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where by, by,... are constants and b3=0 unless
d=20. It is possible to see from Joyce’s work that
additional logarithmic terms do appear for d =no,
with z an integer larger than 2. These terms are,
however, of higher order and they can be included
formally in Eq. (A8) extending b, to be zero unless
d=mo, where m=2,3, ...

Equations (A6) and (A7) are valid in the limit of
very large ». For large but finite 7, the constants
in these equations become functions of » and in the
limit of » - 0 one should expect them to go over into
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the constants in Eq. (A8), if I(», k) has the correct
dependence on k7, for small k and any fixed . In
other words, for any fixed 7, we have

Ir; kr < 1) =fo(#) +f17)K° +fo(r )k ~°

+fsMK T Ink 4+ o+ (A9)

where fo(r), f1(r), and f,(») are finite and nonzero
for » =0 and f3(» ) = 0 unless d=mo, where m =2,
3
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The energy eigenvalues, eigenfunctions, and radiatively induced transition probabilities
are computed perturbatively for an axially symmetric paramagnetic ion for arbitrary relative
orientations of the crystal symmetry axis, static magnetic field, and time-varying magnetic

field. Exact calculations are also reported.for a system in which S=4%, I=3%.

The bearing of

these results on dynamic-nuclear-orientation experiments in paramagnetic samples is also

discussed.

I. INTRODUCTION

The EPR spectra of many paramagnetic ions
that have been successfully studied experimental-
1y'~® can be understood in terms of the spin Ham-
iltonian

5=B2 Hygpi Si+ 2 IkAktsl+gnﬁﬁ’I R (1.1)
k1 k1

where the symbols have their usual significance.

The energy eigenvalues, eigenfunctions, and ra-

diatively induced transition probabilities for such

a system have been calculated perturbatively for
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I and L orientations of the crystal symmetry axis
with respect to the external magnetic field.® In the
present paper, the earlier perturbation calcula-
tions have been generalized for any arbitrary rela-
tive orientations of the crystal symmetry axis, the
external static magnetic field, and the time-vary-
ing magnetic field for samples in which the hyper-
fine interaction dominates over the nuclear Zee-
man interaction. Exact calculations for the eigen-
values, eigenfunctions, and induced transition
probabilities for S=3, I=3 systems for arbitrary
relative orientations are also reported. These re-
sults are compared with those obtained by Jeffries®
and a few new significant features are brought out.
The bearing of these results on dynamic-nuclear -
orientation experiments in paramagnetic samples
are also discussed.

II. EIGENVALUES, EIGENFUNCTIONS, AND TRANSITION
PROBABILITIES FROM PERTURBATION THEORY

We consider a paramagnetic ion showing strong
anisotropic hyperfine interaction so that the nucle-
ar Zeeman term can be ignored. The Hamiltonian
for such a system may be written as

JC=BgIIHzSz +%ﬁg.l.(H-S++H+ S_)

+AI,S, +3B(S_.1,+S.1.), (2.1)

where the symbols have their usual significance,
and
H,=H,+iH,, S,=S,%iS,, I,=1,+il,.

The above Hamiltonian is written in the crystal

2
(M, m) = | M, m)'——l—(é——B>{hR+lM+ 1, m+1)=R.v.|M-1, m- 1>'}-[

gBH \ 4

frame whose z axis coincides with the symmetry
axis of the crystal. We now introduce a new co-
ordinate system characterized by the unit vectors:

i'=i(g, cosb coso/g)
+J (g, cosb sing/g) - K(g, sind/g),
j'=-1sing +j cos¢,
E’'=1(g, sind cosp/g)
+] (g, siné sing/g) +K (g, cosb /g),

where f, i, K are the three-unit vectors of the crys-
tal frame and g%=g2 cos? + g2sin®, 6 being the
angle between the crystal symmetry axis and the
direction of the static magnetic field H.
The Hamiltonian in the primed frame is
5’ =gBHS, +[An?+ B(1-n?)]S.1] + (A - B)I2
x (SU5+SI1)) +5[A+(2-1®B](S 1] + 8! 1))

+3In(A - B)S,(I' +I!) +3In(A - B)(S'+ ]I, ,

(2.2
where I=-g, sind/g, n=g, cosé/g.
The second-order energy levels are
E(M, m) =gBHM + [(A - B)n?+ B] Mm
4
-45(A- B)¥R% 7% - R*»2) /gBH
- 4[A%+(2-12)B]2(R% 72 - R%#»2)/gBH

— M2 (A - B)¥(»? - 72) /[(A ~ BJn®+ B]
- $m?Pn?(A- B)%(R% - R?)/gBH.  (2.3)

The first-order eigenfunctions are

A2+ (2- 1B ]
49B8H

X{Ruv.|M+1, m=1 =R.v.|M=1, m+ D'}~ Z(Trfz%{h | My 1= |, = '}
_ﬂ%{_—m{R,lMu,mﬂR-lM—l’ m'}, =

where [M, m)is a simultaneous eigenfunction of
S, and I, corresponding to eigenvalues M and m,
respectively, and

R.=[(S¥M)(SxM+ 1]V, r,=[Usm)Txm+1)]"2,

The various radiatively induced transition proba-
bilities are shown in Table I. The above results

and those of Table I are the generalization of Jef-
fries results® and reduce to them in appropriate
limits.

III. EXACT CALCULATIONS FOR S=%, 1 =% SYSTEMS

We consider an S=3, I=% system described by
the spin Hamiltonian (2. 1). The matrix elements
of the Hamiltonian in | M, m) representation are



2 ENERGY EIGENVALUES, EIGENFUNCTIONS, AND:- - 1407

TABLE I. Transition probability per sec W between states ¥; (M, m) and ¢, induced by a rf field ﬁl applied to a sys-
tem represented by the 3Cof Eq. (2.2).

¥y W sec™!
M=x1, m (Cg*/g*H sin®) & cos?0 {H, * T~ (H; * W) @ D} + 2 {F xT) * K} R2, /4
M1, m¥1 c{(A- B2 +2B}[H, * figl - (@, 0 + D) (2 - 2D PRY /1642622
Mx1, m=1 ClA- B, D2+ (g2 - 22 @, + B {1 D 2R 2 /164262H?
M, m=1 (CgY/g*H? sin®0)[ gh cos®0 {1, * H — (i * 1) (i, * &) sec?0}{ 2(A - B)7® + 2B}

+g {@x1,) + kP (2B) M /1682 B2 HE,
where C=g(v)p%/41°

H11="T'la'3glle+%A9 H12=H14=H34=0’
H13=H24=%ﬁg1114, sz'—"‘%ﬁgnHz_%A’
H23=%B9

Hyy =%BgnHz - %A, Hyy =%gu BH, +7:'A:
and

Hy =HJ.
The characteristic equation of this matrix is
A—A'22¢B' A+ C'=0, (3.1
where
A'=%(A%+2B%) + 3 %8°H 2,
B'=$AB?,

C'=(A%/256)(A%- 4B?) + & (g BH)*
+5 B2 A% H? + 45 (B? - A%) g 2H?,

The roots of this equation give the energy eigen-
values of the system

Ay, 2=1[- a¥ (a®- 4b)1/?], (3.2

A3, s=3la7 (a® - 4e)'/?], (3.3)

where
== x a5 V2 (2= V5 )20 547

2

x=1(FA'3-84'C'-B"?), y=x2-(GA'%:+$C')
and
b=3(-A"+a®-B'/a), e=(-A"+d*+B'/a),

where any value of the cube root may be taken.
Corresponding to the eigenvalue A, the eigenfunc-
tion is

Yy = 2 Cri®;, (3.4)
j=1
where ¢1=I_%’%>, ¢2=!—%r—%>9

4’3:[

)=
1
o=
~
-
©
N
it

and C, =(2G,/Bg,H2)H.C,,,
Cre=- (Bg H%/BT,)(3B2, - 2F, G, /Bg, H?)Cy4,
Cus=~= (2H. /B)(3Bg, - 2F, G, /Bg, H?)Cpy,
Cri={[(16/B*8%¢ *H* T}) (s B*8°¢ IH/ T}
+ifgiH? (3% HE - F,G,)?+iB*T2GE
+Ti (iR iH] - F,G,)H)]V3 1,
where F, =\, — Hpy, G, =X,— Hy, Th=X,~ Hy;, and

H%=HZ+HZ, We apply an rf field represented by
the perturbation Hamiltonian

Jcrl=glIBlesg +%gLB(H1_ s++H1+S_),

where H,, =H,, +iH;,. The transition probability
W,;; between the eigenstates A; and A, is given by

Wy = (g (v,;)/41%) C3,C4(4/B*) 2 (TE T ) 4/Bg 2 HE)? (3¢} B°HE, {(- 38%¢ 3 HS + T, T;) PP,

+iB*Ti T5(-G,G, +igiHB))? +5 0 B Hyog, (H - H, - (H - B)(H, - KN{(- 38% 302+ T, T))

XP;P; +%[B*T, T;(~ G, G, +5F%g2H? )} {282, P; Py(T;+T)) +3Pg. T; T; B¥G, +G)}+iglp?
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oo

x{HZH? (sPg,T; P, P, + g, BB T, T;G,)?+ (% Bg, T, P, P, + s B¢, T; T;G;)%} + 2{(H - H, - (H, - k)
x(H.K))?= (HxH,) -K)2} {48¢, T, (P; P, + 3G, B?T,) } {$Be.T; (P, P, + G, B*T,)}, (3. 5)

where P; = f%¢2H? - F, G, and g(v,;) is the line-
shape function corresponding to the frequency v;;
=|X;=X; |k, where & is Planck’s constant. Equa-
tions (3. 2)-(3. 5) reduce to their respective pertur-
bation limits in the high-field region (H= 300 Oe).
The eigenvalues and radiatively induced proba-
bilities for paramagnetic (AM=+1, Am=0), flip-
flip (AM=%1, Am=+1), and flip-flop (AM=%1,
Am =% 1) transitions are plotted as function of the
static magnetic field on a double log scale for vari-
ous relative orientations of relevant directions in
Figs. 1-4 for a hypothetical sample with S=3,
I=% having g,=0. 362, g, =2.702, A=0.0052 cm™

—

and B=0.0312 cm™, which actually correspond to
a Nd®* ion in La, Mg, (NO,);,- 24 H,0. The following
conclusions may be drawn from an analysis of the
curves.

A. Eigenvalues

The shape of the curves (Fig. 1) is more or less
independent of the direction of the static magnetic
field relative to the crystal symmetry axis. For
very low fields < 50 Oe or so, the energy levels
are independent of the orientations and are very
unequally spaced. When the orientation of the
static field is parallel to crystal symmetry axis,

FIG. 1. Curves showing the rela~
tion between energy eigenvalues
(cm™) and the static magnetic field
(Oe). These curves are numbered
as a.b, where a=1, 2,3 stands for
three values of 6 =0°, 45°, and 90°,
respectively, and b=1, 2, 3,4 stands
for level [-3,%), I-3,-3), I3
—3), and 13, &), respectively, as
represented in the perturbation
limit.
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the levels 2 and 4 are pure states and are repre-
sented exactly by wave functions | -3, —3) and
I$,%), respectively, When the static field is ap-
plied L to crystal axis and hf constant B=0, the
levels 1,2 and 3, 4 become degenerate having eigen-
values — 3(B%g2H?+ A/4)Y? and 3(B%gH 2+ A%/4)'/2,
respectively.

B. Transition Probabilities

The radiativity induced transition probabilities
(Fig. 2-4) are in general dependent on the angle
0, between the direction of the crystal symmetry
axis and the static magnetic field, the angle 6,,
between the direction of the time varying field and
the crystal symmetry axis, and also the angle ¢,
between H, and H,,.

When the static field is along the crystal sym-
metry axis, the flip-flip transition is always for-
bidden. The probabilities for paramagnetic and
flip-flip transitions are independent of ¢, and are
more or less constant for fields <300 Oe. The
paramagnetic (cross) transition probability has a

=10

1409

maximum (minimum) and minimum (maximum)
magnitude when the time-varying field is applied
L(n) and 11 (L) to the crystal axis.

When the static field is applied either at an angle
of 45° or at an angle of 90° to the crystal axis, the
magnitude of the transition probabilities in most
of the cases is the same for ¢, =0 and ¢,=7. The
paramagnetic transition probabilities for ¢,=1/2
are in general about an order of magnitude greater
than the corresponding values for ¢, =0, 7. The
reverse is true for cross relaxations.

When the static field and the crystal axis are
inclined at an angle of 45° and the time-varying
field is applied Il to crystal axis, all the transition
probabilities are independent of ¢,, irrespective
of the field strength, and the paramagnetic transi-
tion probability is also field independent.

For L orientation the paramagnetic (cross)
transition is forbidden when the time-varying field
is applied L () to the crystal axis.

The above results have an important bearing on
dynamic-nuclear -orientation experiments. An

10 r r v—

1.4.1%1.4.2=1.4.3

L

—n hais32=133

T|.2.I=I.2.2 =123 222

-12] =
0r *2.1.l-2.l42-2,l.3

,3‘21 =323

3 f

3.31=33.3

T
T 2.4.1=2.4.3

FIG. 2. Curves showing the re-
lation between WB%/c (erg? sec) for
paramagnetic transitions and the
static magnetic field (oersteds).
The curves are numbered as a. b.c,
where a=1,2, 3, stands for 6 =0°, 45°,
and 90°, respectively, b=1,2,3,4
stands for 6,=0°,30°,60°, and 90°,
respectively, and ¢=1, 2,3 stands
for ¢,=0,7/2,m, respectively. The
primed curves are plotted on the
scale marked on the right.

_16 3.4.(=3.4.3
10 §
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FIG. 3. Curves showing the re-
lation between Wg?/c (erg® sec) for
flip-flip transitions and the static
magnetic field (oersteds). “a.b.c”
has the same meaning as in Fig. 2.
The primed curves are plotted on
the scale marked on the right.

FIG. 4. Curves showing the re-
lation between W8 %¢ for flip-flop
transitions and the static magnetic
field. a.b.c has the same meaning
as in Fig. 2. The primed curves
are plotted on the scale marked on
the right.



2 ENERGY EIGENVALUES,

Overhauser!® dynamic-nuclear-orientation experi-
ment can best be performed when the static field
and the time-varying field are applied parallel and
perpendicular to the crystal axis, respectively.
The best scheme for the Jeffries'!'-Abragam-Proc-
tor!? effect with noncompeting pumps!? is Il orien-
tation with time-varying field also applied Il to
crystal axis. The Jeffries—Abragam-Proctor ef-
fect with competing pumps!® can best be obtained
when the static and the time-varying fields are

EIGENFUNCTIONS, AND--- 1411

applied at angles of 45° and 90°, respectively,
with ¢,=0 or 7,
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The problem of electron correlation in the ferromagnetism of transition metals is investi-
gated by taking an approximate model Hamiltonian which takes into account the hybridization
of the s and d bands. The Green’s-function technique is used to obtain the self-consistent
ferromagnetic solutions within the Hartree-Fock approximation. An approximate solution of

the correlation problem is obtained.

The ferromagnetic solutions for which the correlation

effects are taken into account are compared with those in the Hartree-Fock approximation.
The model is used to investigate the role of the s-d interaction in metal-nonmetal transitions.
It is also possible to understand the difficulty of observing pressure-induced nonmetal-metal

transition.

I. INTRODUCTION

In recent years, much attention has been de-
voted to the theory of electron correlations in re-
lation to the magnetic properties of transition me-
tals.! The electron correlations in the d band of
transition metals have been studied by Kanamori,
Gutzwiller,® and Hubbard.? These authors based
their theories on the assumption that the only in-
teraction responsible for the magnetic properties
is the intra-atomic interaction between opposite
spin-d electrons. Recently, Richmond and Se-
well,® Pratt and Caron,® and Kishore and Joshi’
took into account the interatomic interaction also.

2

All these investigations completely neglect the
presence of the s band of conduction electrons.
Anderson’s theory® of dilute alloys of the transi-
tion metals is able to explain the occurrence of the
localized magnetic moment on transition-metal
impurities dissolved in nonmagnetic metals. In
Anderson’s model, the band states of the host
metal are treated as independent quasiparticles.
The impurity is introduced as an extra-localized
orbital which is mixed with the band states by a
hybrid matrix element. All two-body Coulomb in-
teractions are neglected except the Coulomb inter-
action between the opposite-spin electrons on the
localized orbital. As an extension of this model,



