2 ENERGY EIGENVALUES,

Overhauser!® dynamic-nuclear-orientation experi-
ment can best be performed when the static field
and the time-varying field are applied parallel and
perpendicular to the crystal axis, respectively.
The best scheme for the Jeffries'!'-Abragam-Proc-
tor!? effect with noncompeting pumps!? is Il orien-
tation with time-varying field also applied Il to
crystal axis. The Jeffries—Abragam-Proctor ef-
fect with competing pumps!® can best be obtained
when the static and the time-varying fields are
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applied at angles of 45° and 90°, respectively,
with ¢,=0 or 7,
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The problem of electron correlation in the ferromagnetism of transition metals is investi-
gated by taking an approximate model Hamiltonian which takes into account the hybridization
of the s and d bands. The Green’s-function technique is used to obtain the self-consistent
ferromagnetic solutions within the Hartree-Fock approximation. An approximate solution of

the correlation problem is obtained.

The ferromagnetic solutions for which the correlation

effects are taken into account are compared with those in the Hartree-Fock approximation.
The model is used to investigate the role of the s-d interaction in metal-nonmetal transitions.
It is also possible to understand the difficulty of observing pressure-induced nonmetal-metal

transition.

I. INTRODUCTION

In recent years, much attention has been de-
voted to the theory of electron correlations in re-
lation to the magnetic properties of transition me-
tals.! The electron correlations in the d band of
transition metals have been studied by Kanamori,
Gutzwiller,® and Hubbard.? These authors based
their theories on the assumption that the only in-
teraction responsible for the magnetic properties
is the intra-atomic interaction between opposite
spin-d electrons. Recently, Richmond and Se-
well,® Pratt and Caron,® and Kishore and Joshi’
took into account the interatomic interaction also.

2

All these investigations completely neglect the
presence of the s band of conduction electrons.
Anderson’s theory® of dilute alloys of the transi-
tion metals is able to explain the occurrence of the
localized magnetic moment on transition-metal
impurities dissolved in nonmagnetic metals. In
Anderson’s model, the band states of the host
metal are treated as independent quasiparticles.
The impurity is introduced as an extra-localized
orbital which is mixed with the band states by a
hybrid matrix element. All two-body Coulomb in-
teractions are neglected except the Coulomb inter-
action between the opposite-spin electrons on the
localized orbital. As an extension of this model,
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a transition metal can be imagined as a system
having a localized d orbital at each lattice site.
Recently, such a model has been analyzed by
Smith.? However, this is an approximate picture
of a transition metal, in the sense that there would
be no direct interaction between the d electrons on
different sites —only an indirect coupling via the
conduction electrons. It is well known that a con-
siderable fraction of the width of the 3d band in
transition metals arises from the overlap of the
3d wave functions on neighboring lattice sites.!®

In this paper, we assume that the d electrons
form a band and they interact among themselves
only via the Coulomb interaction between opposite-
spin electrons at the same lattice site. The ef-
fect of the s band is taken into account by adopting
the one-particle interaction between s and d elec-
trons given by Anderson. However, for the sake
of simplicity we neglect the interatomic Coulomb
interaction between d electrons. In Sec. II, we
write the Hamiltonian for such a model in the
second quantized form. Inour analysis, we use the
Green’s-function method discussed by Zubarev. !
In Sec. III, the self-consistent ferromagnetic so-
lutions are obtained within the Hartree-Fock ap-
proximation for the zero and finite widths of the
dband. In Sec. IV, an approximate theory for
the electron correlation is developed. The self-
consistent ferromagnetic solutions for both the
zero and the finite bandwidths of d band are ob-
tained. In Sec. V, the role of the s-d interaction
in the metal-nonmetal transition is studied. In
Sec. VI, the main results are summarized.

II. BASIC THEORY

We consider a system consisting of s and d elec-
trons described by the Hamiltonian

H=), Efn'ia+2 Tija;roaio"'lz RggNy-g
Bo ijo i

+20 (Vgget®’ i ag,Gyq + Vf; ek B alyazs) »
kio
(1)
where T,,:lZ) (e,,;—p.)e’i‘ ®, -Ep
NE
(2)
Ek= € -,

€ and € are the energies of s- and d-band elec-
trons of wave vector k, and u is the Fermi energy.
a}u, a4z, are the creation and annihila_fion opera-
tors of the s electron of wave vector k and spin
0.al,, a;, are the same for the d electrons of
spin o at the ith lattice site specified by lattice
vector ﬁi. I is the Coulomb interaction between
electrons of opposite spin at the same lattice site.
ng, and ny, are, respectively, the number opera-
tors for the s electron of wave vector k and spin o,

and the d electron of spin o at the lattice site 7.
N is the total number of atoms in the system. V3,
is the hybrid matrix element defined by

Vio= [ d®r o5(F) Hy(F) b (D), 3)

where H( T) is the one-particle Hamiltonian for an
electron in the presence of the periodic lattice,
¢4(T) is an atomic d orbital, and y(¥) is a Bloch
wave function for the conduction band.

The double-time temperature-dependent re-
tarded (+) and advanced (-) Green’s functions in-
volving two operators A and B are defined by
((A(8); B(t )™

=% i0[x(t -2 ] ([AQ), Bt"],), )
where [A, B],=AB-nBA,
7 =+ (whichever is more convenient),
A(D)=e*ftA(0) et .

6(#) is the unit step function, unity for positive ¢
and zero for negative ¢, and (- - -) denotes an aver-
age over a grand canonical ensemble at temper-
ature 7. We assume 7Z=1. In practice, it is
convenient to work with the Fourier transform of
the Green’s function with respect to w:
(4;B)E =(1/2m) [ KA@; BN
Xeiw(t-t')d(t_tl). (5)

The Fourier transform satisfies the equation of

motion

«4; B)),=(1/2m) ([A, Bl,) + ([4, H]; B)), .
(6)

Here
A; B)) ,=A4;B)  if Imw>0
=((4; B) if Imw <0, )

and Im stands for the imaginary part. It can be
shown that

<B(t’)A(t))=ilim © ((A;B»w,“—«A;B»w_“
eor S (™ -n)

Xe-iw(t-t‘)dw, (8)

where B=1/k5T and kjp is the Boltzmann con-

stant.
In our analysis we work with Green’s functions

of the form
Go(w) =K aue; ale)y,, =-1) (9)

where 1 and v are either the conduction band f{
states or d states on particular lattice sites.

Thus we shall have here four different types of
Green’s functions in all. With the help of the com-



(1)

mutators
[ass, H]'_’Ej T840+ 14 oo 46
+20% V":d e ik ma;‘, " (10a)
(@30, Hl= Egage+ 2, Vige't May,, (10b)
(740, H]=20; Ty 0o ago - ajay,)
~Di Vige't Patoay,
+ Vi Rgp al (10c)

the equations of motion for the Green’s functions
can be written as

(@ —Eg) Giz+ (@)= Oge/e + 204 Vige™ MG (w)
(11a)
(0 =-E3) G ()=, Vi MGo(w),  (11b)

WG (w)=0,,/2m+2 ; T;;G5y(w)

+I<<ni - ua io; a}o))‘*’

+D1 Vg e RiGE, () (11c)

t
WGH (W) =2 Ty Gle(w) + IR i 4@ 155 QgY@
+23 Vere ® RiGE, () . (11d)

We are mainly interested in finding out the
Green’s functions Gf3(w) and Gz(w). The latter
is defined by

GYyw)=(1/N) T Gz (w) efE * Ri-Bp | (12)

These Green’s functions are needed to evaluate
the average number (n,,) of s electrons and (n,,)
of d electrons per atom for spin ¢. By taking the
limit t~¢’ in Eq. (8), we get (n,) and (n,,) as

(ney=(1/N T3 (at, az,)

=f_: p%w) (e +1)dw , (13)
<ndo>= (1/N)Zi<a:oaio>
=/ ps(w) (e +1) 1 dw , (14)

where

Pl (@)= & lim 2 [6fg(w +i€) - Gz (w = i©)], (15)
€ =0+

p§(w)=;;’lim 20 [Clz(w+i€) -Gaglw —i€)]  (16)

€ -0 ¢

are the desntiy of states per atom for s and d elec-
trons corresponding to spin 0. The total average
number of electrons per atom for spin ¢ is given

by
<n0>=<nso>+(ndn) . am
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III. HARTREE-FOCK THEORY

For the sake of comparison with the results of
the theory to be developed in Sec. IV for the cor-
relation effects, it would be useful to investigate
the problem in the Hartree-Fock approximation.
Actually, we shall not make an exhaustive study
of all possible Hartree-Fock solutions, but will
restrict ourselves to particularly simple solutions
which may represent paramagnetic or ferromag-
netic states but not more complicated spin ar-
rangements. The same restriction applies to the
scope of the correlation theory developed in Sec.
Iv.

In terms of the Green’s functions, the Hartree-
Fock approximation corresponds to the assump-
tion that

«ni-aaio; aza» w'Q(ni -o) <<aio; a:w »u ’ (18)

where index u is either j or k. We restrict our-
selves to the class of solutions for which (n;_,)
is independent of the lattice site ¢,

(nig)y=(mgy) foralli. (19)

When we incorporate the assumptions (18) and
(19) in Egs. (11c) and (11d), Egs. (11a)-(11d) as-
sume a closed form. Solutions of these equations
for G§z(w) and Ggz(w) give

[ -E, 3-1 I3

R 1 O

o, _ 1/217

G“(w)_w—Ed;-—I(nd_o)—NIV;dla(w—E;) :
(21)

By substituting the values of Gi3(w) and Gg3(w)
from Egs. (20) and (21) in Egqs. (15) and (16), we
obtain the density of states per atom of s and d
electrons corresponding to spin o:

p3w)=(1/N) 23 [ALz, (0 - wfe) +A %, B(w - ,)]
(22)

p3lw) = (1/N) 2 [A}2,6(w — wip) +Aj3,0(w - 03,)],
(23)
where
Who= 3B+ Egi+1(ng_,)

+p[(Egz—Ez+I1{ny.,))?+4N|Vi, Iz]x/z} ,

(24)
2
» Wi —Ey3—I{n,_4)
A's = kg *di d=-g
skao p Wi, - wio (25)
? -
Ad;a:p (wio—Ei)/(wio_ wia) . (26)

Here p is either (+) or (-).
The expressions (22) and (23) for the density of
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states per atom of s and d electrons corresponding
to spin o show that s and d bands are admixed into
two new bands with dispersion laws w =w{u and w
=wi,. The general form of these bands is shown
in Fig. 1. For an unperturbed d band, €;3 of zero
width, the new bands are always separated by an
energy gap. In this core the lower band always
lies below Ty— pu +I{n,.,) while the upper band al-
ways lies above this energy. Here T, is the mean
energy of the d band €;3. As the width of the band
€,% increases, the gap between the two bands de-
creases and finally they overlap each other. From
Egs. (25) and (26) it is clear that A3, +A 3, =A e
+A3,=1. This shows that for both the new bands
the density of states per atom for each spin is al-

>
€]
a
w
Z
w
] 1 ! 1
o] 04 0.8 1.0
k/kg

FIG. 1. Hybrid bands in the Hartree-Fock approxi-

mation for zero and finite d-band width. The parameters
are expressed in terms of T,. The parameters corre-
sponding to this figure are T,=1.0, I=2,0, »=0.8, o
=5.0, and (n;.4) =0.5. kg is the wave vector to the
zone boundary.

ways equal to 1. Therefore, if there are two
electrons per atom in the two bands together, then
for the zero width of the d bands, the system al-
ways behaves as an insulator. As we increase the
d-band width, an insulator-to-metal transition oc-
curs at some critical d-band width. In Sec. V, we
shall discuss this type of transition in detail for the

the case I=0.
A. Zero Bandwidth

In the limit of the zero bandwidth, €,3=T, for
all k. It is easy to show from Eq. (24) that
i, <Bg<wi,
and wia < (Ed'l;"'l( nd-a>)<w;1:o ’
so that Ai;, and AJ;, are positive. Then by re-
placing €,3 by T, in Egs. (22) and (23), we get

pdw)= (/Mg |w+p = To=I{ng. o)

x5 [(w - wia) (w - wiu)] ) (27)
pYw)=(1/N)2¢ |w+n - €z
X6 [(w — wig) (w — wig)] - (28)

For the sake of simplicity, we assume that the
hybrid matrix element V3, is independent of k.
Then these equations can be expressed in terms of
the density of states for the s band,

Nw)=1/N2Lbw-¢) , (29)

which is normalized to unity since k is limited to
the first Brillouin zone and the higher plane-wave
bands will be neglected. In terms of N(w), Egs.
(28) and (29) can be written as

psw)= N [fs(w+un)], (30)
o | W+ =fo(w+p)
pa(w) = @i To-Tng D) N[folw+u)],
(31)
where fy(w)=w- |v|%/(w-To-1{n,.,)), (32)
|v]|2= N| V342 . (33)

Finally,’ the average numbers of s and d electrons
per atom for spin o at absolute zero are given by

(ngo)=J " N[ fow)]dw (34)

(n40) /

These equations give the total average number of
electrons per atom for spin o at absolute zero.

(ng) = W(

and
_w-folw)

w - TO_I<754 U) N[fa(w)]dw- (35)

_ w—fow)
w - T0—1<nd o)

)N[f,(w)]dw . (36)
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With the Fermi level as a variable parameter,

Eq. (85) for (n4,) must be solved self-consistently.

Then Eq. (36) can be used to fix the Fermi level
from the total number of electrons per atom »
=(n,)+{n.) which is assumed given. The ferro-
magnetic solutions are possible only when {n,,)
#(ng_,). Solutions of the integrals (35) and (36)
depend on the form of the density of states N(w).
For simplicity, we consider the square density of
states defined by

Nw)=1/a if O<w<a
=0 otherwise, (37)

where « is the width of the s band. For the square
density of states we have

NIfdo)l=3 T o= wt) -0 -wt)] , (38)

pes
where
W= 3 {To+I{n4. o)
+p [(To+I{ng_,))?+4|v|?]"%},
wio=3{o+ To+I(n,. o)
+p [(T0+I(nd_,)—a)2+4|v|2]1/2} .

Now we substitute the values of f,(w) and N[ fy(w)]
from Egs. (32) and (38) in Egqs. (35) and (36) and
get

<n.,o>=f_:<|vlz§ [6(w = why) - 6(w - wEe)]/

alw-To=I{n,. )% dw, (39)
(oY= .- (/a1 +[|0]%/ (@ - To-I(ng. ,))?]}

X2 [lw-wd)-0w-ws)]ldo .  (40)
p=z

Integrals (39) and (40) are easy to evaluate. The
limits of integrations are controlled by the 6 func-
tions.

Now by taking u as a variable parameter we
solve Eq. (39) self-consistently for some particu-
lar choice of parameters I, @, and T, to obtain
(ngs) and (ny_,). Then Eq. (40) is used to fix the
value of u for the integral values (n=1, 2, 3) of the
total number of electrons in both the bands togeth-
er. We do not consider n =4 because in this case
both the bands are completely filled and hence
there is no possibility of ferromagnetism. In Fig.
2 we have plotted @ = u/T, versus Z = Ty/a for
three values 0.1, 0.2, and 1.0 of S= |v| /T, for a
particular value of P=1/T;=2.0. The range of
existence of the ferromagnetic solutions between
the values of Z from 0 to 1 is shown in Table I.
The value of @ corresponding to a particular value

0.8
2.4+
2.0
1.6 @ -
ot
o
Q 2 X
N ’,)‘
)
1.2~ \Qo .
L) .0’4
D ¥
B2
*
0.8
N}
2,
0. %
'
2
0.4\ v
0.0 | 1 1 |
0.0 04 0.8 1.0

Z

FIG. 2. Variation of Fermi level with Z in the Har-
tree-Fock approximations for zero width of d band and
square density of states for s band. Curves are plotted
for P=2,0.

of Z can be read from Fig. 2. To show explicitly
the magnetic solutions, we have plotted (z,,) and
(ng.) in Fig. 3. Results of our calculations show
that the range of the ferromagnetic solutions de-
creases as the hybridization of s and d bands in-
creases, i.e., the hybridization of s and d bands
decreases the tendency towards ferromagnetism.
To have an idea about the variation of the ferro-
magnetic solutions with respect to the strength of
interatomic interaction, we have plotted @ versus
Z in Fig. 4 for three different values of P, 0.5,
1.0, and 2.0 and for a particular value of S=0.1.
The range of ferromagnetic solutions is shown in
Table II. It is found that the increase of intra-
atomic interaction is favorable to ferromagnetism.
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TABLE I. Range of Z for ferromagnetic solutions for
zero width of the 4 band.

P S n Z
2.0 0.1 1.0 0,01-0.45
2.0 0.05-0.95
3.0 0.4 -1.0
0.3 1.0 0.01-0.35
2.0 0.05-0, 65
3.0 0.2 -1.0
1.0 1.0 0.01-0.2
2.0 0,01-0.1
3.0 0.4 -1.0

B. Finite Bandwidth

We shall assume that the form of the d band is
the same as that of the s band. We represent it by
the expression

€ 3=Aeg+Ty- $Aa (41)

where A is some positive constant less than unity,
i.e., it is assumed that the width of d band is
smaller than that of the s band. A =0 corresponds
to the zero bandwidth. This choice is made be-
cause the density of states pJ(w) and pJ(w) given by
Eqgs. (22) and (23) can then be expressed in terms
of the density of states of the s band, N(w). Sub-
stituting the expression (41) for €,3 in Egs. (22)
and (23) and using the approximation (33), we get

1 w+u—Ae;—T0+—§Aa—I(nd_ 2
0 - g
ps(w)-NZ;) A

x6{[ghw+p)-ez][gelw+n)-€i ]},
(42)

plw) = (1/N) Zki [(w+p-e€p)/A]

x6{[ghw+n) - €z] [golw+ 1) -]},
(43)

00T oa o8 10 00 04 08 10
{Ng-o) {Nd-c)

FIG. 3. Self-consistent magnetic solutions in the
Hartree-Fock approximations for zero d-band width and
the square density of states for the s band. The param-
eters used are (a) P=2.0, $=0.3, »=2.0, Z=0.45, and

@=1.56;(b) P=2.0, §=0.3, n=2.0, Z2=0,7, and @=1,12,

(1Y)

0.0 04 08 10

FIG. 4. Variation of the Fermi level with Z in the
Hartree-Fock approximation for zero d-band width and
the square density of states for s band. Curves are
plotted for S=0.1.

where
&hw)=(1/24)(A+1)w-Ty+1Aa —I{ny. 4>
+p{[(1-A)w-To+ A0 ~I(n,_,)]?
+4A[v|2}17?) | (44)

Equations (42) and (43) can be written in terms of
the density of states N(w):

TABLE II. Range of Z for ferromagnetic solutions
for zero width of the d band.

3
N

S P

S

.01-0, 35
.1 -0.85
4 -1,0
.01-0, 45
.05~0. 95
.4 -1,0
.01-0, 45
. 05-0, 95
4 -1.0

0.1 0.5

2.0

WD W N D

CcCoocoococococoo

ocooooocoo
S
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[

5 w+p=To+3Aa —I{n,_ ) -Agiw+u)
S

guw+u)-gilw+u)

(cv)=‘%1

XN [ ghw +u)], (45)

wtp-ghlw+p) [

(w)-_ 2 gHw+p) —ghlw+p)

AP*

ghw+u)].
(46)

For the square density of states for the unper-
turbed s band, N[gh(w +u)]is given by

N[ghw+u)]== [lw+p-wid) - 6(w+u-wsl)],

(47)

QI
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where
1 1
wie=3{To- 34 +I{n,_,)
+p [(To-3Aa +I{ng. o)) +4|v|?]"/2], (48)

and
wh,=2((3A+1) @+ To+I{ng_q)
H{{GA-1)a+To+I(ng )12 +4 0|2}/ .
(49)

By substituting the values of g%(w +u) and N[ g%
X(w +p)] from Eqs. (44) and (47) in Egs. (45) and
(46) we get at absolute zero

N (1-A)o —To+ 2Aa - I{ny. o) )
<"sa>‘.[; 20 pos (l_p{[(l A)w-—To-g LAy — I(nd dg)] +4A|v|2}1/2) 9((4) wl )"e(w wzf)]dw, (50)

(1-A)w-Ty+12Aa -I{n,. .,)

(Ngo) = 55— 2Aoz ’th (+P{ (1-

As in the case of the zero bandwidth, by taking u
as a variable parameter (n,,) and (n,_,) are ob-
tained self-consistently from Eq. (51). Then Egs.
(17) and (50) are used to fix the Fermi level for an
integral number of electrons. In Fig. 5, @-versus-
Z curves are shown for three values 0.1, 0.2, and
0.4 of A. Values of P and S are taken equal to
2.0 and 0.1, respectively. Table III indicates that
the range of the ferromagnetic solutions diminishes
as the d-band width increases. This shows that the
localization of the d electrons favors the existence
of ferromagnetism.

IV. CORRELATION THEORY

In this section we discuss the effect of correla-
tion by considering the equation of motion of the
higher-order Green’s function ((7;_ ;@155 @ oM
where u is either j or k’. The equation of motion
for this Green’s function is given by

w <<ni- 0@ios a;a»w
o)
=<7L é," +ZIT“<<ni-oalo; arw»w

+I((n{- o aio; alu))w

. L
+23 Vi, e R

4 «ni-qaia; a;o»w

A)w - To+3Aa~I{n,_,)]*+4A v

T
'((dﬁ_ 0@i.0%i0s

2}1,2> [6(w - w3?) - (@ - w3?) ]do .
(51)

+Zl Til«(a'ir-aa aza»w

T .
-a_al-ua'l-o)alw

" Ve ik R T
_Zk dee i(<ai-oai-aaic; al'l.a»w

+LiViee M (ar. al. 0405 alMe . (52)
We assume that the correlations between electrons
at different lattice sites and the correlation be-
tween s and d electrons are very small as compared
to the correlation between electrons at the same
lattice site. In this approximation, we can decouple
the Green’s functions on the right-hand side of Eq.
(52) by replacing the operators at the same lattice
site with their average values as follows:

«ni-aata; a;a»w =<nd-o> <<alu; az.o»w if i+l ’
@l
= - (a‘;_oa,,) «al-o; azo»w ifi#l,

azﬂ »w

1
«ai -0 .6%i05

Kal.oaigaio;

2(a;.oa50) Kaf.o; alo)) i i#1,
aloeMe =Ny o) {y;
@hio Mo

a“r"0>>w )

<<n£- 0@ros
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oLt

= <ai-a alu) <<a;- o7 auc»w ’

«ai-oag-a Qios altta»w (53)
= (a!- 4 aiu) «ai- os aza»w

We also assume that

<a!-uaia>=<ai-uaio>=0 . (54)
Under these approximations Eq. (52) becomes

(w + M- TO-I) «ni- o ®igs azl-o»w

¢}
=<nd-a># +{Nge ) 2z T, Giu(w)
1#1

(g ) D3 Vig e FRiGH, ) . (55)

When we substitute the values of the Green’s func-
tions ((n; _4; alo), from Eq. (55) in Egs. (11c)
and (11d), Egs. (11) acquire a closed form. By
solving these equations for G3(w) and GJz(w) we
get

9. /(w+u—-T)(w+u-T—I)_ .
kk(w)_\(w+u—Tf—[)(l—(n:_,)) (Edk TO))

0.0 L L L 1
0.0 04 0.8 10

FIG. 5. Variation of the Fermi level with Z in the
Hartree-Fock approximation for a finite d-band width and
the square density of states for s band. Curves are
plotted for P =2,0 and S= 0, 1.

‘we have only two bands to consider.
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TABLE III. Range of Z for ferromagnetic solutions
for the finite width of the d band.

P s A n z
2.0 0.1 0.1 1.0 0.05-0. 4
2.0 0.11-1.0
3.0 0.26-1,0
0.2 1.0 0.1 0.4
2.0 0.16-1.0
3.0 0.26-1.0
0.4 1.0 0.15-0, 4
2.0 0.26-1,0
3.0 0.31-1.0
x(w+p-€p)? Gilw) , (56)
G°°(w)=—1-<(w+l‘l’_T°)(w + U =To=1)
ak 21 \w +p = To=I(1 = {n4 ,))
_(€ ’-T)— Mhﬁ)'l (57)
ak VT - P .

These Green’s functions have the same singulari-
ties which are simple poles. There are three
quasiparticle bands, which arise from the s band
crossing and hybridizing with the two pseudo-d-
bands, given by the roots of the equation

(@+p=To) (w+p=To=1) = (3 - To)
X[w+p=To=I(1={n,.,)]=0. (58)

In general, the roots of the cubic equation, which
determines the poles of the Green’s functions, are
not all real. However, we can avoid this situation
by taking the limit I—-e<. In this limit the upper
band given by Eq. (58) is pushed out to infinity and
When I -
the Green’s functions Gfz(w) and GZz(w) are given
by

)= (A= T (e p- 1)

X(w+p-e€p)! Gozw) , (59)

1
Gailw)=5-

+u-T NIVz, 2 T
X — (43— Ty) —[—F4— . (60
i RG] oo
By substituting the values of Gi3(w) and Gy from
Egs. (59) and (60) in Eqs. (15) and (16), we obtain

1 . - -
pi() =5 2.2 [Blz, 0w - 0F) + Bigod(w = 63)],  (61)

paw) == 7 [Byg,0(w - Dgo) + Baze 0w - 3271,  (62)
k

2=
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where
D= — 3 (g +To+ (€5 — To) (1= (ng_,))
+p{[To+ (€43 - To) (1 = (n,. ,)) - €z]2
HAN| Vg2 (1= (ng DD, (63)

To—(€43=To) (1={ny.,))
B?. = (‘*’h*“ 0~ &g~ 1o 2-02))  (g4)
sko=P Wi~ O,

Bito=p(1~(ns.4)) JL:;——i (65)
Equations (61) and (62) show that both s and d
bands are split into two bands with despersion laws

w=®}, and w=wi,. The general form of these
bands comes out to be similar to that in the Har-
tree-Fock approximation. Here again for zero
width of the d band, the two bands are always sep-
arated by an energy gap. But in this case the two
bands are separated by an asymptote at Tj— pu in-
stead of To— p +T(n,;.,) in the Hartree-Fock ap-
proximation. Again the band gap decreases as the
d-band width increases and finally they overlap
each other. In this case, in general, the number
of states per atom for each spin in the lower band
is not equal to 1. Therefore, a system having
two electrons per atom will behave as a metal in-
stead of an insulator. However, for some par-
ticular choice of parameters I, v, Ty, and «a it
may behave as an insulator. The number of states
per atom for each spin in both the bands together
is equal to B3 + B3+ Bite+Bite=2—-(n4. ) in-
stead of 2 as in the Hartree-Fock approximation.
This is due to the fact that the upper band given by
Eq. (58) has been pushed out to infinity.

A. Zero Bandwidth

In the zero-bandwidth case, Eqs. (61) and (62)
take the form

pAw)=N[fiw+un)], (66)
piw) oo )
=(1‘(7la-a)) L’JL__LLO:’i_ N[ff,(w+u.)],
w+u =T
(67)
where fé(w)= _M:M . (68)

w=T,

Equations (66) and (67) give the average number of
s and d electrons per atom for spin ¢ as

(neoy= [ N[fiw))dw , (69)

nag)= (1~ (mg P 2y N3
(70)

Above equations are used to obtain the ferromag-

netic solution for square density of states. In

Fig. 6, Q-versus-Z curves are plotted for three
different values of S, 0.1, 0.3, 1.0. Here and in
Sec. IVB we do not consider the case »n=3 because
in this case both s and d bands are completely
filled. It is found that ferromagnetic solutions are
possible only for n=1.0, S=1.0, and Z from 0. 01
to 0.12. This shows that the square density of
states is less favorable to ferromagnetism than the
parabolic density of states studied by Smith who
found that for n=1, ferromagnetic solutions are
possible for S=1.0 and also for S=0.3. Thus the
ferromagnetic solutions are influenced by the shape
of the density of states. In Fig. 7 the self-consis-
tent magnetic solutions are shown.

B. Finite Bandwidth

To consider the effect of the width of the d band
on the ferromagnetic solutions, we take the d band
given by Eq. (41). The densities of states p3(w)
and pJ(w) are given by

p‘é(w)=Nl 2w+ = To- Al = G100 )Mez - £ )|
k

X8[(w = B3 )w - @3,)] (71)

2.4

2.0

1.6

Q
1.2
0.8
0.4
0.0 1 L 1 1
00 0.4 2 08 1.0:

FIG. 6. Variation of the Fermi levelwith Z in the cor-~
relation theory for the zero d-band width and the square
density of states for the s band.
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1.0 T T

Ngo> 0.l Ndo> 0.4
0‘0\,..7_1. L L 0.0 L L
0.0 04 0.8 1.0 0.0 04 08 10
<Ng-o> {Ng-o->
FIG. 7. Self-consistent magnetic solutions in the cor-

relation theory for zero d-band width and the square den-
sity of states for the s band. The parameters used are
(a) =1, S=1,0, Z=0.1, and @ =0.91; (b) =1, $=1.0,
Z=0.2, and @=0,68,

pZ(w)=% ZE (1= (ngo )| 0+ - g

x §[(w -, )w-a3,)] . (72)

If we assume that A(1 - (z,)) #0, these equations
can be rewritten as

piw)=[A(1 =y )]

3 | @rp=Tor A1 = {ngo))a = 285w + 1))
ot gilw+p)-gilw+u)

xNgw+w)] (73)

wtp-gllw+p)

g+ ) -gylw+ ) N[ghlw+ )],

(74)

pz<w)=AiP=Z*

where
87(@)=[2A(1 = (g N Hw = To+ (1 = (4.0))
X(Aw+ 3a)+p[(w-Ty— Alw - 3a)
X(1 = Qo)) + 4| 0|2(1 = Ggoo) P12} . (75)

From (73) and (74) we obtain (1, ) and (,,) at
absolute zero:

. Z

1
<nsa>:A(1 _<nd—a>) p=%

o| 0= To+ 340 = (g0 )@ - 288 ()] '
g:(@) - g;()
XN g7 (w)]dw , (76)

ae) oL f _w-gllw) l )] do .
< da) A n p§ g;(w)_g;(w) N[ga( )]d (77)
Equations (76) and (77) are analyzed to get the

magnetic solutions. For the zero width of the d
band the case of parabolic density of states was
analyzed by Smith and square density of states by
us in Sec. III. We consider here both the square

and the parabolic density of states to get an idea
of the change of the magnetic solutions with the d-
band width. In Figs. 8 and 9 the plots of @ versus
Z are given for the square and parabolic density of
states, respectively. We have taken A=0.1, 0.2,
and 0.4 and S=1.0. A search for magnetic solu-
tions shows that the ferromagnetic solutions are
not possible for any of these curves,

V. METAL-NONMETAL TRANSITION

In this section we investigate the role of the s-d
interaction in metal-nonmetal transition. We re-
strict our treatment to the case I=0. In this case
Egs. (11) can be solved exactly to give the s and d
electron Green’s functions.

. ~ (w - E;)/27

G (w)= = E;)(wk- Eg)-NIVgl? re)
oy (w - Eg)/27

) RN

These Green’s functions are independent of the
spin index 0. By substituting the values of G¥(w)
and Gg;(w) from (78) and (79) in Eqs. (15) and (16),

FIG. 8. Variation of the Fermi level with Z in the
correlation theory for a finite d-band widthandthe square
density of states for the s band. Curves are plotted for
§$=1,0.
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FIG. 9. Variation of the Fermi level with Z in the
correlation theory for a finite d-band width and the para-
bolic density of states for the s band. Curves are plot-
ted for S = 1.0.

we obtain

polw) = 2 4w wp+Apolw-wd]  (80)

and

pd(w)=%z[Azﬁé(w—wihA;;é(w_wi)] , (81)

&
where the hybrid bands wi are given by
wi=3{Es+ Eg2[(Eg- Bl +aN| v *]V2}  (82)
and  Af=pwi- Eg)/ (0f-wi) , (83)
Afz=plwt- Ep)/ (wi-w)) . (84)

From (83) and (84) we have Az +Az=1. This
shows that the number of states in the lower band
is equal to 1 for each spin. If we choose a sys-
tem with two electrons per atom in s and d band
together, the system will behave as a nonmetal if
there is a gap between the lower and upper hybrid
bands; otherwise it will behave as a metal. A
metal-nonmetal transition occurs when the band
gap becomes zero. Under the assumption (41) for
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€4, we obtain from (82) the following condition
for zero band gap:

(A+1)°S*- A[2A(A+2)B2+B-1]=0 , (85)

where B=a/Ty=1/Z. Equation (85) contains three
parameters. By fixing a particular parameter, one
can plot a transition curve for the remaining two
parameters, In Figs. 10-12 we have plotted S-B,
S-A, and B-A curves for different values of A4,

B, and S, respectively. In Figs., 10 and 11, the
regions above and below a transition curve cor-
respond to nonmetallic and metallic behaviors,
respectively, while in Fig. 12 the situation is just
the reverse. These curves show that for a par-
ticular choice of values of S and B we get a critical
value of A at which the transition from the non-
metallic to the metallic state occurs., When we
apply pressure on a nonmetallic substance, the
lattice parameter decreases, and consequently A
increases; therefore, a transition from nonmetal-
lic to metallic state should occur at a critical
pressure when A crosses the critical value deter-
mined by the choice of S and B, But it should be
remembered that S increases as we increase the
pressure, because the overlapping of s and d wave
functions increases owing to compression of the

241
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FIG. 10. S-B curves for different values of A.
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FIG. 11. S-Acurves for different values of B.

lattice. Figure 11 clearly shows that this increase
in S does not favor the nonmetal-metal transition.
Thus, the s-d interaction opposes the pressure
induced nonmetal-metal transition predicted by
Mott. 1 This kind of approach may explain the
difficulty of observing metal-nonmetal transition
under pressure. '*

VI. CONCLUSIONS

The results of the correlation theory for ferro-
magnetic solutions are in marked disagreement
with those of the Hartree-Fock theory. In the
Hartree-Fock theory, as the strength of s-d hy-
bridization increases, the tendency towards fer-
romagnetism decreases, while the reverse is true
for the correlation theory. In the Hartree-Fock
theory the ferromagnetic solutions are possible
for n=1, 2, 3, while in the correlation theory,
ferromagnetic solutions are possible only for n=1.
In both the theories, the tendency towards ferro-
magnetism decreases as the bandwidth increases.
Our conclusion that ferromagnetism is possible for
square density of states'* disagrees with Hubbard’s
theory which predicts that for this type of density

R. KISHORE AND S. K. JOSHI
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FIG. 12. B-A curves for different values of S.

of states ferromagnetism is not possible. Further-
more, in correlation theory tendency towards
ferromagnetism increases as the hybridization be-
tween the s and d bands increases. This shows

the importance of s-d hybridization in the correla-
tion theory of ferromagnetism. In the Hartree-
Fock theory the strength of the intraatomic inter-
action favors ferromagnetism. It is also shown
that the s-d interaction stiffens the conditions for
the pressure induced metal-nonmetal transitions.
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