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The theory for transient space-charge-limited currents in photoconductor-dielectric
structures is presented. The analysis gives the transient current density and voltage
across the photoconductor as a function of time for various values of e. Here a is a param-
eter that characterizes the photoconductor-dielectric structure and depends upon the relative
thicknesses and dielectric constants of the two regions. In two limiting cases, our results
reduce to the direct-contact (no dielectric) and open-circuit (dielectric of infinite thickness)
configurations already discussed in the literature. Our rigorous mathematical expressions,
involving integrals of the exponential integral, differ somewhat from the original work on
the direct-contact case, although numerical results are essentially the same. The general
theory presented here will broaden the spectrum of techniques already available for deter-
mining drift mobilities in insulating solids, and the relative merits of various photoconductor-
dielectric geometries are discussed.

I. INTRODUCTION

In 1962 the theory for transient space-charge-
limited currents (TSCLC) in insulating materials
was derived independently by Many and Rakavy'
and by Helfrich and Mark. Since then the theory
has found wide application in the experimental de-
termination of drift mobilities in a large number
of materials, including anthracene, iodine,

arsenic sulfide, phthalocyanine, and sulfur. Most
of these materials form molecular solids in which
the carrier mobilities are low (& 1 cm /V sec).
For such low mobilities, Hall-effect measurements
are impractical and the TSCLC technique has proved
extremely valuable.

There are two major assumptions in the original
TSCLC theory that impose limitations on experi-
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mental measurements. First, it is assumed that
the generation of the carriers causes the electric
field at the injecting electrode to drop to zero in a
time short compared with the carrier transit time,
and that the generation rate is sufficient to maintain
zero field thereafter. The second constraint of the
original theory is that the potential drop across the
sample be held constant. One of the purposes of
this paper is to generalize the TBCLC theory so
that the constant-potential condition may be relaxed.
As will be seen below, this should allow the inter-
pretation of a wider variety of experimental situa-
tions and will relate the theory more closely to
actual conditions existing in typical measurements.

One of the key results of the original theory is
that the TSCLC exhibits a cusp (denoting the arrival
at the collecting electrode of the first injected
front of carriers) at a time equal to 0. 787 times
the Ohmic transit time. It is through the observa-
tion of this cusp that the drift mobility is often
determined. Resolution of the cusp requires rapid
commencement of carrier injection, and therefore
most TSCLC experiments have made use of photo-
injection through intense illumination with strongly
absorbed light, which demands that at least one
electrode be semitransparent. Typically, with
electrodes of this type (e. g. , very thin metal films
on glass pressed against the sample or tin oxide
layers), a barrier layer may exist between the
contact and the photoconductor. This barrier would
introduce uncertainty as to the actual voltage that
appears across the photoeonductor, and in severe
cases the constant-voltage assumption of the
original theory may not hold. In the treatment pre-
sented here, a dielectric is assumed to be in con-
tact with the photoconductor. This analysis will
also be applicable to cases in which a blocking layer
is intentionally introduced, e. g. , to eliminate
dark injection. There may also be other undesirable
effects due to direct contacts. For example, in
experiments on phthalocyanine with transparent
gold electrodes, Westgate and Warfield observed
strong effects due to surface trapping. Similarly,
for evaporated gold on As4S4, Street and Gill'
observed contact-dependent currents attributed to
holes injected at the nonilluminated electrode. In

such cases it would be desirable to remove the
uncertainty of the contact effect by introducing a
blocking layer, and this was in fact done in the

As4S4 work. To interpret such measurements, one

must either ignore any time dependence in the

voltage drop across the photoconductor or take
pains to ensure that the potential difference across
the blocking layer is negligible. The theory devel-
oped in this work makes these approximations
unnecessary and one can in fact treat these eases
analytically.

A common alternative technique for measuring
low mobilities is the time-of-flight or charge-
counting method with a weak pulse of injected
carriers. This method has been used by Kepler
on anthracene, by Hartke' on amorphous Se, and
by Szymanski and Labes" on tetracene, as well
as by others. The usefulness of this procedure
has been limited, however, since it is required
that the injected charge be sufficiently small to
keep the initial field distribution in the photocon-
ductor and an adjacent dielectric unchanged during
the measurement. This small-signal condition
makes the direct observation of the drift current
difficult, and instead a measure of the integrated
current is obtained by monitoring the voltage
induced on the dielectric. The transit time is ob-
served as a turning point in the integrated current.
This considerably limits the sensitivity of the
experiment, especially in the presence of trapping
or of non-negligible dark injection. The general
theory given below allows one to combine the
advantages of the charge-counting measurement
(no metallic contacts) and the standard TSCLC
measurement (high sensitivity) into one measure-
ment, i. e. , TSCLC with finite dielectrics. Further-
more, the direct-contact configuration treated
in the original theory' ' follows as the special
case of our analysis when we let the thickness of
the dielectric shrink to zero. Our mathematical
expressions, which we believe to be rigorous,
differ somewhat from those of Many and Rakavy'
however, the numerical results are essentially
unchanged.

Recently, Batra, Kanazawa, and Seki treated
the case of transient space-charge-limited con-
ductivity in insulators for open-circuit conditions,
i. e. , one surface of the photoconductor is initial-
ly charged to a known voltage and left floating.
In practice, this condition can be achieved by
corona- charging the surface. This situation may
be thought of as another special case of our gen-
eralized treatment such that the dielectric's
thickness becomes very large. We refer to this
configuration as the "corona" case in what follows.
Here, since one surface is floating, the time de-
rivative of the surface potential is the observable
quantity; the external current is equal to zero. It
appears that some of the problems mentioned
earlier in connection with having direct contacts
on the photoconductor may be alleviated by use of
the corona configuration. Furthermore, the
analytical details of the corona case turn out to be
relatively simple, and this facilitates the applica-
tion of the theory to the interpretation of experimental
data. On the other hand, there are drawbacks
which arise in the corona configuration. For one,
the cusp (in the time derivative of the voltage)
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used to determine the transit time is not as pro-
nounced as the cusp observed in other configura-
tions, and this means that the effect of trapping or
of non-negligible dark injection may impose more
restrictive conditions on the observation of the
transit time in corona measurements. Secondly,
the use of corona charging makes it difficult to
study the photoconductor under controlled ambient
conditions, e. g. , clean surfaces in vacuum. For
these reasons and those discussed earlier, the
treatment of a general dielectric layer in contact
with the photoconductor as presented below should
considerably broaden the spectrum of techniques
already available for determining drift mobilities
in insulating solids.

II. PHYSICAL MODEL
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The configuration assumed for our photocon-
ductor-dielectric structure is shown in Fig. 1.
Light incident on the surface at x = 0 is totally trans-
mitted through the dielectric, which is treated as
a perfect insulator. The light is strongly absorbed
at the interface between the dielectric and the
photoconductor, generating electron-hole pairs.
Only one type of carrier moves into the photocon-
ductor under the applied field, leaving the other
behind at the interface. The light is sufficiently
intense to maintain zero electric field inside the
photoconductor at x = d. One-dimensional plane-
parallel geometry is assumed. The diffusion
component of the current is neglected for mathe-
matical simplicity. This is a good approximation'
under typical experimental conditions. Further-
more, no specific treatment of trapping is in-

Vp

C3
ClI—

LLI

LIJ

Ci

I

d

0

0
0
0z
Q

FIG. 1. Schematic representation of the dielectric-
photoconductor structure. The voltage across the entire
structure is maintained constant at Vo, whereas the volt-
age across the photoconductor Vp(t) is time dependent.
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FIG. 2. (a) Potential distribution in the photoconduc-
tor-dielectric structure at t=0 (solid) and t- ~ (dashed).
(b) Electric field distribution in the photoconductor-di-
electric structure at t=0 (solid) and t ~ (dashed).

eluded. As pointed out by Many and Rakavy, ' in
the case of trapping times very fast compared to
the transit time, the results for no trapping apply
if the free-carrier mobility is reduced by a
factor (1+8 ') ~, where 8 is the equilibrium
ratio of free carriers to trapped carriers. For
slow trapping, Many and Rakavy' adopt a quasi-
steady- state approximation which is not appro-
priate to our general model.

Note that in the presence of a dielectric of finite
thickness, both the total current density J (t) and
the voltage VJ (t) across the photoconductor are
useful observables. This provides an advantage of
flexibility and cross-checking capability when com-
pared to the direct-contact case in which only
J(f) contains information 'or the corona case in
which only VI(t) can be observed. In Fig. 2 we
portray the potential and electric field distributions
in the dielectric and the photoconductor. The solid
lines depict the initial conditions and the dashed
lines represent the conditions for t - ~. In the
general case, unlike the direct-contact case, there
is no steady-state field distribution in the photo-
conductor and hence no steady-state conduction
current. The entire applied voltage finally appears
across the dielectric.
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III. CALCULATION

A. General Formulation of Problem

In this section the time-dependent flow of charge
carriers in the photoconductor-dielectric structure
is mathematically formulated. In the coordinate
system chosen (Fig. 1), the dielectric lies between
x = 0 and x = d and the photoconductor extends
from x = d to x = l. The thickness of the photo-
conductor is I. =- l —d. The interface (x = d) is
illuminated continuously with intense light for all
times t ~ 0, while the voltage across the entire
structure is maintained constant.

As the photogenerated carriers move across the
~hotoconductor, the portions of the voltage which
appear across the photoconductor and the dielec-
tric are time dependent, and in steady state the
entire aaplied voltage appears across the dielec-
tric. We are therefore interested in theoretically
calculating the total current density J(t), the
voltage across the photoconductor Vp(t), and the
time rate of change of this voltage vp(t) as a
function of t. This is done for various values of
the parameter n, where o'. is the ratio of the
capacitance of the dielectric to the sum of the ca-
pacitances of the dielectric and the photoconductor.

In the absence of trapping and diffusion, the
equations governing the flow of one type of carrier
in the photoconductor are'

vp(t) + VI(t) = vo

V (0)= oVo,

(3. I)

(3.8)

the interface x= d is illuminated with continuous
intense light such that the field E(d', t) can be set
equal to zero for all t&0. Next, since the voltage
across the entire structure is maintained constant
for all times, the integral f E(x, t) dx= Vo, where
Vo is the externally applied voltage. We define

Vp(t)= J' Ep(x, t) dx

and

V,(t)= f Z, (x, t)dx

With these definitions, the constant-voltage con-
dition becomes Vp(t) + VI(t) = Vo. Before the onset
of injection, i.e. , for t-0, thevoltagedistributes
itself capacitively between the dielectric and the
photoconductor, since initially there is no charge
present anywhere in the structure. If we define
G&. = Cz/(Cp+ Cz), then Vp(0) = G&. Vo and VI(0) = (1 —o)
x Vo. Here C~ =.&G,/4vd is the geometricalcapacitance
per unit area of the dielectric and Cp=&Gp/4mL is
that of the photoconductor. At t= 0, the fields in
the two regions are uniform (since no charge re-
distribution has yet taken place) and are given by
Vz(0)/d and Vp(0)/I, respectively.

From the above considerations, the boundary
conditions can be expressed mathematically as

J,"' (x, t) = qtGn(x, t)z, (x, t)

s J",&(x, t) ss(x, t)
ex

= ~ et

(s. 1)

(s. 2)

v, (o) =

z, (x, o)=

(1 —o') vo ~

V (0)/L. x&d

(s. 8)

(S. 10)

Sz (x, t)
Bx

4xq (3.3)
Kp

Jp(t) = quan(x, t)z~(x, t)+ P P ' .(3.4)
&G, ez, (x, t)

In the dielectric region, since the carrier density
is always zero, the only equation we need to write
is that fox' the total current density:

&Gl ez, (x, t)
4x st (s. 6)

J (t) = J (t) = J(t) (S. 6)

We now discuss the boundary and initial condi-
tions relevant to our problem. As stated earlier,

Here the subscript I' refers to the photoconduc-
tor and I refers to the dielectric. J'pc& (x, t) is the
conduction-current density, E(x, t) is the electric
field, n(x, t) is the free-carrier density, q is the
carrier charge (q & 0 for electrons), p is the car-
rier mobility, &Gp(&GI) is the dielectric constant of
the photoconductor (dielectric), and J(t) is the total
current density. Continuity of current demands
that

Eg{x, 0)= V~(0)/d, x&d

E(d', t) = 0,

s(x, o)= o,

s(x, t) = O,

xwd

8. Method of Solution

(s. 11)

(S.12)

(3. 13)

Vi(t) = —Vp(t) = (Cp/CG ) a 2 p Ep (I, t)

We are primarily interested in calculating J(t)
and Vp(t) for various values of n. The method used
here is similar to the one employed by Many and
Rakavy. The essential difference is that in their
calculation Vp(t) is constant, whereas in the present
treatment the time dependence of Vp(t) is itself
one of the Gluantities of interest. Integrating {3.4)
with respect to x from d to l and making use of
EGI. (3. 3) and the boundary conditions (3.7) and
(3. 12), we obtain

Jp(t) = Cp 2 &G 4 (l, t) —Cp V, (t) . (3.14)

Since there is no space charge in the dielectric,
we can set J,(t) = C, V, (t). Equating this to Jp(t),
we get



= (1 —~) kilz& {I,t),

O= ~Ij{c.+ ~1)

(3. 15)

(3. 18)

(3. 17)

I. This cox"responds to that time interval
for which t~O', but no carriers have yet arrived
at x= l. Suppose it takes time t& for the first front
of injected carriexs to arrive at x=l. Then for
t & t„n(l, t) = 0; and the solution of Eq. (3. 19), sub-
ject to the boundary conditions (3. 8) and 3. 10), is

z (I, t)=(nv/f. )(l-nt/2t„)-', 0't't, (s. 24)

where n(l, t) is the carrier density at the collecting
surface. To arrive at the explicit t dependence of
n(l, t), the concept of the carrier-flow lines' is
introduced through the relation

z{I(tx), t) (s. 20)

whexe, since the mobile carriers exist only in the
photoconductor, the flow lines have meaning only
in that region. Equations (3. 1)-(3.4) may be com-
bined into one equRtlon for'F y Rnd another for 'Pl~

defined along the flow lines x(t):

dZ„(x(t), t)
dt Kp

(3. 21)

dII(x(t), t) 4Ilqu a{
dt (3. 22)

Equation (3.22) may be easily integrated from
some time t„ to t to give the dispersion of carriers
along a flow line. The result is

Equation (3. 23) enables one to solve {3.19) for
ZI (I, t), from which J{t)and V~(t) can be computed.
This i.s accomplished in Sec. IIIC.

C. Expressions for Transient Current and Voltage

It ls clear from Eqs. (S.17) and {3.18) th, t
~(t) and VI (t)»e readily determined, once we
kllow Zp(l, t). Tllls I'eqllll'Bs kllowledge of II(l, t) ~

For the determination of n(l, t), it is convenient to
dlvlde the px'oMelQ into VRx'ious t1IQe zones which
we pl oceed to discuss now.

Rnd the voltRg6 Rt Rny tlIDe tg cRn be expressed 1n

tex'ms of its value at t, through the relation

v, (t,) = v, (t„)—(1 — o)-,
' ilf I z', (l, t)dt . (3.18)

ty

To compute the total current density and the
voltage, it is essential to calculate the electric
field at the collecting surface (x=l) for all times.
A total differential equation for ZI, (E, t) can be ob-
tained by substituting (3.17) into {3.4) and partic-
ularizing to x=/, This leads to

(l, t)z, (l, t)= "z„'{I,t),dt Ic 2I
(3 19)

4= I-'jt -(«o) =f '/Ilv~(0)

which xepx'esents the Ohmic transit time corxe-
sponding to an initially applied voltage II Vo= VI (0).

Substituting (3. 24) in (3. 15), (3. 17), and (3. 18)
gives, for O~t-tq,

v (t) = —(I - n)(n v, /2t„){I- nt/2t„)-',
d(t) =(nc )(n v, /2t„)(1 —nt/2t„)-'

VP(t) = (+Vo)
1 t 2t

{3.28)

where we have set t, = 0 and t~= t in Eq. {3.18).
The f10%' line of the leRding fx'ont ls obtained by
introducing the value of ZI (l, t) from Eq. (3. 24)
into Eq. (3. 20). This gives

x(t) -d = f, tIZ„(f, t') dt' =-(21/o)»n(I o.t/2t„), -
0-'t&t, . (3. 2v)

The transit time tl is obtained from (3. 27) by set-
ting x(t,) = l and using (3. 25):

t, = (2t„/n)(l —e 't'
) (3. 28)

n(l, t) = [{4IIqp,jxI)tj ', t, &t

since t„=o' for all fronts in zone II.

(3.30)

Zone II. This zone treats the tx'ansit of those
carriers which originate from x =d after the lead-
ing front and up to the particular fx'ont which orig-
inates when Zp(d', t) has just become zero. We
assume that the time it takes ZI {d', t) to drop to
zero is vanishingly small. Hence all carriers
treated in zone II originate at t= 0'. The flow lines
in this region are characterized by the field ZI, (d', 0')
which the corresponding front feels just as it
emerges from the interface. The last carriers in
zone II see the field Zr(d', 0') = 0, and their arrival
at the collecting surface g=l at t= ta marks the end
of this zone. To integrate Eq. (3.19) in this region
aga111 1'Bqlliles aII expl'Bssloll for II(l, t) ~ SiIlce 'tile

carrier density at x=d' is assumed to be very
large, Eq. (3. 23) may be rewritten as

II(x(t), t) = [{4Irqll/II~){t —t,)] ', (3 29)

%here t„now represents the departuxe time of the
flow line under consideration. As the various
fronts arrive at x = l, the carrier density there
may be expressed from Eq. (3.29) as
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Equation (3. 19) now becomes

dZ~(l, t) Ey, {l,t) nu 2 { )

This equation can be linearized through the sub-
stitution y = 1/ZJ, (l, t) and the resulting differential
equation can be readily integrated. The result is

E (l, t)=ft[a —(o(u/2L)lnt]] ', t, &t&t, (3.32)

where a is a constant of integration. This constant
can be determined by equating EJ,(l, t, ) as deter-
mined from (3.32) with E„(l, t&) as determined from
(3. 24). Calculating a from this requirement and
substituting back into (S. 32), we get

QVe ~ t -1
0x(&, ))= ~.

'
)

' ((-(x"-)))x,
(s. ss)

Now substituting (3.33) into (3.15) and (3. IV),
we obtain, for

v, (t) = v, (t,) M(t, t, )/—c, (3. 35)

M(t, t,)= f, Z(t')dt' (s. s6)

where Z{t') is given by (3.34) and V~(tz) can be
obtained from (S.26). The integral M(t, t&) hasbeen
evaluated in the Appendix. It is clear from the
way M(t, t,) is evaluated that it is not permissible
to set o. = 0. To obtain V~(t) for o( = 0 it is straight-
forward to integrate V~(t) in (3. 34) after setting
n =0, and this is done in Sec. IVA. The remainder
of this section is restricted to a & 0. Substituting
the value of M(t, t,) from the Appendix in (3.35),
we get

~p(t) 1 (1+&)(1—o) ~t t

neo a

+e F.
&

ln-A,

~=(e(0ia

Ei(u)= f„(e '/ )«e, u~O.
(3. s8)

«0~4' ~aV (t)= —(1 —n) 'e —' 1 —(e"i'-1)ln —I,2t„ t tg )
2

Z(t)=c(C~ 'e" ~ (I —(e i'-1)ln—~ 2t„ t I, t,
(s. 34)

To obtain an explicit expression for the voltage
across the photoconductor at any time t in the
interval t&&t &ta, Eq. (S. 18) is rewritten in the
form

The integral Z, (u) is called the exponential inte-
gral.

To compute t3, we must calculate the flow lines
in zone II. Integrating (S. 21), we obtain

Z (x(t), t) =E (d', 0')+ (4&/x )f, Z(t') dt' . (S.39)

Now integrating (3.20) and using (3. 39), we get

x(t) = d+ liZ, (d', O')t+ (4vu/x„) S(t), (S.4O)

S{t)=f,'dt' f; Z(t") dt" . (s.41)

In calculating S(t) caution must be exercised to
use the appropriate expressions for the current
in different time regions; namely, for 0«"&t&

one must use (3.26) and for t, &t "& tz one must
use (3.34). To avoid any confusion, we will use
subscripts I and II to distinguish between the zone-
I and zone-II expressions for the current.

Ne can now write

(S)t=f Odt fo &i(t")dt", 0&t&t,

S{t)=f 'dt' f J, (t") dt" +f dt' f i Z&(t") dt"

(3.42)

(s. 4s)

n Vo 21 et
x(t)=d+ p, Z (d' 0') — 0 t ——ln 1 ——

2tg

(s. 44)

x0)=) ~ X(0 (0', 0') — ) ~— )x —
)

21. A

+ -' f' dt' [Z, [ln(t'/t, ) -&]-Z,(-&)]

(3 45)

where g and Z, (u) have been defined previously.
It is clear that for a given value of n, various

flow lines are being characterized by Zr(d', 0').
For ZJ, (d', 0') = o.VO/I. , both (3.44) and (S.45) give

x(t, ) =l. This represents the leading front. Succes-
sive flow lines are characterized by decreasing
values of ZJ, {d', 0') [e.g. , Z„(d', 0') = 0. 9(a Vo /L),
0. 8(o.Vo/L), . . . ]; and the last flow line in zone II,
which arrives at x=l at t=t2, has E~{d', 0') =0. To
obtain ta we set t=tz, x(t) =l, and Z~(d', 0') =0 in

(3.45). The result is

+ f' dt' f'Z„( "t)dt",
ty

Most of the integrals involved in the above expres-
sions are quite straightforward and require only
tedious algebra. The last term in Eq. (3.43) is
more involved. It can be written in terms of
M(t', t~) and simply becomes f,

' M(t', t~) dt' An.
explicit expression for M has been obtained in the

Appendix and can be used here. With S(t) thus

determined, substitution in (3.40) gives
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ln + dt' E& ln —-A

(t, t, )-8-"E,( -A), t,—, n —0. (3.46)

A. Corona-Discharge Case (n = 0)
To derive the expressions valid for the corona-

This is a transcendental equation containing an
integral of the exponential integral and is to be
solved for tz. We have solved this equation numer-
ically and the results will be discussed later.

Zone III. The flow lines in this zone originate
from x=d' at various times t„ following the onset
of injection (t = 0'). It has been pointed out by Many
and Rakavy' that

n(t, t) =((4vqtj, /xJ, )[t —t,(t)]'t',
but the explicit t dependence of t~(t) is unknown.

Analytic solutions in this zone have not been ob-
tained, and it was deemed unnecessary to proceed
with any approximation methods since the informa-
tion to be gained would be of limited practical
value.

In all cases except o. = 1 (no dielectric present),
the photoconductor continues to discharge until the
entire applied voltage appears across the dielectric.
and the total current drops to zero. For n =0
(open circuit) the total current is zero at all times.
For n =1 there is a finite steady-state current. "
This particular region has been called zone IV in
Ref. 1.

IV. SPECIAL CASES

It is valuable to discuss separately two impor-
tant limiting cases: n =0 and n =1. The case n =0
implies a dielectric of zero capacitance in contact
with a photoconductor. This corresponds to the
configuration where one surface of the photocon-
ductor is left floating and the other is grounded.
The floating surface is initially charged to a volt-
age V~(0) and its subsequent decay upon exposure
to strongly absorbed intense light is investigated.
The photoinduced discharge characteristics in
this geometry have been discussed both experimen-
tally and theoretically in Ref. 12, and for n = 0 our
treatment reproduces the expressions obtained
there The othe. r extreme (o. = 1) implies a dielec-
tric of infinite capacitance in contact with a photo-
conductor. This is accomplished by shrinking the
dielectric thickness to zero, and is the case dis-
cussed by Many and Rakavy. ' Our expressions
essentially reduce to theirs, with the exception of
our Eqs. (3.44)-(3.46) for the flow lines in zone
II. We believe that the present expressions are
rigorous and we will elaborate upon the differences
from the earlier work below.

discharge case we let n-0 and Vo-~ such that
the product n Vo= Vt, (0) is finite. This is the initial
voltage to which the floating surface is charged at
t = 0. We readily see from (S. 26) and (3. 34) that

Vp(t) = —V~(0)/2tr, 0 & t & tr (4. Ia)

V (t) = - (L'/2V) 1/t', (4. Ib)

(4, 2)J(t)=0, t-0

In zone I, Vt, (t) is obtained from (3. 26); however,
to obtain Vz, (t) in zone II we must integrate (4. 1),
since (S. 37) is not valid for o. = 0. The results are

Vt, (t) = Vt, (0)(1—t/2tr), 0 & t & tr

V (t) = (L'/2tL) 1/t, t t

In Eqs. (4. 1)-(4.3) we have defined

tr= L /p V~(—0)

(4. 3a)

(4. Sb)

(4. 4)

This corresponds to the situation where the en-
tire applied voltage is directly across the photo-
conductor. Clearly, then,

v, (t)=o, t&0
(4. 5)

v(t)=v, , t&0.
The above equations result when one sets n = 1 at
appropriate places in Eqs. (3. 26), (3. 34), and
(S. 37). The quantity of interest in the present case
is the total current density Z(t), and for t & t, it is
obtained from (3. 26) by setting n = 1. The result
ls

J(t) =(x~p, vo/8vL )(1 —t/2to), 0&t&t~ (4. 6)

where according to (3.28)

ti = 2to(1

Here

to-=t~ L /p Uo——

(4. 7)

(4. 8)

These results are in agreement with results al-
ready reported in the literature. '

From (3. 25) and (3.28) we see that for the present
case t~ = tj = tz.

Furthermore, since J(t) =0, we notice from (3.20)
and (3. 21) that the flow lines are given by

x(t) = d + g E (d', 0') t

The last flow line in zone II is characterized by
EJ, (d', 0') = 0 and takes infinite time to reach x = I.
Therefore, tz- ~ and in the corona case there is no
zone III. These results have been obtained earlier
and good agreement with experiment has already
been reported. '

B. No Dielectric (n= l)
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In zone II we have from (S. 34)

&(t)= ' (~) l —(x"'- l)ln( —
)

ti t tp . (4. 9)

The equation from which t. may be determined is
the particular case of (S.46) with o(=1. In this
case we have A = 1.541 and E,( —1.541) = —S.42.
The transcendental equation for t2 then becomes

541 0. 214
1.541 —In t2 f'

O. 732(t, —t,)xEi 1 ——1.541 +
' ' ———=0.

tj 2 to

(4. 10)

This equation is somewhat different from the equa-
tion one obtains from Many and Rakavy's work'
and we have not been able to show the mathematical
equivalence of the two. The solution to Eq. (4. 10)
was obtained numerically. The result is

t2= 1.514to= 1.924t (4. 11)

The numerical values quoted by Many and Rakavy'
are practically identical to these.

The flow lines in zone II can be obtained from
(S. 44) and (3.45) by making appropriate substitu-
tions. The results are

x(t)=d n(Z (n', 0')-~ t —( t) Itin —
t )

V

0

(4. 12)0 t tj

x(t) t+ n(Z, (t't=, O' )- t (sl) ln ttt )
~V 1

t 2L 1- ln —

q~2
- ln — +—exp—

8 —1

x dt Eg ln
t

—
A&2 1

~1 ~&/2

t2 ~ (4. 13)

Our flow-line expressions differ from the earlier
work in two respects. First, for reasons not obvi-
ous to us, Many and Rakavy do not give any expres-
sion for flow lines in zone II for 0 ~ t ~ t&, even

after stating that flow lines in zone II all originate
at t = 0. In other words, the expressioncorrespond-
ing to our Eq. (4. 12) is missing in their paper.
Second, the mathematical form of (4. 13) is quite

different from Eq. (39) of the earlier work and we

have not been able to show that the two expressions
are identical. We believe that our results are
rigorous, even though numerical evaluation of the

expressions does not show any significant differ-
ences.

For the case o. = 1, since a constant voltage is
maintained across the photoconductor at all times,

steady state here consists of a constant current
flowing through the external circuit. In the steady
state, Eq. (3.4) becomes

J,' = q pn, (x)Z,(x), (4. 14)

where the subscript s refers to the steady-state
values. With the help of (S. 3) and the boundary
condition (3. 12) we get

Z, (x) = (8mJ, /x p)u)' '(x —d)' ' (4. 15)

Integrating both sides with respect to x from d to
I and making use of the condition that f'Z, (x) dx
= Vo, we obtain

8, = 9~I,gV', /32wL' (4. 16)

The treatment presented in this paper is valid
for all values of n from 0 to 1, where n has been
defined as the ratio of the capacitance of the dielec-
tric to the sum of the capacitances of the dielec-
tric and the photoconductor. The case a = 0 corre-
sponds to the open-circuit condition and 0. = 1 sig-
nifies the absence of the dielectric altogether. It
is instructive at this stage to investigate how the

physical properties like the transient current,
voltage, etc. , vary with time for various values
of n.

This is the well-known expression for the steady-
state current. '

o calculate the flow lines in the steady state,
we recall that each front arriving at x=l after
t = t2 was subject to Ez,(d', t~) = 0, where t~ is the
front's departure time. Furthermore, J is inde-
pendent of t and therefore (S.40) and (3.41) lead
to

x(t)=d+(4m'/x )J, f' dt' f dt"

Here the flow lines are characterized by their
respective departure times t~. Substituting the
value of J, from (4. 16), we get

x(t) =d+Pg[(pVO) /L'j(&- t, ) . (4. 17)
If t, denotes the arrival time, then the transit
time t, =t, —t„ in steady state is obtained by set-
ting x(t, ) =I. Since I —d=L, Eq. (4. 17) gives

ts=3 to (4. 18)

Thus in steady state all flow lines take 1.334to to
arrive at the collecting surface. It is interesting
to point out that the carrier transit times exhibit
a behavior somewhat analogous to that of the tran-
sient current itself. The transit time of the lead-
ing front is t& = 0. 787to. For subsequent fronts,
the transit time increases until for the last front
in zone II it reaches t2=1. 514to. It decreases
thereafter, and the steady-state transit time takes
the value 1.334to.

V. NUMERICAL RESULTS AND DISCUSSION
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case o. = 1 is obtained from Eq. (4. 16) and is
found to be equal to 8 in normalized units. Several
general features of the curves should be noticed.
The initial values at f;= 0 are proportional to o.

and reach the value 0. 5 for a = 1. In the presence
of a dielectric (o. & 1), the electric field in the
photoconductor changes more slowly than for no
dielectric (n =1); hence, the greater the relative
thickness of the dielectric (i. e. , the smaller the
value of o. ), the smaller the current, even after
normalizing out the effect of smaller initial photo-
conductor voltage. In the extreme case of an in-
finitely thick dielectric (n = 0), the current vanishes.
For all values of n, J(0)~ VJ,(0)/L' and the exper-

imental verification of this relationship would
ensure that one is in the space-charge-limited
regime. For a given n, the current increases with
increasing t until it reaches a maximum at t = t&.

The reasons for the existence of the maximum
have been explained earlier. ' It can be demon-
strated analytically that for all n & 0, the current
maximum at t = t& takes the form of a cusp. This
is done by computing the derivative of J(f) at f=f,
from the left and from the right and showing that
the two derivatives are unequal. In units of
Z(t, )/f„, we can write

Q 2
-n/2 f /f

I.O
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CU
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FIG. 5. Time depen-
dence of the normalized
negative time derivative of
the photoconductor voltage
for various values of o.'.
The vertical dashed line in-
dicates the position of the
Ohmic transit time. See
text for the explanation of
symbols.
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where D is the time derivative of J(t) computed
at t = f, using Eq. (3. 26) and D' is computed at
t = t~ using (3. 34). One finds that D 0 D' and hence
there is a cusp at t=t&. In fact, for @ = I, D -D'
= 2. 54, and for a - 0, D —D' —2. 0. The cusp is
therefore sharpest for n = I and our value for
D -D' agrees with the value quoted in the litera-
ture. Therefore, if one is interested in using the
position of the current cusp at t = t& as a bench
mark for determining drift mobilities, it would
be sensible to work with a relatively high value of
n, especially if carrier trapping and/or finite
injection rise time limit the experimental resolu-
tion. We also see from Fig. 4 that the position of
the cusp moves closer and closer to the Ohmic
transit time (f = f„) as n decreases, for reasons
explained earlier. The ratio Z(f, )/J(0) varies from
1.0 to 2. 7 as n goes from 0. 0 to 1.0.

Note that the value of J(0) may be used as an
independent method of determining the drift mobil-
ity. Relatively small values of n afford the best
opportunity for determining J(0), since the initial
portions of the Z(t) curves are most flat for these
cases. This method for measuring mobility re-
quires knowledge of x'~, in addition to Vp(0) and

L, both of which were also needed in the transit-
time mobility determination. On the other hand,
if the mobility is known from other considerations,
the value of J(0) may be used to determine zz, .
Finally, an additional check on the value of the
mobility may be obtained by fitting experimental
data for J(f) in zone II to the theoretical curves,
since the current here also depends upon mobility.

In Fig. 5 we have plotted —d~(f) from Eq. (5. 3)
as a function of f/f„ for various values of o. These.
curves differ from those for Z(t) by the factor
2(1 —o.)/n, which leads to somewhat different
properties. For n =1, v'~(t) =0 for all times. As
n decreases, j vp(f)~ in zone I increases andreach-
es a maximum value for a ='0.

Under open-circuit conditions (n = 0) there is no

carrier injection after t = O'. Each injected front
moves with a uniform velocity. Since there are
no carriers leaving the system, v~(f) is constant
for t&t&. For the reasons discussed earlier, a
cusp occurs in vp(t) at f = t„and the position of
this cusp moves closer to the Ohmic transit time
t„as n tends towards zero. The carrier mobility
could be determined from the value of t~ if L and

VJ, (0) are known. As was discussed for J(t), the
cusp at t =t~ is more sharply defined for larger
values of a. This would be an important consider-
ation if trapping and/or finite-rise-time effects
limit experimental resolution.

For all cases except n = 0, vent) has a finite slope
at f = 0. As n-0 the slope of i~(t) in zone I becomes
vanishingly small, thereby facilitating the accurate
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lating discussions with Dr. W. D. Gill, Dr. K. K.
Kanazawa, and Dr. B. D. Silverman. Thanks are
also extended to Dr. P. M. Grant for advice re-
garding numerical computations. Dr. E. Kay's
continuing encouragement and support are grate-
fully acknowledged. Miss C. DeLong's expert
assistance in the preparation of the manuscript
and the graphical work of S. R. Heyer are sincere-
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APPENDIX: EVALUATION OF M(t, t, )

We wish to evaluate the definite integral

M(f, t,)=1' Z(f')dt',
f;y

where J(t') is given by (3. 34). Substituting that
expression in the above equation, we get

Mt t, At,
' dt'

( f'P [A —In(f'/f, )]3 '

(Al)

(A2)

with

&-=C~o. V0(1+2), A-=(e i —1) (A3)

determination of v~(0) .Thus it is advantageous to
choose a small value of n if the drift-mobility
evaluation is to be carried out using the initial val-
ue of v'~(f). The time dependence of v~(f) for f &f,
can be used to check the value of mobility obtained

by either of the two aforementioned methods. For
n =0, the I/f dependence of v'„(f) in this region
provides an especially nice check, which agrees
well with experimental data on amorphous selenium.

Figure 6 shows the time variation of the normal-
ized voltage v~(t) —= V~(t)/o. Va for various values
of n. In calculating these curves use has been made
of Eqs. (3. 26) and (3. 37). For o. = 1, there is no

decay at all, and the voltage decays more rapidly
for smaller values of n. In the open-circuit case
(o. = 0), the voltage has already dropped to 50% of
the initial applied voltage by f = t, . Because V~(t)
is in this case a constant, Vz(t) shows a linear de-
crease.

Finally, it should be remarked that our general
treatment is applicable to the experimentally im-
portant configuration in which the photoconductor
is sandwiched between two dielectrics. If for C,
one now takes the combined effective geometrical
capacitance of the two dielectrics in series, the
mathematical analysis remains unchanged. The
field distribution Ez(x, f) inskfe the Photoconductor
is the same as in the corresponding single-dielec-
tric geometry. In the steady state, the electric
fieM inside the photoconductor is zero, and the
entire applied voltage appears across the twodielec-
tries.
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where, in arriving at this form for ~, we used the
relation t&

——(2t„/n)(1 —e ). Also, since we divid-
ed the integrand by (e'~ —1), the results are not
valid for o. = 0. Now substituting y =A —ln(t'/t~),
we get

M(t, t, ) =&e " f" e'dy/y' . (A4)
& - ln(t/t«)

The last integral on the right-hand side of (A5) can
be written in terms of the exponential integral'
Z, (u) —= 5 (e '/s) de through the substitution y = —e.
Proceeding in this manner, we obtain the following
expression for the desired integral:

M(t, ti) = C~n Vo(1+A) ((tq/t) [A —ln(t/ti) ] i

A partial integration at this stage gives

M(t, t,) = & j (t,jt) [A —ln(t/t, )] '- A

+e-" I" (e "jy)dy} .
A-ln(t/ t &)

(A5)

—A '+e "[E,(ln(t/t, ) -A)-E,(-A)]),
(A6)

which is valid for all values of n except n = 0.
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