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Overhauser' dynamic-nuclear-orientation experi-
ment can best be performed when the stati. c fieM
and the time-varying field are applied parallel and
perpendicular to the crystal axis, respectively.
The best scheme for the Jeffries -Abragam-Proc-
tor' effect with noncompeting pumps'3 is Il orien-
tation with time-varying field also applied ll to
crystal axis. The Jeffries-Abragam-Proctor ef-
fect with competing pumps" can best be obtained
when the static and the time-varying fields are

applied at angles of 45' and 90, respectively,
with $, =0 or m.
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The problem of electron correlation in the ferromagnetism of transition metals is investi-
gated by taking an approximate model Hamiltonian which takes into account the hybridization
of the s and d bands. The Green's-function technique is used to obtain the self-consistent
ferromagnetic solutions within the Hartree-Fock approximation. An approximate solution of
the correlation problem is obtained. The ferromagnetic solutions for which the correlation
effects are taken into account are compared with those in the Hartree-Foek approximation.
The model is used to investigate the role of the s-d interaction in metal-nonmetal transitions.
It is also possible to understand the difficulty of observing pressure-induced nonmetal-metal
transition.

I. INTRODUCTION

In recent years, much attention has been de-
voted to the theory of electron correlations in re-
lation to the magnetic properties of transition me-
tals. The electron correlations in the d band of
transition metals have been studied by Kanamori, '
Gutzrviller, 3 and Hubbard. These authors based
their theories on the assumption that the only in-
teraction responsible for the magnetic properties
is the intra-atomic interaction between opposite
spin-d electrons. Recently, Richmond and Se-
well, Pratt and Caron, and Kishore and Joshi
took into account the interatomic interaction also.

All these investigations completely neglect the
presence of the 8 band of conduction electrons.

Anderson's theorys of dilute alloys of the transi-
tion metals is able to explain the occuxrence of the
localized magnetic moment on transition-metal
impurities dissolved in nonmagnetic metals. In
Anderson's model, the band states of the host
metal are treated as independent quasiparticles.
The impurity is introduced as an extra-localized
orbital which is mixed with the band states by a
hybrid matrix element. All two-body Coulomb in-
teractions are neglected except the Coulomb inter-
action between the opposite-spin electrons on the
localized orbital. As an extension of this model,
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a transition metal can be imagined as a system
having a localized d orbital at each lattice site.
Recently, such a model has been analyzed by
Smith. However, this is an approximate picture
of a transition metal, in the sense that there would
be no direct interaction between the d electrons on
different sites —only an indirect coupling via the
conduction electrons. It is well known that a con-
siderable fraction of the width of the sd band in
transition metals arises from the overlap of the
Sd wave functions on neighboring lattice sites.

In this paper, we assume that the d electrons
form a band and they interact among themselves
only via the Coulomb interaction between opposite-
spin electrons at the same lattice site. The ef-
fect of the s band is taken into account by adopting
the one-particle interaction between s and d elec-
trons given by Anderson. However, for the sake
of simplicity we neglect the interatomic Coulomb
interaction between d electrons. In Sec. II, we
write the Hamiltonian for such a model in the
second quantized form. In our analysis, we use the
Green's-function method discussed by Zubarev. '
In Sec. III, the self-consistent ferromagnetic so-
lutions are obtained within the Hartree-Fock ap-
proximation for the zero and finite widths of the
d band. In Sec. IV, an approximate theory for
the electron correlation is developed. The self-
consistent ferromagnetic solutions for both the
zero and the finite bandwidths of d band are ob-
tained. In Sec. V, the role of the s-d interaction
in the metal-nonmetal transition is studied. In
Sec. VI, the main results are summarized.

II. BASIC THEORY

We consider a system consisting of s and d elec-
trons described by the Hamiltonian

H=Q Efn„,+Q Tiia«ai, +I+ n«n,
Rg &ga

g ~ %$ fear. ~ Ãf+Q (VI~e a&, ai, + V~~ e al, al"„),
(1)

where T, i= Q(el' —tl) e'"'—1

and the d electron of spin o at the lattice site i.
N is the total number of atoms in the system. Vp~

is the hybrid matrix element defined by

Vp, = f d'l lt,*(r)H,(r) ltl, (r), (3)

where Ho(r) is the one-particle Hamiltonian for an
electron in the presence of the periodic lattice,
Q~(r) is an atomic d orbital, and pf(r) is a Bloch
wave function for the conduction band.

The double-time temperature-dependent re-
tarded (+) and advanced (-) Green's functions in-
volving two operators 4 and 8 are defined by

«A(t); B(t '))&-" '

=+ &[ (t-t')] &[A(t), B(t')],),
where [A, B]„=AB-i) BA,

l) =+ (whichever is more convenient),

A(t) el iit A(0) e-l iit

(4)

Here

((A; B))„=((A,;B))'„' if Im&o & 0

= &(A; B))'„' if Imar & 0,

and Im stands for the imaginary part. It can be
shown that

(B(t ~)A(t)) =i lim ((A; B)),l, —&(A; B))„
Q+ (e'" n)-

8(t) is the unit step function, unity for positive t
and zero for negative t, and ( ) denotes an aver-
age over a grand canonical ensemble at temper-
ature T. We assume 8=1. In practice, it is
convenient to work with the Fourier transform of
the Green's function with respect to (d:

«A;B»„"'=(I/2~) f „"&&A(t);B(t')&&"'

&& el s& (l - t '
& d(t (~)

The Fourier transform satisfies the equation of
motion

((A; B))„=(1/2w) ([A, B]„)+(([A,H]; B))„.

E» 6» pk
xe '"" (8)

cp and cg are the energies of s- and d-band elec-
trons of wave vector k, and p, is the Fermi energy.
a~„cg,are the creation and annihilation opera-
tors of the s electron of wave vector k and spin
o . & &~„a&,are the same for the d electrons of
spin cr at the ith lattice site specified by lattice
vector R&. I is the Coulomb interaction between
electrons of opposite spin at the same lattice site.
n p, and n&, are, respectively, the number opera-
tors for the s electron of wave vector k and spin cr,

where P= 1/ke T and ke is the Boltzmann con-
stant.

In our analysis we work with Green's functions
of the form

C'„„((o)= « a„„a'„,»„,(g = - I) (9)

where p, and v are either the conduction band k
states or d states on particular lattice sites.
Thus we shall have here four different types of
Green's functions in all. With the help of the com-
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[a««« ~ +] ~«T«ia«e+ In
« -e a«e

~e
+Q- V-* e-'"' "«a-

kd key

[a i««, II]= E««a ««««+ Q «Vf q e a«~,
i]k. %g

[n ««« ~ II]=+i T««(a«e a«e —a«ca«e)

$k~ 5
~tf. ~P7d~ +@~he

jko I+~/ Vf g8 ~ QgeQ)fy

(10a)

(1ob)

&G««(«0) = 5«i/2++~ «T««G««{~)

+I ((n, ,a„;a,',&}(o

V e-A %«Gf (~)
ty

(o G«„,(«d) =Q i T«i Gif. («d) +I((n «. ,a «„a«.,}}&o

(11c}

+Q"„V«,~e
'

«G«, -„e(«««) .

Ne are mainly interested in finding out the
Green's functions Gf1(&o) and G~„(«0). The latter
is defined by

G;,(«d) = {1/}v)p1 Gf.„(«d)e'" ' '"' "i' . (1

These Green's functions are needed to evaluate
the average number (n„)of s electrons and &n~, }
of d electrons per atom for spin o. By taking the
limit f- I ' in Eq. (8), we get (n„)and (n„)as

&n..&
= {1/Ii)Z; &a;.a;.)
= f p,'(«d) (e'"+1) 'd(u

&,.&
= (1/II) Z, &",. ..&

= f p,'((o) (es" +1) 'd«d,

the equations of motion for the Green's functions
can be vrritten as

(«d -Ek) GH (+)-58'in'+~«+hie 'G«t (4) ~

(11a)

(«d -E«,) G«,«((o) = Q «V«-„e""«G;,((o),

(n„)= (n„)for all i . (19)

When we incorporate the assumptions (18) and
(19}in Eqs. (1lc) and (11d), Eqs. (11a)-(11d)as-
sume a closed form. Bolutions of these equations
for Gf „(&o)and G,'„{«d)give

(2o)

1/2v
~ -Z, -„-i&n„.}-N i V-„„I'(~—Z-„}

By substituting the values of G-„1(«d)and G~1(«0)
from Eqs. (20) and (21) in Eqs. (15) and (16), we
obtain the density of states per atom of 8 and d
electrons corresponding to spin o'.

p,'((o) = (1/iv') Z.„[il,'.„,5((o —«d.„',) +A~, 5((o —~'„)],
(22)

p„'(«0)= (1/N) Z„[A'„„,5((o —«d «„)+A, «„5{(o—ro„,)],
(22)

For the sake of comparison vrith the results of
the theory to be developed in Bec. IV for the cor-
relation effects, it mould be useful to investigate
the problem in the Hartree-Fock approximation.
Actually, me shall not make an exhaustive study
of all possible Hartree-Fock solutions, but miO
restrict ourselves to particularly simple solutions
which may represent paramagnetic or ferromag-
netic states but not more complicated spin ar-
rangements. The same restriction applies to the
scope of the correlation theory developed in Sec.
IV.

In terms of the Green's functions, the Hartree-
Fock approximation corresponds to the assump-
tion that

'..&) =& .&« .' ' }}., {18)

where index p, is either j or k. %e restrict our-
selves to the class of solutions for which (n, ,}
is independent of the lattice site i,

p,'((u) = —lim. Z [Gfy{~+ie) —Gfg(«0 —ie)], (15)N,

p„'(ar)= —lim Z [G«'„(«d+ie)-G~"„(«d—ie)] (16)
0+ et

are the desntiy of states per atom for s and d elec-
trons corresponding to spin o. The total average
number of electrons per atom for spi.n o is given
by

(n, )=(n„)+(n„).

(df~ —
g @7«+Zg«+I &ng ~)

+p[(z„„z„+i&-n-, .-})'+ex~v;, ~']"'),
(24)

~«e Eat —I&n a e}-
Re +Re

(25)

&~a.=P («Og. -E1)/(~ .—~;.) . (26)

Here P is either (+) or (-).
Th«xPresstons (22) and (23) for the density of
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states per atom of s and d electrons corresponding
to spin o show that s and d bands are admixed into
two new bands with dispersion laws ~ = co"„,and ro

=cog, . The general form of these bands is shown
in Fig. 1. For an unperturbed d band, e~"k of zero
width, the new bands are always separated by an
energy gap. In this core the lower band always
lies below To —g +I(n~, ) while the upper band al-
ways lies above this energy. Here To is the mean
energy of the d band &~.k. As the width of the band
E„.k increases, the gap between the two bands de-
creases and finally they overlap each other. From
Eqs. (25) and (26) it is clear that A;„,+A~~, =A,'g,
+A~ "k, = 1. This shows that for both the new bands
the density of states per atom for each spin is al-

ways equal to 1. Therefore, if there are two
electrons per atom in the two bands together, then
for the zero width of the d bands, the system al-
ways behaves as an insulator. As we increase the
d-band width, an insulator-to-metal transition oc-
curs at some critical d-band width. In Sec. V, we
shall discuss this type of transition in detail for the
the case I= 0.

A. Zero Bandwidth

In the limit of the zero bandwidth, &~-k = To for
all k. It is easy to show from Eq. (24) that

+
ke +k +key

and &o)„&(E~),+I (n„,) ) «u)„,
so that A,k, and A.„-k,are positive. Then by re-P

placing e~.„byTo in Eqs. (22) and (23), we get

5.
(27)

4.
(28)

N((u) = (1/N) Z'„8((o—e;),
which is normalized to unity since k is limited to
the first Brillouin zone and the higher plane-wave
bands will be neglected. In terms of N(&o), Eqs.
(28) and (29) can be written as

(28)

For the sake of simplicity, we assume that the
hybrid matrix element Vg„is independent of k.
Then these equations can be expressed in terms of
the density of states for the s band,

p,'((u) = N [f, ((u+ p) ], (3O)

1.0

0.0

p,'((u) = '
)

N [f,((o+ p. )],(0+ p f~((d +@,)-
&@+l), —To-I n,

(31)

(32)

(33)

where f,(&u) = &u —
I
v

I /(&u —To I(n~, )), —

Finally, ' the average numbers of s and d electrons
per atom for spin o at absolute zero are given by

(n„)=J N[f,((u)]d(u (34)

I

0.4
k/k ~

I

0.8 1.0
and

N [f.(~)]&~ (35)
0 )f -))

FIG. 1. Hybrid bands in the Hartree-Fock approxi-
mation for zero and finite d-band width. The parameters
are expressed in terms of Tp, The parameters corre-
sponding to this figure are Tp —-1.0, I=2.0, v=0. 8, a
=5. 0, and (~,,) = 0.5. kz is the wave vector to the
zone boundary.

These equations give the total average number of
electrons per atom for spin g at absolute zero.

) '
)

)) [J'.((u)) d~ . (M)
f.(~)-

0 +8-))
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N [f ((u)]= — P 8 (u —(u'8 (u —(u'„)—e ((u —&u~—&u„, (38)

where

(of, = —,
' (To+I (n 4~ 0

+p [(To+I(n,

copy= g 0+T +I
)

o no .)
+P [(To+I(n„&—n o

substitute th oe values of
. ', 32) and (38) in

1.2

0.8

0,4

o'(~ —T —Io-f(n, ,&)') d(u (39)
0.0

0.0 Q.4 0.8 1.0

(n, ) = „(i/~){i+[I~ I'+ e '/((u —T-+ ~ ' —,-f(n, .&)'])
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TABI F I. Range of 8 for ferromagnetic solutions for
zero width of the d band.

0.1

0, 3

1.0

l. 0
2. 0
3.0
1, 0
2. 0
3, 0
1.0
2. 0
3.0

0.01-0.45
0. 05-0.95
0.4 -1.0
0, 01-0.35
0.05-0.65
0.2 -1.0
0.01-0.2
0.01-0.1
0.4 -1.0

B. Finite Bandwidth

%'e shall assume that the form of the d band is
the same as that of the 8 band. Ne represent it by
the expression

0.8

where A is some positive constant less than unity,
i.e. , it is assumed that the width of d band is
smaller than that of the s band. A =0 corresponds
to the zero bandwidth. This choice is made be-
cause the density of states p,'(&o) and p„'(&u) given by
Eqs. (22) and (23) can then be expressed in terms
of the density of states of the s band, N(&o). Sub-
stituting the expression (41) for «~"„in Eqs. (22)
and (23) and using the approximation (33), we get

1 ~ co + g —A «g —To+ gAn —I{my ~)p:(~)=~ ~
A

0.0
0.0 0.8 1.0

FIG. 4. Variation of the Fermi level with Z in the
Hartree-Fock approximation for zero d-band width and
the square density of states for s band. Curves are
plotted for 8=0.1,

x n ( [g',(&o + p, ) —«"„][g,((o + g) - «; ]),

p'(~) = (1/&) & [(~+~ —«1)/A 1

x & & [g'.(~+ ~) —«'] [g.(~+» —«'l]
(43)

g'.( )=(1/2A)((A+1)

+P f[(1-A)~ —T, +-,'An -1(s, ,)]'

Equations (42) and (43) can be written in terms of
the density of states N(&o):

1.0

0.8

0,4

(fida)

TABLE II. Range of Z for ferromagnetic solutions
for zero width of the d band.

0.0
0.0 0,4

&i'-r)
0.8 1.0

0.0
0,0 0.8 1.0

FIG. 3. Self-consistent magnetic solutions in the
Hartree-Fock approximations for zero d-band width and
the square density of states for the 8 band. The param-
eters used are {a) P=2. 0, 8=0.3, g=2. 0, Z=O. 45, and
@=1.56; (b) P=2. 0, 8=0.3, g =2. 0, Z=0. 7, and Q=l, 12.

0, 1 0. 5

1.0

1.0
2. 0
3.0
1, 0
2. 0
3.0
l. 0
2. 0
3. 0

0.01-0.35
0. 1 -0, 85
0.4 -1.0
0. 01-0,45
0.05-0. 95
0.4 -l. 0
0.01-0.45
0.05-0.95
0.4 —l. 0
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,
( )

1 p (o+ p —To+ 2An —I(s~,) —Ag, ((o+ g}
g'.(&+ ~}-g .(~+ u)

where

&f.=k(TO —2An+I&sg .)
xN [g~((o+ p, }],

&+ 0 —g~(&+ P)

(45)

and

+p [(To ——,'An+I(n~, ))'+4~v ~')'~']; (4S)

(45}

For the square density of states for the unper-
turbed s band, N [g~(&u + p)] is given by

1
N [gt(&u+ p, }]=—[8(a&+ p, —to„~)—8(&o+ p —&@a~)J,

(47)

~ 2, =-2(( 2A+1 }n+To+I(n, ,)
+p([(-,'A —1)n+T, +I(n )] +4 ~t

~

]'~') .
(49)

By substituting the values of Z~(++ p) and N [g~
x(v+ p, }]from Eqs. (44) and (47) in Eqs. (45} and

(46) we get at absolute zero

1 (1-A)(o -To+ ,'An —-I(n, ,)
sn, ,

' ~{I(i-~)~- T'la-z&n. 'jj'.4~imi'y"j"'
F00

1 (1 -A)(o —To+ -', An - I (n, ,)
2Aa (N1 —A)w —To ~ —,'An —t(n, )

~ j4Alal P'} ~

(51)

As in the case of the zero bandwidth, by taking p,

as a variable parameter (n~, ) and (n~, ) are ob-
tained self-consistently from Eq. (51). Then Eqs.
(17) and (50) are used to fix the Fermi level for an

integral number of electrons. In Fig. 5, Q-versus-
Z curves are shown for three values 0. 1, 0. 2, and

0. 4 of A. Values of P and S are taken equal to
2. 0 and 0. 1, respectively. Table III indicates that
the range of the ferromagnetic solutions diminishes
as the d-band width increases. This shows that the
localization of the d electrons favors the existence
of ferromagnetism.

IV. CORRELATION THEORY

In this section we discuss the effect of correla-
tion by considering the equation of motion of the
higher-order Green's function ((n;,a&„'a„,))„,
where p, is either j or k'. The equation of motion
for this Green's function is given by

&o ((ni- aaia& a&, ))~

n; , 5g„" +7 ~ T(g ((n( a~~~ a~a))
2m

+Z t T„(((a,, a, ,-a, , a, ,)a„;a„))„
-Z"„V„~e'' '((a.„,a, ,a&„at,))„
+Z f, &f,„e'"'

& ((at, a,', a„;a „',))„.(52)

We assume that the correlations between electrons
at different lattice sites and the correlation be-
tween s and d electrons are very small as compared
to the correlation between electrons at the same
lattice site. In this approximation, we can decouple
the Green's functions on the right-hand side of Eq.
(52) by replacing the operators at the same lattice
site with their average values as follows:

((&g, ~„'a„,))„=(n„,) ((a„;a t, )) „

if i w l,
as- a» 'a ))

= —( g, ;,) ((a, „a'„))„if f, xf,

((a ~ z at- a ales a pa))&u

=(a, ,a„)((a~t „at„,))„if f el,

+I((n, ,a„;a„,))„
+~„&pge '"'

& ((n; .a.„„a'„,))„
((n;,a~„'a„,))„=(n~, )((a„„at,))„,
((aR-s a~- a a„;a„,))„
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=(a» .a». ) &(a-. .' a'..».
(&ao .a» .a». ' a',.»

=(af .a».&((ao .' a,'.)&

We also assume that

(a»~. ,a„)= (a, , a;,)=0.
Under these approximations Eq. {52) becomes

(»d+»» —To I) ((»-»;, a;„at,))„
=(n, .,&

'" +(»»„,) Z T»»G;„(»d)

(52}

(54)

2. 0 0. 1 0. 1

0.2

0.4

1.0
2. 0
3.0
1.0
2. 0
3. 0
1.0
2, 0
3. 0

0.05-0.4
0.11—l. 0
0.26-1.0
0. 1 —0.4
0. 16-1.0
0, 26-1.0
0. 15-0.4
0.26 —l. 0
0.31—l. 0

TABLE III. Range of Z for ferromagnetic solutions
for the finite width of the d band.

+(»»o o&Z j Vgo 8 ~ Gjo(oo) .
When we substitute the values of the Green's func-
tions ((»»» o~ aoo&&~ from Eq. (55) in Eqs ~ (11c)
and (11d), Eqs. (11) acquire a closed form By.
solving these equations for G»~», (»o) and Goop(»d) we

get

(»d + l» —To)(~+»» —To- I)
(»o +»» —To —I) (1 —(no o))

—«a~ -
0~

2.0

$.6

1.2

0.8

x (»o+»» —6j} Goo(»o),

1 (»o+ p, —To}{»d+»» —To-I)
2»»»o +»» —To —I(1 —(»»o, &}

N I Y„~I—(&o1 —To)—

These Green's functions have the same singulari-
ties which are simple poles. There are three
quasiparticle bands, which arise from the s band
crossing and hybridizing with the two pseudo-d-
bands, given by the roots of the equation

(»o + P, —To) (»o +»» —To —I) —(cod —To)

x [»o+»» —T, -I(1—(»», ,&)J=0 .
In general, the roots of the cubic equation, which
determines the poles of the Green's functions, are
not all real. However, we can avoid this situation
by taking the limit I-~. In this limit the upper
band given by Eq. (56) is pushed out to infinity and
we have only two bands to consider. When I
the Green's functions G»', 1(»o} and G„'1(»o)are given
by

r,~)-
(x»+d»—» &o) Go j(»o), (59)

0.0,
0.0 0.4

»

0.8 1.0 By substituting the values of G», „(»o)and Goy from
Eqs. (59) and (60) in Eqs. (15) and (16), we obtain

FIG. 5. Variation of the Fermi level with Z in the
Hartree-Fock approximation for a finite d-band width and
the square density of states for 8 band. Curves are
plotted for P =2. 0 and S = 0. l.

P:(» = —~'[B .6(~ -~f'.)+B.'.«~ -~l.) J *

po(»o} = Q [Bofo 5(»d —»oft) +Bofo 5(»o QPgo) J p (62)
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ELECTRON CORRELATION IN FERROMAGNETISM.

2.4-
&~„,we obtain from (82) the following condition
for zero band gap:

(A + 1) S —A[ —,'A (A+ 2)B + B—1]= 0 (as)

2.0-

1.6-

0.8

0.0
Og)

I

04
I

0.8 1.0

where B= n/To= 1/Z. Equation (85) contains three
parameters. By fixing a particular parameter, one
can plot a transition curve for the remaining two
parameters. In Figs. 10-12 we have plotted S-B,
S-A, and B-A curves for different values of A,
B, and S, respectively. In Figs. 10 and 11, the
regions above and below a transition curve cor-
respond to nonmetallic and metallic behaviors,
respectively, while in Fig. 12 the situation is just
the reverse. These curves show that for a par-
ticular choice of values of S and B we get a critical
value of A at which the transition from the non-
metallic to the metallic state occurs. When we

apply pressure on a nonmetallic substance, the
lattice parameter decreases, and consequently A

increases; therefore, a transition from nonmetal-
lic to metallic state should occur at a critical
pressure when A crosses the critical value deter-
mined by the choice of S and B. But it should be
remembered that S increases as we increase the
pressure, because the overlapping of s and d wave
functions increases owing to compression of the

FIG. 9. Variation of the Fermi level with Z in the
correlation theory for a finite d-band width and the para-
bolic density of states for the s band. Curves are plot-
ted for S = 1.0.

2.4—

we obtain

and

Pg(&)= Z [Agr, 5(QP QPg)+Ass((0 —(dt)]
1

k

(80)

2.0—

1.6-

pg(~) = Z [Agfs((d —(dr)+A&r5((d —(0&)], (81)1 +

k

where the hybrid bands ~'-„aregiven by

~r=21Er+Ear~[(Bur, -&r) +~~ 1'rg~']' '] (82)

~ 2

and A,'f = p(&u'; —Z,;)/((of- (o„=),

Al~= P(~~- E~)/(~f'- ~l)

(88)

(84)
0.8-

From (83) and (84) we have A,"„+A~-„=1. This
shows that the number of states in the lower band

is equal to 1 for each spin. If we choose a sys-
tem with two electrons per atom in s and d band

together, the system will behave as a nonmetal if
there is a gap between the lower and upper hybrid

bands; otherwise it will behave as a metal. A

metal-nonmetal transition occurs when the band

gap becomes zero. Under the assumption (41) for

04-

4,0 8.0

FIG. 10. S-B curves for different values of A.
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