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Ex tended Electron-Gas Hamiltonian
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This is a comment on a paper by Bohm, Huang,
and Pines' in which they gave a formal proof
that the extended Hamiltonian's eigenvalues were
above the ground state of the true Hamiltonian.

An extended Hamiltonian for the electron gas
system was introduced by Pines in the early fifties.
In a rather formal paper, Bohm et al. ' rigorously
prove that if the ground state of the extended Hamil-
tonian is nondegenerate, the expectation value of
the H,„, for a trial function is greater than the
ground-state energy of the true Hamiltonian. Bohm
and Pines add the following to the basic Hamiltonian
of an electron gas:

H„,(k, )=-,' Z (m, *m, —2m, p,v v~),

H,a(&.) =Htrus+Haad~&c) .
The new operators g, are defined as commuting
with all particle variables, having canonical con-
jugates q„and having transformation properties
such that the extended Hamiltonian shares the in-
variance properties of the true Hamiltonian. In

particular, invariance under the translation opera-
tor U(b,x) gives

&a pa U = &a pa = U &J6U =
&It,~ ~

-1 -1 Q~rh x

The proof which they give rests on the assump-
tion that the ground state of the extended Hamil-
tonian is nondegenerate: Let E be a nondegenerate
eigenvalue of 0,.„, and C its eigenstate. C is uni-
que. Since z, and'U both commute with H,„„we
have

H,„tC =E4, w„c =p~C, U(bx)@=(gC,

Util@ = &P~C'= UgqU 'U4 = uP„g' '

Since &x is arbitrary, it follows that

Pa= o ~

Thus, for the lowest state of H, „„if that state is
nondegenerate, it follows that H~d(k, ) =0, and thus
(H~J= 0. This implies that for an arbirtary trial
function g,

|)'((IH,„,I
t)') -(gslH„„, I gs).

Now if we use a trial function

4=4: x.

where g"= p exp(- fv'„~' v, q, )
0&k

and X, is a Slater determinant of plane waves in
transformed electron particle coordinates, it can
be shown that the expectation value of the extended
Hamiltonian is

((lH l~)
2 21 0 866 0 916 P P'

r3& r, 2 48

or in the limit of large r„

p is k, /k& and is a free parameter in the proof,
thus to find the minimum we differentiate. This
gives P,„=g(12) and leads to the unreasonable up-
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per bound to the energy in the large r, limit of
—3.66/r, . Unreasonable because for large values
of r, the electron gas forms a crystal with energy3

(If„„g= - l.702/r, + 3/~."+ ~ ~ ~ .

The true ground state in this limit has a trivial

translational degeneracy owing to the crystal
structure and it is undoubtedly the assumption of
the nondegeneracy of the extended ground state
which is in error. However, it is obvious from
this trivial counterexample that the extended
Hamiltonian is not an upper bound to the true
Hamiltonian.

'D. Bohm, K. Huang, and D. Pines, Phys. Rev, 107,
71 (1957).

2D. Bohm and D. Pines, Phys. Rev. ~92 609 (1953).
3E. P, signer, Trans. Faraday Soc. ~34 678 (1938).
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In the course of developing a collective descrip-
tion of the electron gas, Bohm and Pines' (BP)
found it convenient to introduce an extended Hamil-

tonian for the system of electrons in a uniform back-

ground of positive charge. Subsequently, Bohm,

Huang, and Pines' (BHP) showed that if the ground
I

state of this extended system (which contained N

additional field coordinates) is nondegenerate, the

energy eigenvalues for the extended system Hamil-

tonian would lie above those of the true Hamiltonian.

In the above paper, Coldwell' has shown by means

of an explicit example that incautious use of the ex-
tended Hamiltonian can lead to incorrect results in

the limit of very low electron densities; he has

suggested that the origin of this difficulty lies in the

fact that in this limit the true ground state is crys-
talline, and hence is no longer nondegenerate. In
the present paper, it is shown that the density at
which the extended Hamiltonian fails to provide an

upper bound is just that at which a dielectric in-
stability appears, signaling the onset of the tran-
sition from the liquid to the crystalline state of the
electronic system. Thus, as emphasized by BHP,
so long as the ground state of the electrons (plus
the uniform background of positive charge) is non-
degenerate (e.g. , spatially homogeneous), the BP
extended Hamiltonian can be relied upon in a cal-
culation of the ground-state energy.

The extended system under consideration is
described by the Hamiltonian

g~ g 4'
lf"80+ ~ 2 k2 ~P~J

0&k~

where H„„is the true Hamiltonian for the system
of electrons in a uniform background of positive
charge and the added terms describe a "c"num-
ber field coupled to the electronic density fluctua-
tions. Since me are at liberty to fix the strength
of this field, let us assume that each m„represents
a comparatively gentle probe of system behavior
such that the electron system responds linearly;
a given v, then acts to induce a density fluctuation

(p„)= —(4ve'/k')' "X(k,o)v„, (2)

where y(k, 0) is the electronic static density-den-
sity correlation function for the true system
H„, . Qn making use of the well-known relation
between X and the static dielectric function e (k, 0),

i/e(k, 0) = l+ (4''/k')X(k, 0), (3)

one readily finds that the net result of the added
terms in the Hamiltonian (l) is to produce a
change in the system energy which is

~Jh ~k'„, e(k, o) (4)

The energy eigenvalues of the extended Hamil-
tonian mill thus lie above those for the true Ham-
iltonian so long as e(k, 0) & 0 for all the wave vec-
tors under consideration (k& k,). What happens if
the density is such that e(k, 0) & 0 for some k'?

Nozieres and the writer have discussed this pos-
sibility elsewhere, ' and have shown that under
these circumstances the positive background will
be unstable against the development of sPontaneous
density fluctuations of the corresponding wave vec-
tor. Put in other words, a dielectric instability


