
PHYSICAL REVIEW B VOLUME 2, NUMBER 6 15 SEPTEMBER 1970

Exact Solution for a Model of Dislocation Pipe Diffusion'

J. Mimkes and M. Wuttig

Department of Metallurgical Engineering, University of Missouri -Rolla, Bolla, Missouri 65401
(Received 15 May 1970)

The dislocations are treated as an ideal array of parallel pipes of radius a and diffusivity D&

embedded in the bulk material of the diffusivity D&. The exact solution of this problem of dif-
fusion along semi-infinite edge dislocations is presented for cubic, tetragonal, and hexagonal
crystals. The solution makes it possible to evaluate the dislocation pipe radius a and the ratio
of diffusivities 4 from one experiment. It is applied to experimental data for self-diffusion in
tellurium available in the literature. The results of the calculations are a dislocation pipe
radius a= (l. 5 +0.5) &10 cm and an activation energy for the pipe diffusion along edge dis-
locations in tellurium E&-—0.80 +0.05 eV.

INTRODUCTION

Dislocation diffusion problems are usually solved
by approximations' based on a model first re-
ported by Fisher. The more exact solution of
grain boundary diffusion by %hippie and Suzuoka
suggests a similar solution for the dislocation dif-
fusion, and it is the purpose of this paper to pre-
sent the exact solution of the problem of dislocation
pipe diffusion for an instantaneous source. In or-
der to reanalyze data by Ghoshtagore, ~

' who in-
vestigated self -diffusion along dislocations in tel-
lurium, the calculations are performed for cubic,
tetragonal, and hexagonal crystals. The result is
in general similar to Suzuoka's solution of the
grain boundary diffusion problem. The solution for
a constant source may be obtained from the one
presented in this paper by an integration.

EXACT SOLUTION

The dislocation pipe is represented by a cylinder
of radius a and isotropic diffusivity D' oriented
perpendicular to the surface of the surrounding
bulk. The diffusivities in the bulk are D parallel
to the pipe and D~ perpendicular to it. The differ-
ential equations for this diffusion problem with
semi-infinitely long pipes and an instantaneous
source of strength y at the surface are
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k = p, '+X/D, k" = p'+X/D' .
Far away from the boundary r =a, the two solu-
tions of Eqs. (4a) and (4b) will be independent of
each other,

Bc Bc—=0 for y-~, =0 for y'-0 .
By By

The solution of the differential equations (4a) and

(4b) fulfilling the boundary conditions (2) and (6)
are

c(r, p, , X) =y/Dk +A(p, , &)K,(kr/K6), r &a (7a)

c'(r, p, , &) = y/D'k" +X'(q, ~) f,(k'r), r &a (qb)

where Ko and Io are Bessel functions of the second
kind. A and A' are calculated from the boundary
conditions (2),

c and c', respectively, and 5(z) and S(f) denote
Dirac's 5 function. The solution of Eqs. (la), (lb),
and (2) may be found using the Fourier-Laplace
transformation

c(r, p, , x) = f" f"c(r, z, f) cos(pz) exp(- Xt) dz dt .
(3)

g/1th 5 =D~/D and 6= D'/D the transformation of
Eqs. (la) and (lb) is

and the boundary conditions are given by

Bc , Bcc'=c, D~ —=D' --, r=a .
By By

The concentrations inside and outside the pipe are

(6 —l)p, ' 1 1
D'k' k 1+K Kq(ka/vs) '

(ab)
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(t s/qs) f,(t 's)~ tJ'Z, (ns/k )f,(n'a) '

The exact solutions of the diffusion problem stated
by tile Eqs. (1R) Rlld (lb) lnRy be obtRllled tllrougll
the Fourier- Laplace retransformation

p+ (O p+

c(I,x, t)=
2 22%i J2

c(I., tl, X) costlx e &d|I ~

(io)

OUTSIDE SOLUTION

xEI(x)/sc, (x) = x+ (i2)

as can be verified numerically. 0~" Using (11) and
(12) the fllllctioll N 111 Eq. (9) nlRy be slIIlplif led 'to

tt'= 2s(un+-,')/(&k" a'), (12)

and the ratio of Bessel functions KQ used in Eq.
(Va) yields for a &0, I &a,

&n(&I/«) S "', l(, .)1.(
z, (1a/gn)

x I'1 —,'{1 r/a)'—+ ~—.] . .

The solution for the outside region of the pipe is
given by Eq. (Va). The integration of the solution
retransformed according to Eq. {10)may be per-
formed if a proper series expansion for the Bessel
functions can be found. The replacement

xf,(x)/f, (x) = 2

is equivalent to %hippie's approach. Even though
the approximation (ll) seems to be very poor, it
has been shorn that higher-order approximations
do not contribute significantly in this case. Hence,
%'hippie's solution' for the outside is quite accurate.
Similarly, the ratio of the Bessel functions of the
second kind E& and EQ is very mell approximated
by

Equation (14) may be verified by calculating the
Taylor series off(x) in Eq. (15) at x=x,:

x II2 e"K,(x)
x, e'ox, (xo)
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X
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c(I, z, t) =
2 2. cosp~e ~d~dQ

y y
Dy' D'k'll" 1+2S(ka+ ,)/tlt'V-

Q k x 8

Equation (16) is very similar to the retransforma-
tion calculated by Whipple, and it may be inte-
grated with the same techniques by substituting
tl - p'/Dt, l(- &/t, vs= & —t(3 and replacing any
denominator by an integration, as in Eq. (1V),

(1+K) '=j exp[-(1+@)(l]do .
Upon introducing the reduced coordinates 0 = z/
K(Dt), p=~/V(Dt), ~=a/q{at), and P=(~ —i)n t e
outside solution of the pipe diffusion problem for
an instantaneous source is then given by

Applying Eq. (12) to this Taylor series yields Eq.
(14). The outside solution, Eq. (Va), integrated
according to (10) can now be simplified by inserting
the approximations, Eqs. (11)-(14),

l/3 o'- I 40'
~ erfc P —Q+25— 3/3

(& -o)s p - o

with p & (I &0. Eqllatloll (18) is eqlllvR18IIt 'to

Suzuoka's solution of the grain boundary diffusion
problem.

INSIDE SOLUTION

The solution for the lnslde region, F &Q, ls

glvell by Eq. (Vb). As ill R previous paper the I 8-
transformation of Eq. (Vb) will not be performed
by an integration according to Eq. (10), but rather
with the use of the boundary conditions (2). For
this purpose the even function fo(k'r) is developed
into a Taylor series at J' = Q,
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(20)

where P(r3-a2) is the polynomial

p(r -a') = Q (1/n) [1 —(r/a)']" .
n~i

Applying the boundary conditions (2) to Eq. (20)
yields

(21)

f,(n'r) = ~ ——
~

f,(a'r) . (18)
1 s l ", (r'-a')"
r &r) ', nl

Ordering Eq. (19) by powers of differentiation,
lo"'(k'r), and using Eq. (8b) for A'(p, A.) the first
two terms of the inside solutionequation (Vb) may be
written as

Q(z, f)=2m f c'(r, z, t)rdr+2v f c(r, g, t)rdr,
(28)

where A is the radius of the mean bulk area sur-
rounding each single dislocation pipe. The radius
A may be calculated from the dislocation density

A = (vd)-'~' (24)

the solutions, Eq. (18) for the outside and (22)
for the inside region of the pipe, have to be inte-
grated with respect to r over the complete sec-
tion. The total amount Q(s, f) of diffused material
in a section at a distance z from the surface of the
crystal after a diffusion anneal of time t is

c'(r) =c(a) -a5p(r' -a') — 2a .8r (22)
The r integration of the polynomial Eq. (21) yields

J' P(r' -a')r dr =-', a' . (25)
0

The solution for the inside equation (22) is now ex-
pressed in terms of the outside solution, which
has already been calculated. Higher-order ap-
proximations involve higher-order derivatives of
c(r) at r =a and do not contribute significantly.

SECTION INTEGRAL

For the evaluation of sectioning experiments

(26)

with the three functions

0 (t) =em(- lL'),

Applying Eq. (25) and the reduced coordinates of
Eq. (18) the complete-section integral (22) reads
(e =a/A)

@« ')=~ A'( Df) '"te «)+O «)+e h)j

3

Qz(g) = 2q —— exp ——— r~ a (a —1)5
4o 2 4a &P

x erfc — —(r —E)+25
2 (b —0')5 C

do

P as/8"1

(d —1)5 ' 1' 1 (
L~ (a —1)5 (c 1)~6 dc

2v'"d J, a-c 4c 2 ~& 4a ap (~ a)np

Equations (26) and (2V) give the section integral
for the solution of the dislocation pipe diffusion
problems for hexagonal, tetragonal, and cubic
(5 = 1) crystals with an instantaneous source at the
surface. Q,(L) is the bulk contribution far away
from the dislocation. Q2(g) represents the bulk
next to the pipes where the material has diffused
into the bulk predominantly from the dislocation
pipe. The two parts of Q, (f) represent the contri-
bution from the inside of the dislocation pipe. The
first part of Q~(f ) is larger than the second by an
order of magnitude, as can be shown numerically.
The second part of Q,(l') may thus be dropped in
all calculations and has been presented for com-

pleteness only.
The section integral Q(f, f) in Eq. (26) contains

all dominant parts of the series approximation for
the solution of dislocation pipe diffusion. The ex-
act solution may be obtained by taking into account
all terms of the series approximations that have
been used. However, as numerical calculations
have shown that higher -order approximations are
smaller by orders of magnitude, Eqs. (26) and

(2V) may be considered the exact solution.

DISCUSSION

The exact solution for dislocation diffusion (26)
and (2V) contains two parameters, which have to
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be fitted to experimental data, the ratio of diffu-
sivities handthe radius of the dislocation pipes a.
At different temperatures only 6 is expected to
vary with the energy LhE=E~ -E~., where E~ and

E~ are the activation energies for the diffusion
process in the bulk and the pipe, respectively.
Thus, the exact solution will reproduce dislocation
diffusion data at any temperature once the two con-
stant parameters a and E~ are properly chosen.
This will be shown using the experimental data of
Ghoshtagore, & who investigated self -diffusion
along dislocations in tellurium.

Ghoshtagore evaluated his data using Fisher's'
approximation for the contribution Qz(() next to
the pipes; he further used

Io

IO

IO

LLi
6
V)

T = 674'K

Q, (g )
-exp(- L '/4tI) (28)

IO

for the contribution from the inside of the pipes.
According to these approximations he calculated
the values of the two parameters a = 1.5X10 ' cm
and E~=0.65+0.05 eV. However, the use of the
above two approximations results in a systematic
deviation for the activation energy E~. as has been
pointed out by LeClaire. ' The deviation is due to
the fact that the approximations are only valid for
low temperatures, where the diffusion parameter
P is large. At higher temperatures the value of
P is not large enough to ensure the validity of the
approximations. This is shown in the following

IO

Z2
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FIG. 2. High-temperature penetrat;ion plot of tellurium
containing edge dislocations. The plotted points are
Ghoshtagore's data (Ref. 8), and the solid lines have been
calculated on the basis of Eq. (26). The broken line re-
flects the pure bulk contribution.
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figures.
Figure 1 gives the specific activity Q(0, t) as a

function of the square of the penetration depth z
at the lower temperature T= 538 'K. The solid
circles represent the data by Ghoshtagore, the
solid line gives the best fit calculated from the ex-
act solution and ~= 1400. The slope of the the-
oretical line is determined by 6 and is independent
of the dislocation pipe radius a.

The value of 6 may also be calculated by approx-
imation (28) . With

D = 130exp[(- l. 75 +0.05) eVjkTj, (28)
O
4
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FIG. 1. Low-temperature penetration plot of tellurium
containing edge dislocations. The plotted points are
Ghoshtagore's data (Ref. 8), and the line is calculated
on the basis of Eq. (26).

the slope in Fig. 1 yields b, =1300. As expected,
the accuracy of EIl. (28) is satisfactory at the
lower temperature.

Figure 2 shows the specific activity Q(f, t) as a
function of z at the higher temperature 6V4 K.
The solid circles are taken from Ref. 8; the lines
represent calculations according to the exact solu-
tion (28) for various values of the dislocation pipe
radius a. A best fit is obtained for the values of
the parameters P = 40, and a = (1.5 + 0.5) && 10 4 cm
resulting in 5 = 38+ 13. As the data deviate from
a simple penetration plot it is obvious that the ap-
proximation (28) does not apply at this high tem-
perature. This approximation, using the slope at
large values of z in Fig. 2, would yield a much



EXACT SOLUTION FOR A MODEL OF DISLOCATION 1623

lower value for 6, 6= 12. A similar difference
between the values of 6 obtained through Eqs. (27)
and (26), respectivelY, is calculated at all tem-
peratures, as may be seen from Fig. 3. In this
figure the ratio of diffusivities 6 is plotted versus
the inverse of temperature. The solid circles
represent the best fit of 6 according to the exact
solution (26) with a dislocation pipe radius a
= 1.5&&10 4 cm. The straight line through the
circles corresponds to an energy ~ = 0.95 eV
leading to an activation energy E~=0.80+0.05 eV
for the diffusion along the dislocation pipes if E~
= 1.75+0.05 eV is chosen. The solid squares in
Fig. 3 represent the values of 6 calculated ac-
cording to approximation (26). As expected, the
difference between the two 6's becomes larger
with rising temperature, leading to a 20% lower ac-
tivation energy E~ = 0.65+0.05 as given by Ghosh-
tagore.

The surprising result of this analysis is the
rather large value of the radius of the dislocation
yipes. It must be recalled that this number has
only limited accuracy mainly due to the approxi-
mation of the radial variation of the diffusion con-
stant by a step function. Nevertheless, its order
of magnitude should be correct. Certainly, the
observed diffusion enhancement in tellurium cannot
be restricted to the dislocation core as is the case
for metals. ' A two-defect model whereby the
concentrations of the two defect species strongly
depend on the long-range stresses of the dislocations
might be considered. Qn the other hand, disloca-
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FIG. 3. Arrhenius plot of the diffusion enhancement
in tellurium containing dislocations: The solid line and
solid circles are data calculated on the basis of Ghosh-
tagore's experimental results (Bef. 8) and Eq. (26).
The dashed line and solid squares are data given by
Ghoshtagore (Ref. 8) based on approximation (28).

tion precipitates could also be the cause for the un-
expected large value of the pipe radius.
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