals may be
evaluated analytically.

To carry out the perturbation calculation in a
magnetic field we consider the creation and anni-
hilation operators that describe electrons in their
eigenstates in a magnetic field rather than in the
usual plane wave states. The noninteracting elec-
tron Hamiltonian in this representation is

H' = ~ c' ce1 pg f l ~ ty Pg ~ l f+ Pg ~ ls& ~

lying sty

(Al)

Although Palin did not carry out an experiment
in quite such extreme conditions as those of the
second case, he still found no significant deviation
from linearity (i.e. , quasiparticle behavior) in
an experiment at 82 kG over a range from 4-17 'K
for a cyclotron mass of about 0. 187. Our calcula-
tions suggest that the amplitude should deviate by
up to about 10% from linearity under these con-
ditions, but the consequent change of slope on a
logarithmic plot would probably have been too
slight for unambiguous experimental observation.
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where the single-particle electron energies &&

were given in (2. 4). The phonons and density fluc-
tuations are assumed to be uncoupled from the
magnetic field so that the noninteracting phonon
Hamiltonian is

0 ~ +H h=~ &oa „a„. (A2)
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0
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The interaction term is taken to be the usual
Frohlich Hamiltonian, which in the plane wave
description is

FIG. 4. The deviations, ln(A/A ) for a cyclotron
mass of 0.183 and a magnetic field of 100 kG, shown on
a larger scale; the curve does not reach T= 0 because
of the slow convergence of the summation (4.1) at low
temperatures.

H = Q I ~ygp c pr ~cp, ~(gy p+0 p pr). (AS)
@pi~ 4 0)

We now convert tothe magnetic field eigenoperators
and insert the matrix element of a plane wave be-
tween the magnetic field oscillator eigenfunctions
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%'e may now write the second-order shift in the
thermodynamic potential as

(A6)

~n"&=1. I. ' Q ZSl(AP

Lion con s s &» &fy

1x ~M( ~ r(qJ~ g . .—
( )»»

n1 n2 n2 n1 0

(AV)

Since we have chosen the coupling constant and
phonon frequency to be independent of wave vector,
the only place q, occurs is in the matrix element
IM». (q,) I . The sum over q, is just the orthogo-

nality integral for the Laguerre polynomial:

~
M „.(qJ

~

'= (m&a, /2v) I,„I,.
qX& qual

(Ae)

P~(~):

M„.(q)= f drgg (~) e"'"gp(~). (A4)

The integral may be evaluated and the result is as
given by Brailsford' [Etl. (AB)]. Excluding the mo-
mentum 5 function on the y and g momenta the re-
sult is

AM), , (q, ) i

&(f'- g)I» -N/»(1 )/fit )1/»I!'-g(&)

where n = q', /2m&v„q', = q„'+ q', , and &, is an asso-
ciated I aguerre polynomial. For l'&l, l and l' in
(Ae) are interchanged. The interaction term in
the Hamiltonian is thus written

2vke, g ( 1)»„. 2vke,
~c COc

2mb'e~ 1x cos 2 2Ad —t 'El0 -E ((d —4) ) - (doc n1 n2 n2 n

(AQ)

where &-=q(p) and g'-=q(p~ q).

The first term in the large parentheses of (AQ)
(the term 1) represents the shift of the thermody-
naxnic potential in the absence of a magnetic field.
The second term of (AQ) [the term 4$»"

&
(-1)»

x cos2vke, /&u, ] is just the expansion of (2. 3) to
second order. The third term in the large paren-
thesis of (AQ) (the term with the product of two os
cillatory factors) represents the oscillatory field
dependence of the self-energy. %'e may evaluate
this term using the method of stationary phase on
both the cos8 and cosa' integrals, and me obtain a
term which is smaller in magnitude by (&o, /p, )~
than the second term.

To show that the second term is the expansion
of (2. 3), we perform the a&„and w„sums by con-
verting to integrals and obtain

~A' '- —Q —
'

2 Q (-1)»cos
p q c 2(do p~1 (dc

I d, f(s) s(~0)+f(~')
27TZ 8 —E 8-6 +QPO

c

n(&uo)+ 1-f(~')
(+ I »

Z E —QPO J
This result is identical to that obtained by expand-
ing (2. 3) to second order in the coupling constant,
as may be verified by noting that the second-order
self-energy is

Now we follow the steps (2. 7)-(2. lo) as in Sec.
II to revert back to the usual momentum variables:

2 1 oo

~n'"=,, Q Q g' 1+4 Q (-1)'2/2
t»)n & Psqyc a=1

g(») (
~ m g s(&o)+f(&»„)Z (6» Shan) =~

q 24&0 'E(0n - 6&+ q+ COO

n("0) + & -y(a. ..)
)2n - &p + q

—
COO

(A11)
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The elastic scattering of electrons from liquid Hg has been measured for energies between
100 and 500 eV and for scattering angles between 60 and 170'. The observed scattering is
remarkably similar to that from Hg vapor; a model calculation shows that the differences
between the liquid and vapor scattering are due to multiple scattering and inelastic processes.
The analysis shows that (i) higher-order multiple scatterings are strongly attenuated by
inelastic processes; (ii) approximately half the observed integrated intensity has been scat-
tered only once; (iii) for back angles, the atomic scattering factor is essentially the same for
the atoms in the liquid and the vapor; and (iv) attenuation coefficients for elastic electrons
are of the order of several tenths of a reciprocal angstrom.

I. INTRODUCTION

The difficulties in developing a satisfactory un-
derstanding of low-energy electron diffraction are
well known and arise because of the strong inter-
actions between the electron and the crystal. ' Be-
cause of the large elastic cross section, multiple
scattering must be important, and most current
theoretical work aims to develop dynamic theories
in which either band-structure calculations are ex-
tended to the energies of the incident electron or,
equivalently, in which the multiple scattering is
treated explicitly in a self- consistent way. In
these theoretical treatments one needs either the
lattice potential or the related atomic scattering
factor, neither of which has generally been avail-
able from experiment. The inelastic interactions
are also strong and have an important effect on the
elastic scattering. They have been included in some
recent calculations, ' usually in a phenomenological
way. Little experimental information is available
about the attenuation of the elastic beams due to

inelastic processes.
It is the purpose of this paper to report the re-

sults and interpretation of experiments on the low-

energy electron scattering from liquid Hg. These
experiments allow reasonably direct estimates of
the multiple-scattering contribution, of the inelas-
tic absorption coefficient, and of the atomic scat-
tering factor.

An earlier paper reported a generally applica-
ble method to measure what was called the square
of the effective atomic s cattering factor, If (&, &) I,t t.
In that work the elastic scattering of low-energy
electrons from the surface of a Ni crystal at ele-
vated temperatures was measured as a function of
the scattering angle 28 for various angles of in-
cidence. The observed scattered intensity could

be divided into two parts, one part which depended
on the crystal structure and its orientation and a
second part which did not. This latter part, which

is dominant at high temperatures, gives the angu-
lar dependence of If (8, E) l,'«. After correction


