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A simple procedure for estimating the wave-vector-dependent g shift of conduction elec-
trons in sodium metal is described. The conduction-electron wave functions are approxi-
mated by single orthogonalized plane waves (SOPW), orthogonal to the 2p, 2s, and 1s ion-
core wave functions. All the core wave functions are determined variationally in terms of
a two-parameter ion-core potential. The binding energy and spin-orbit splitting of the 2p
core state are adjusted to experimental values. It is found that the core functions have neg-
ligible amplitude at the boundary of the cellular polyhedron. The g shift is then approxi-
mately given by 2/I times the expectation value of the orbital angular momentum in a unit
cell, plus two small relativistic terms. The calculated Fermi-surface average of the g
shift is —5&&10 . Since the experimental values are (-6+2) 0&10, (-8+2) 0&10", and
(-10+2) &&10, it is concluded that a large part of the g shift in sodium can be accounted
for by using the SOPW method.

I. INTRODUCTION

The g shift of conduction electrons in metals is
caused by the spin-orbit interaction with the peri-
odic crystal potential. The theory of this effect
was initiated by Yafet, ' reformulated, and gener-
alized by Roth and by Blount, ' and recently sim-
plified and corrected by the present authors. Ac-
cording to this theory, the expression for the wave-
vector-dependent g shift in metals with inversion
symmetry can conveniently be divided in three
parts, in previous work' denoted by (5g)', (6g)",
and (5g), respectively. We shall give, for com-
pleteness, the explicit expressions of these three
contributions to the g shift. The first part is

which represents the contribution of the spin-de-

pendent part of the velocity operator, namely,
(5/4m c ) o && (VV), to the expectation value of the
z component of the orbital angular momentum
(times 2/5) in the crystalline unit cell A. Here,
V is the crystal potentia, l, and g = g," is the wave
function of a conduction electron with wave vector
k and spin direction 4. The second part is the
relativistic contribution

(5g)"= —(m'c') ' f gt p'(d'r (2)

where p is the momentum. This term was first
crudely estimated by Yafet, ' and was believed to
be negligibly small. However, it has recently been
shown that this term contributes significantly to
the g shift in lithium. It will be shown that also
in sodium (5g)" dominates (6g) ' and still contrib-
utes about 10% of the tots. l g shift. Finally, the
last part is given by
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where S stands for terms containing integrals over
the surface of the cellular polyhedron. The term
containing the volume integral is 2/8 times the ex-
pectation value of the z component of r &&p in the
unit cell. Actually, there are two other terms.
One of these, 6g, makes the wave-vector-depen-
dent g shift independent of the choice of phase of
the conduction-electron wave function. Since the
Fermi-surface average of 6g is always zero, it
need not be considered here. ' The other term,
6g"', corresponds to the average tilt of the intrin-
sic magnetic moment of the conduction electron
3nd is at least second order in spin-orbit coupling.
Since we calculate the g shift only to first order
in spin-orbit coupling, 6g"' will also not be re-
tained.

The first theoretical estimate of the g shift in
sodium metal was given by Yafet. He calculated
(5g) —S, Eq. (3), using the Bardeen method in-
cluding spin-orbit-coupling effects. The result
was (5g) —S=(-3.7sin 80) x10, where 80 is the
angle between the Fermi wave vector k~ and the
applied magnetic field. The corresponding Fermi-
surface average is —2. 5 && 10 . Brooks calculated
the same term using the quantum defect method.
He obtained (5g)" -S= (-3.2sin 80)x10-, the
Fermi-surface average being —2. 1 &&10- . The
most complete calculation, however, has been re-
ported by Bienenstock and Brooks, also using the
quantum def ect method. These authors calculated
in four ways the Fermi-surface average of (5g)r,
Eq. (3), see Table I. For (5g)' they obtain 0.6
xl0-'. 8 The contribution (5g)", Eq. (2), was,
however, not included in their calculation. In
Table I we summarize the results of the various
theoretical calculations. These may be compared
with the values "as obtained from conduction-
electron spin-resonance experiments: (6+ 2) x10-4,
(-6+2)&&10 4, and (-10+2)X10 4. The results
of the calculation to be described in the present
paper have also been included.

The agreement between theory and experiment
is rather good, and another attempt to calculate
the g shift in sodium seems hardly warranted.
However, the derivations and computations under-
lying the treatment of Bienenstock and Brooks are
so complex that no real understanding of the g
shift in sodium can readily be gained from their
work. The purpose of the present paper is to
describe a simple method of estimating the g shift,
which is nevertheless capable of giving reasonably
accurate results.

Our method is based on the observation that the
spin-orbit interaction is strongest for ele ctr ons
in the ion cores. This suggests that one would ob-

TABLE I. Summary of g-shift calculations in sodi-
um. Only averages over the Fermi surface are shown.

5g
(10-') (10 ') (10 ') Ref.

—2. 5
—2. 1

—4. 6 to —7. 0 0. 06
0. 11 —0. 56

5
6
7

Present work

5g(k~) = —(0.5+6.7 sin'80) x10 ' . (4)

The kz-dependent sin 80 term is due to (5g) —S,
Eq. (3), whereas the small constant term is the
contribution of (5g)' and (5g)", Eqs. (1) and (2).
The Fermi-surface average of Eq. (4) is —5.0
~10, which is to be compared with the experi-
mental shifts 5@=(- 6 s 2) x 10 to (- 10 a 2) && 10
We conclude that a major part of the g shift in so-
dium can be understood by using the SOPW method.

II. CONDUCTION-ELECTRON WAVE FUNCTIONS

The conduction-electron wave functions needed
to estimate numerically Eqs. (1)-(3)will be ap-
proximated by SOPW, orthogonal to the 1s, 2s,
and 2p core states. As indicated in the Introduc-
tion, we need only the wave function of a conduc-
tion electron with spin predominantly in the direc-
tion of quantization, i.e. , the z direction. The
Hamiltonian of a conduction electron moving in a
periodic potential V(r) is

Se p'/2m + V(=r) + (5/4m'c')[o && (v V)] ~ p, (6)

where the last term is the spin-orbit-coupling en-
ergy. Since the Hamiltonian depends explicitly on
the Pauli spin operator 0, the wave functions will

tain a simple physical theory of the g shift in sodi-
um by approximating the conduction-electron wave
functions by single orthogonalized plane waves
(SOPW), orthogonal to the ls, 2s, and 2p core
states. It will be shown that this is indeed the
case. The core wave functions are determined by
a procedure which will be described in detail in
Sec. II. It is found that the amplitude of the core
wave functions is negligible at the crystalline cell
boundary. Therefore, the contribution of S, Eq.
(3), can be neglected for our SOPW wave function.
(For exact Bloch functions, S may not be negligible. )
Once the core wave functions are known (5g)',
(5g)", and (5g) can be calculated as a function of
wave vector k. The quantity to be compared with
the experimentally measured g shift is then the
Fermi-surface average of the sum of Eqs. (1)-(3).
The g shift of a conduction electron with Fermi
wave vector kr is found to be (Sec. III)
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be two-component spinors. The conduction-elec-
tron wave function of a conduction electron with
wave vector k and spin predominantly up (desig-
nated by 0) is then written as

X „- () = )r(i) r "'
( ,' ) —Z X....(x)x... ( )

n, sg

c(; / (k)y, / (r) (6)
2 32g

where the functions X„, (r) and (I), / (r) are the two-
component core wave functions. The factor N(k)
normalizes ())f, in a unit cell. The coefficients
c(/ /, (k) and p„„(k)are determined by the require-
ment that (1)f, be orthogona, l to all the core wave
functions, i.e. ,

r;; (x) = e'"' r
X,', (r) ( ) d'r (7a)

() (ix) .r..'.""=X!...(")(0)&'r .
4

(7b)

1 —Y'0

41/2, 1/2( )
gg

R1/2(3)
+1

1 —g2 F,
A1/2, 1/2(r)

gg
R1/2(&) Ir

0

The index n refers to the 1s and 2s states, and s,
is the expectation value of the z component of the
spin angular momentum S. The 1s and 2s core
states are characterized by s, = t 2 (in units of 0).
Since the spin-orbit interaction is large, one has
to employ 2p two-component core wave functions
which a.re eigenfunctions of (L+ S ) and (I,,+ S,),
L being the orbital angular momentum operator.
The indices j and j, are the total angular momen-
tum quantum numbers. The 2p core states are
then characterized by j = —,

' and j,= a-,', and j =-,'

and j,=+ —„+2. The j=-,' and j= —,
' 2p core states

are separated by the spin-orbit energy. We de-
note the normalized 1s and 2s core functions by
R1(r) and R2(3'), respectively. The normalized
orbital parts of the j =-,' and j=-,' 2p core functions
are denoted by R, /2(r) and R3/2(3 ), respectively.
Of course, the orbital parts of the core wave func-
tions will not depend on s, or j,. But the orbital
function R,/2(r) will be different from the orbital
function R, /2 (r) on account of the spin-orbit split-
ting of the j =—', and j = —,

' states. The correct nor-
ma, lized two-component functions X„, (r) and

(t)1/, (r), to be used in Eqs. (6), (7a), and (7b), are'2

1 0
Xl, 1/2(r) = R1(&)

0 Xi,- 1/2(r) = R1(&)

0 0
X2, 1/2(r) R2(&) I, X2, 1/2(r) = R2(&)

1
/, /(r)=

~~
R / +F, ~

1 )x„,(r) ~ -'),

~+ &

43/2, 3/2( ) = R3/2(~)

(8)

V(r) = —2e'/3' —(Xe2/3 )e "" (9)

The first term represents the potential of two nu-
clear charges, whereas the second term is the po-
tential due to & nuclear charges, screened by the
ion-core electrons (except the one we are consid-
ering). Ideally, A. would be nine in sodium, so that
the potential close to the nucleus is due to just
eleven nuclear charges. The parameters X and p.

are determined by fitting experimental data. Ac-
cordingly, V(r) is phenomenological, and includes
Hartree, exchange, and correlation contributions.
It is found that & = 10.12, which is reasonably close
to the ideal value. Next, we assume that R&, R»
R~&» and R3&2 have the form

R, (3) =N e-'1""
R (r) =N (e 2" '+t 3.e 2" )

(IO)
R, ,(3.) =N, 3. (e 1/2" '+t, , e 1/2' ')
R3/2(3) =N3/23 (e 3/2" +t, /2e 3/2" ')

Here, N» N» Nj~» and N3i2 are normalizing fac-
tors. With the potential, Eq. (9), the spin-orbit
energy to be used in the Hamiltonian, Eq. (5),
takes the form

X..=(2~ c)- ——I, S .(1 dV~
cia"

We now calculate the expectation values of the
Hamiltonian, Eq. (5), for the wave functions ap-
pearing in Eq. (8). These expectation values do
not depend on s, or j,. They will be denoted by
E;(i = 1, , 2'3), and are functions of the wave-func-
tion parameters Z;, U;, and t;, and of the potential
parameters X and p. , hence, E;=E&(Z;, (/;, t;; X, t1).

00 3/2, - 3/2(r) R3/2 (3 ) Y g

Here, Y', 1= —(8/8)i)'/' sine e' '~, E', = (8/8m)' '
&sin6 e ', and Y() = (8/4)i)' cose are normalized
spherical harmonics, which describe the angular
dependence of 2P atomic wave functions.

The purpose of the rest of this section is to de-
termine R,(r)) R2(r), R1/2(r), and R3/2(r), which
are necessary to specify the wave function ())~(r)
completely. The potential appearing in the Hamil-
tonian, Eq. (5), will be assumed to have the form
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The functions E, are Ininimized with respect to
Z;, U;, and t;, for each set of values of ~ and p, .
The parameters ~ and p, are then chosen such that
E,t 3 (= E~t2) agrees with the experimental binding

energy of the 2p state in sodium metal, and such
that E,/, -E&/~ equals the experimental spin-orbit
splitting of the 2p ion-core state. For E,&,(=E«,)
we have used the value —2. 45 Ry, which is equal
to the sum of the x-ray absorption threshold' and
the work function. E3/Q Ef/p I 24~ 10 Ry was
obtained from spectroscopic data. ' We find that
&=10.12 and p =3.40 (inverse Bohr radii). We do
not display the explicit expressions for E;(Z;, U;,
t„ l(. , p), since they are rather lengthy and not
particularly illuminating. Finally, we collect in
Table II all the wave-function parameters obtained
in the way described above.

It should be noted that t2 is not an independent
parameter, but follows from the requirement that
8, and Az be orthogonal,

t, = ——,
' (Z, + U, )'/(Z, +Z,)'

Finally, we wish to point out that we still have an
independent check on the core wave functions 8&
and Rz at our disposal. Namely, using the param-
eters of Table II, we can compute E& and E,. We
find that

E, = —90 By and E2= —4. 89 Ry,
ln good agreement with the experimental binding
energies of the 1s and 2s core states in the metal,
—78.98 and —4. 82 Ry, respectively. '3

Having determined the conduction-electron wave
function pf, (r), we are in a position to calculate
Eqs. (I)-(3), and hence, the g shift. This will be
done in Sec. III.

III. g SHIFT

We first direct our attention to the calculation of
(t)g)', Eq. (1), and (5g)", Eq. (2). It has recently
been shown that the sum of these two contributions
reduces correctly to the g shift of an atomic 8 state
in the tight-binding limit. It is worthwhile to re-
call at this point that the general theor~. . on which
our calculations are based, is valid only for elec-
trons ln R band that ts not degenerate (except for
spin), in a crystal possessing inversion symmetry.

TABLE II. Core wave-function parameters.
and t; are in inverse Bohr radii.

Sodium metal satisfies this requirement. It is
clear that also in the metal, (5g)' and (5g)" are
different from zero in the absence of spin-orbit
coupling.

Since the g shift we are computing is rather
small, we need to carry out our numerical calcu-
lations only to first order in spin-orbit coupling.
We will now show that there is no first-order con-
tribution to (5g)' and (5g)". It is therefore suffi-
cient to calculate these two terms in the absence
of spin-orbit coupling. The proof makes use of
the fact that, in the absence of spin-orbit coupling,
the periodic part of the Bloch function of an elec-
tron in a crystal with inversion symmetry is the
sum of a real even function ${r) and i times a real
odd function 0 (r). It can then easily be shown that,
to f list oldex' ln spin-ol bit coupling, the pex'lodle
part of the Bloch function of an electron with spin
direction 4 is given by

u, (r) = [$(r)+i s {r)]+t[5$(r) + it' &)(r)j, (12)

where 6$ and 66 are again a real even and a real
odd function, respectively. In arriving at Eq. (12),
we have made use of first-order perturbation the-
ory, treating the spin-orbit energy, i. e. , the last
term of the Hamiltonian X, Eq. (5), as a perturba-
tion. Next one must realize that V(r) is an even
function in a crystal with inversion symmetry, so
that xSV/Sx and y&V/Sy are even functions. The
origin of coordinates must be taken at the center
of the crystalline unit cell. Then, upon substituting
Eq. (12) in Eqs. (1) and (2), one immediately ver-
ifies that all first-order terms vanish, thus proving
the desired result.

Thus, as far as the calculation of (t)g)' and (6g)"
is concerned only the zeroth-order (spin-orbit-
coupling-independent)partof $~(r), Eq. (6), needs
to be used. The zeroth-order conduction-electron
wave function takes then the form

where the index m can have the values 0, +1, or
—1. The 2P core functions (t)„(r) arenoweigenfunc-
tions of L and L„and are given by

(14)

23. 344
22. 228
11.589
ll. 514

6.781
4. 461
4.436

0
—3.319

0, 2159
0.2155

where It~(r) equals the zeroth-order part of ftqt2
or A3/3. The coefficients
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ensure that @(r) is orthogonal to the 2p core func-
tions Q (r).

The potential V(r), Eq. (9), is not realistic near
the boundary of the crystalline unit cell. This is
indicated by the fact that the derivative of V(r) at
the boundary is not zero. This is not important,
except in one instant. Namely, most integrals
which arise after substitution of gs(, Eq. (13), in
Eqs. (1) and (2) contain e ", y„, (r), or (t& (r),
which fall off sufficiently fast towards the boundary
of the unit cell. However, this is not true for the
term

28—(2mc ) '[N (k)]'~ x —+y — d'r,
(16)

which is the contribution of the plane-wave parts
of g2( and gL, and of the first term of V(r), Eq.
(9), to (5g)'. In order to estimate this term it is
actually better to replace (- 2e'/r) in the potential
V(r) by

—[(a/r) + 2(r/a) ———,'] 2e /a (17)

(5g)"= —5. 6x10-2 . (2')

The lattice parameter of sodium, usedin calculating,
(1') a,nd (2'), is 4. 225 A, a,t T= 4 'K. '

We now turn to the calculation of (5g)", the re-
maining but major contribution to the g shift. As
was mentioned in the Introduction, the contribution
of the surface integrals over the cellular polyhedron
can be neglected, because the amplitude of the core
wave functions at the boundary of the crystalline
unit cell is negligibly small. Thus, (5g)~ is then
effectively given by the expectation value of the z
component of the angular momentum (times 2/k) in
the unit cell. It is now imperative to use the com-

which represents the potential of two nuclear
charges screened by an electronic charge distri-
buted uniformly throughout the signer-Seitz sphere
of radius (2. Equation (16) was estimated in this
way.

One should of course calculate (5g)' and (5g)"
for k= kr. The calculation of (5g)' is, however,
rather cumbersome for arbitrary k. We have
therefore calculated (5g)' for %= 0, after having
convinced ourselves that 5g'(kr) —5g'(0) is small
compared to 5g'(0). On the other hand, (5g)" was
expanded in powers of k, and only the k-indepen-
dent term and the term quadratic in k were kept.
There is no term linear in k, and terms of order
higher than the second are small.

Finally, R~(r) was approximated by R, /2(r), Eq.
(10) and Table 11. We find that

(5g) ' = 1.1x 10-'

As in the case of (5g )' and (5g)", we will calculate
(5g) only to first order in spin-orbit coupling.

Making use of the fact that

R, /2(r) = Rp(r) + 2A(r)

R3/2 (r) = R~(r) —/2(r)

where b(r) = —2'[Rg/2(r) R2/2(r)]-, it can easily be
verified that N(k) is not affected by spin-orbit
coupling to first order. Substituting Eq. (6) in Eq.
(3), we find to first order in spin-orbit coupling
that

& (k)=6[N (k)] G(2'i/2 -1/2(k)] &~/2, -1/2(k)+c ~ e ~ ],
(20)

where

,/, (k) = —(v'-', )f e '" '
R/, (r) Y *,(8, &f&) d'r ,

o'q/2 .q/2(k) = —(g-', ) f e' ' ' a(r) Y*~(8,$)d r . (21)

0 b.The coefficients (2, /2, /(2k) and nf/2 $/2(k) are
to first order in k given by

&/2(k) = ——', 7/' ' f r'R/, (r)dr [ik„—k,],
(2, /2 .,/2(k) = --, 7/ f r a(r)dr[ik„-k, ] .i/2 2 . (22)

Using Eq. (22) and the fact that R~(r) = ,' [R,/, (r—)

+2R, /2(r)], we find to second order in k that

5R' (k) —277/(k„+k7) [N (0)] (I1/2+ 2I22)/(I1 2
—/I2/2) (

(23)
where

I,/, = f r R, /, (r)dr,3

I2/2= f r R2/2 (r) dr .
The normalizing factor at k = 0 is given by

N (0) =[0—167/ (I,'+I )] '/2,

(24)

(25)

I, = f raR, (r)dr, I, = f r'R, (r) dr . (26)

Finally, after performing the integrations in Eqs.
(24) and (26) with the help of Eq. (10) and Table
II, Eq. (23) becomes (for k=kr)

5g (kr)= (-6.7x10- )sin 82. (3I)

Combining Eqs. (1'), (2'), and (3'), thefina. lresult,

piete wave function gf((r), Eq. (6), since the ex-
pectation value of the angular momentum in the unit
cell vanishes in the absence of spin-orbit coupling.
The calculation of (5g) is, in addition, simplified
due to the fact that the 1s and 2s core wave func-
tions g„,, do not contribute, except through the
normalizing factor

N(k)=((( —L, ((" ((„, —„r, ,"; q;)
' '. ((8)
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Eq. (4), is obtained.
We conclude by noting that the origin of a major

contribution to the g shift of conduction electrons
in sodium metal (in our calculation) lies in the
difference between the orbital parts A&&z and

A3~& of the 2p core wave functions, caused by the

spin-orbit splitting of the j = —, and j = -,' 2p core
states. This leads to a conduction-electron g
shift proportional to the difference in amplitude
of these core functions in the orthogonalized plane
wave. This is most clearly expressed by Eqs.
(23) and (24).
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The de Haas —van Alphen effect was investigated in pure beryllium and in Be-Cu alloys con-
taining up to 0.34 at. % Cu. The extremal cross-sectional areas of the cigar-shaped third-
band electron pieces of Fermi surface decreased with alloying. The areas of the coronet-
shaped second-band hole piece increased with alloying. The magnitude of the area changes
were compared with rigid-band-theory predictions. Corrections for lattice-parameter
changes were included when possible. In the low-concentration limit, the theory is able to
account for the observed area changes. For the highest-concentration alloy, there are devi-
ations, for all areas measured, to greater changes than are predicted by the theory. How-
ever, further data in the higher-concentration region (& 0.3 at. % copper) are needed to ver-
ify this trend. Amplitude measurements were made to obtain cyclotron masses and scatter-
ing temperatures. Within experimental error, the masses were found to be independent of
alloying. A significant anisotropy over the Fermi surface was observed in the rate of change
of scattering temperature with respect to copper concentration. An analysis was made to
determine the scattering rate due to copper impurities for the four orbits studied. The re-
sults indicate that this scattering rate is considerably larger for the two cigar orbits than it
is for the two coronet orbits. The relative values of the scattering times as determined by
the de Haas-van Alphen effect and residual-resistivity measurements were compared with
the free-electron theory of Brailsford. Only order-of-magnitude agreement was found.

I. INTRODUCTION

The rigid-band model (RBM) as introduced by
Jones' was the first at~empt to explain the change
in the electronic state of a pure metal upon alloy-
ing. This model proposed that the effect of alloy-
ing was to change the electron density by just the

difference between the valence of the solute atom
and the solvent atom, scaled by the atom fraction
of solute. Later Friedel used simple perturba-
tion theory to show that the screening of the so-
lute ions produces a shift of all the energy states
of the electrons. In a first approximation this
shift is independent of the wave vector and the


