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per bound to the energy in the large r, limit of
—3.66/r, . Unreasonable because for large values
of r, the electron gas forms a crystal with energy3

(If„„g= - l.702/r, + 3/~."+ ~ ~ ~ .

The true ground state in this limit has a trivial

translational degeneracy owing to the crystal
structure and it is undoubtedly the assumption of
the nondegeneracy of the extended ground state
which is in error. However, it is obvious from
this trivial counterexample that the extended
Hamiltonian is not an upper bound to the true
Hamiltonian.
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In the course of developing a collective descrip-
tion of the electron gas, Bohm and Pines' (BP)
found it convenient to introduce an extended Hamil-

tonian for the system of electrons in a uniform back-

ground of positive charge. Subsequently, Bohm,

Huang, and Pines' (BHP) showed that if the ground
I

state of this extended system (which contained N

additional field coordinates) is nondegenerate, the

energy eigenvalues for the extended system Hamil-

tonian would lie above those of the true Hamiltonian.

In the above paper, Coldwell' has shown by means

of an explicit example that incautious use of the ex-
tended Hamiltonian can lead to incorrect results in

the limit of very low electron densities; he has

suggested that the origin of this difficulty lies in the

fact that in this limit the true ground state is crys-
talline, and hence is no longer nondegenerate. In
the present paper, it is shown that the density at
which the extended Hamiltonian fails to provide an

upper bound is just that at which a dielectric in-
stability appears, signaling the onset of the tran-
sition from the liquid to the crystalline state of the
electronic system. Thus, as emphasized by BHP,
so long as the ground state of the electrons (plus
the uniform background of positive charge) is non-
degenerate (e.g. , spatially homogeneous), the BP
extended Hamiltonian can be relied upon in a cal-
culation of the ground-state energy.

The extended system under consideration is
described by the Hamiltonian

g~ g 4'
lf"80+ ~ 2 k2 ~P~J

0&k~

where H„„is the true Hamiltonian for the system
of electrons in a uniform background of positive
charge and the added terms describe a "c"num-
ber field coupled to the electronic density fluctua-
tions. Since me are at liberty to fix the strength
of this field, let us assume that each m„represents
a comparatively gentle probe of system behavior
such that the electron system responds linearly;
a given v, then acts to induce a density fluctuation

(p„)= —(4ve'/k')' "X(k,o)v„, (2)

where y(k, 0) is the electronic static density-den-
sity correlation function for the true system
H„, . Qn making use of the well-known relation
between X and the static dielectric function e (k, 0),

i/e(k, 0) = l+ (4''/k')X(k, 0), (3)

one readily finds that the net result of the added
terms in the Hamiltonian (l) is to produce a
change in the system energy which is

~Jh ~k'„, e(k, o) (4)

The energy eigenvalues of the extended Hamil-
tonian mill thus lie above those for the true Ham-
iltonian so long as e(k, 0) & 0 for all the wave vec-
tors under consideration (k& k,). What happens if
the density is such that e(k, 0) & 0 for some k'?

Nozieres and the writer have discussed this pos-
sibility elsewhere, ' and have shown that under
these circumstances the positive background will
be unstable against the development of sPontaneous
density fluctuations of the corresponding wave vec-
tor. Put in other words, a dielectric instability
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develops [corresponding to the appearance of a
spatially varying density (or charge) wave], and
one gets a transition from a spatially homogeneous
to a crystalline state.

The above discussion serves to make explicit one
of the central arguments given in BHP —that the
ground state of H,„,would become degenerate only
if the added field-particle interaction pushed down
some excited states of H„„to the ground state.

They noted that "this would be highly implausible
except possibly for pathological systems. There
seems to be a general theorem in physics, so far
unproved, which states that when an external
(static) field is aPPlied to a Physical system the
reaction of the system will never completely can
cel it. " The electron liquid, at a density such that
a charge wave develops spontaneously, represents
just such a pathological system.
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In earlier papers [Phys. Rev. 120, 1289 (1960); 142, 231 (1966)] the pickoff annihilation
rate of positronium was calculated in a cell approximation for various cell geometries. The
rate can be expressed in terms of two functions E(S, v*) and $(S, v*) that depend on a cell
potential parameter S and the reduced cell volume v*. These functions are rederived and

previous errors corrected. Extensive numerical tabulations are made available and analy-
tical approximations presented.

The decay of positronium (Ps) in matter can be
inQuenced strongly by electron pickoff. In this
process the positron, bound to an electron as
P, annihilates with an electron bound in the medi-
um. The pickoff annihilation rate is proportional
to the overlap of the positron wave function with

the electron wave function of the medium.
The pickoff annihilation rate F& was derived for

a simple cell model of condensed matter, ' with
the result

1+G[exp[2$'(S, v*)(u'(T))/r, ] —1 )
Op I+E(S, v")

in Eq. (1), I'0 =mr, cpa is a constant proportional
to the electron density po in the domain of wave-func-
tion overlap; S=(4m/hs) Uoro is a dimensionless
parameter proportional to the cell potential Uo and

the radius ro of the cell core; v*= v, /vo is the cell
volume v& reduced by the volume vo of the cell
core. The factor Q varies between —,

' and 1, ap-

proximately as

G — 1 ——,
' tanh[(p —I)/$(S, v*)], (2)

where p, =1, 2, 3 for planar, cylindrical, and
spherical cell symmetry, respectively. The de-
pendence on temperature T of the reduced mean-
square amplitude (u~)/ro of the core vibra-
tion can be expressed as

(u )/ro —v yuq T & Tg (4)

At temperatures T & Tv, (u') becomes a constant,
and F& depends only on S and v*.

The formulas for the functions Jl (S, v*) and

$(S, v~) are given in Table I for the three geome-
tries, together with the auxiliary compatibility

(u )/ra= v &u T/Tu Tv ~ T—Tm

where y„ is the critical value of (u')/ro v* "for
which melting occurs; TD is the Debye tempera-
ture, and T„ the melting temperature. In the liq-
uid, we set


