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Analysis of a simple model of the excitonic insulator shows that the ordered phase exhibits
electrical superconductivity whenever the conduction-band mass differs from the valence-
band mass. Intexband scattering of electrons by the magnetic vector potential plays an essen-
tial role. States of finite electric persistent current are demonstrated explicitly. The ex-
citonic insulator is a system where diagonal versus off-diagonal long-range order is a function

of one's bookkeeping.

I. INTRODUCTION

It is commonly believed that the excitonic insula-

tor, ' a hypothetical many-particle cooperative
thermodynamic phase involving valence-band holes
and conduction-band electrons, has the electrical
properties of an insulator. ' In this paper, we

show that this is not the case for a simple model;
rather the model has the electrical properties of
a superconductor. Our model consists of a single
spherical valence band (k /2m, ) (kz —k') and a
single spherical overlapping conduction band (k /
2m~) (k -kz), energies being measured relative
to that of the Fermi surface k= kz. We show that
whenever m. ,0 m„ there is superconductivity.
Crucial to this demonstration is the inclusion of
both intxaband scattering and iztexband scattering
of electrons by the magnetic vector potential. The
latter kind of scattering has not been considered
in the past.

Note that a hole at -k in an otherwise filled va-
lence band can be consistently thought of as an ex-
citation of momentum + h k, mass + m„energy
(k'/2m, ) (k' —k~), and electric charge+e (-e be-
ing the electronic charge). We designate by c~~, ,
c, , the creation and destruction operators asso-

ciated with such an excitation of momentum Sk.
(Thus ct„removes an electron from one-electron
state -k in the valence band. ) We designate by

ck „ckf the creation and destruction operators
associated with an electron of momentum Sk in
the conduction band.

In the absence of external electric and magnetic
fields, the Hamiltonian for the excitonic insulator
ls

Fio= ~ Ek& Ckg Ck& —~ vkk&C kl)ck&f Ckf
k, o' k~ k

where

~,.=(@'/2m. ) (k'- k',), m, =m. , m, =m, .
(l. 2)

Vkk ~ is the matrix element for the attractive Cou-
lomb scattering between holes and electrons. The
ground-state wave function of the ordered phase
has the form

40 being the state of filled valence band and empty
conduction band. In the interest of simplicity, we
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make the nonessential assumption of constant V»s
= V. Minimizing the expectation value of the free
energy of the system with respect to the param-
eters kk, we find

a, = -', [1—(»,/E„)],
where 6« =

» (6«+ E«),
E =(~'+»')' '

(1.4)

(l. 5)

(l. 5)

The order parameter 60 obeys the BCS gap equa-
tion

1 =~a I'~«E»' {I f«t f«()--
Here f„,is the thermodynamic Fermi factor asso-
ciated with quasiparticle excitation (k, o) having
excitation energy Ek„given by

H' represents the contribution of intmband scat-
tering of electrons by the vector potential to the
Hamiltonian; H" represents the contribution of
intexband scattering of electrons. ' Making use of
the fact that q X» vanishes, we can rewrite H'as

&'=-'{m, '+m, ') (27))'~'(he/c)

»( «+»~t «~.t. ~ «)» ))
ksq

+-,'(, ' —m, ') (2a)'i'(@e/c)

x Z k A, (ct„,c„,—ct„,c, ,] . (2. 5)
ky q

Since momentum is odd under time reversal, we
have

@kt ~k+ ~k ~ @k~ ~k

where»«=-', (e«, —e„) .

It will later be useful to write &k in the form

(l. 8)

This allows us to rewrite JJ" as

8"= —,'(m, ' —m, ') (2m)'~'(@e/c)

(2. 5)

»« = n»«, n = ( m,
—m, )/(m, + m, ) . (l. 10)

The destruction operators associated with the two

types of quasiparticle excitation have the form

o'« =(I -&«) c« -&«1/3 1/P,

()'-« =(I -)»«) c-» +I)«c«~1/P 1/2

The inverse relations are

c«~ = {1—&«) o'») + &» ~- «
j./2 1/8

c«) = {1—&«) o'«) @« ~- «~.

II. ELECTROMAGNETIC RESPONSE

(l. 11)

In the presence of weak perturbing electric and
magnetic fields (Coulomb gauge, with vanishing
electric potential), the perturbing Hamiltonian is

H=B'+H", (2. 1)

H" = —(2m)'~'(@/2c) [5 (e, /m, )]

"~I(M-«™-«-»)c-«&to«+», )
ksq

4++ (M«+ M «, ) c „,, c„.„,] A, . (2. 3)

Here A, =(2a) 'i' f A(r) e '~' d'r (2. 4)

j.s the qth Fourier component of the magnetic vec-
tor potential A(r). M « is the one-electron matrix
element of (p/)») between one elect on states k-
in the valence band and k in the conduction band.

» = —(2~)'~'(—Q'(2k+ j) A, et.„,e.,..c k ~ mg

(2. 2)

x Q A, ([{M« ~ M„,) ~ {NI«*+M«~, )j

A,~ = g,'p+y,'~,

g,r = —(2a)- ' c(5a'/5A, ), (2. 9)

x~ ~
[c«+», & c- », & + c- » -», t c«, (l

+ [(M„+M„,) —(M„"+M,*„)]
~r~ ~

[c«+», &c-«. ~ c-»-», to«, )]]' ~

In both Egs. (2. 5) and {2.'7), we have grouped to-
gether the terms that interfere coherently in the
ordered phase. As far as H' is concerned, in
BCS terminology, the factors containing a plus
sign are type I perturbations, the factors contain-
ing a minus sign are type II perturbations. Su-
perconductivity theory has no analog of the terms
appearing in H". It is possible to anticipate

the results of the calculation by the following ob-
servation. In E(I. (2. 5), any two coherently inter-
fering terms correspond to the particles of both
signs of charge getting the same momentum trans-
fer. In Eq. (2, V), any two coherently interfering
terms correspond to the particles of both signs of
charge getting opposite momentum transfer, in the
limit q-0. The former case leads to a vanishing
increment of electric current; the latter case to a
finite increment. This allows us to infer that the
superconductive response is associated with B",
notwit a'.

%e define the paramagnetic current operator

g„=—(2~)-' c{5H/5A, ) . (2. 8)

Obviously, we can write
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X Q k)[(Mk+Mk„)+(Mk +Mk, )]

X[ck+a~qC k~q+C k 2 ~ Ck q ]

+ [(Mk+Mk„) —(Mk +M„„)]

x [c„,, c.„,—c,.„,c, , ]] . (2. 11)

The electric current density J(r) resulting from
A(r) can be broken up into a paramagnetic contri-
bution and a diamagnetic contribution. The qth
Fourier component of the diamagnetic contribu-
tion is

9 p= —(2v) 2c(6H"/5A, ) .

We get

9',„=——4'(m, '+m, ') (2m) '~' (&e)

~k(2k+q) [Ck+, ck, + -k, -k-, ]
——4'(m, ' —m, ') (2v) ' '()2e)

x Qk (2k+ q) [ckt„,ck, —c „,c „,,],
(2. 10)

8,'p= ——,'(m, '-m, ') (2v) "'
()2e)

then the ordered phase is superconductive. It is
convenient to combine Eqs. (2. 16) and (2. 17),

Jq Jqp J~pg o (2. i8)

Zk'II=+K(; (W; —W2)
'

l
(ilc~t, ck, +ctk, c ... l0) l

&2, 4
= +~ ~(w~ —wo) I

(2
I
c&,ck, —c 2, c, , l

o)

(2. i9)

2~~2I- +5((w) —wk) (i
l c, , c„,+c k,c, , l0)

X(2lcg &ck P
—c 2 ic g zi0)~

The summands of Eqs. (2. 14) and (2. 15) appro-
priate to the ordered phase differ from the cor-
responding summands for the normal phase only
when the excited state i is associated with points
in k space close to the Fermi surface. Thus all
slowly varying functions of the magnitude of k ap-
pearing in these summands may be replaced by
their values at the Fermi surface, as long as we
use Eq. (2. 18) in evaluating J, for the ordered
phase.

If we define

J,D= —(ne'/c) (m, '+m, ') A, , (2. i2)
and

n being the density of carriers of either sign. The
qth Fourier component of the paramagnetic con-
tribution is

(2. 13)

where

J '„=—2Z, (w,. —w, )
'

& 0
l
a'„

l
2 & &2

l

II'
l 0&,

(2. i4)

J,",= —2Z, (W,. -W,)-'(0lg,", l2& &2 a" 0&.

(2. 15)

J"'=—'(m '+m ') (ff e /c)

XX) k (2k+ q) (k ~ A, ) Qk"k'„,

J' ' = —'(I ' —m ') (h 2e /C)

XZ k(2k+q) (k A, ) Zk'22'„,

J,'~' = —2'(m, '- m, ') ()2 2e2/c)

XZ2(2k+q) (k A, ) Zk"k'„;

then we can write

(2. 20)

Here ~ 0) is the ground state (at a given tempera-
ture) and ) i) is an excited state of excitation en-

ergy (W, —Wk). In the normal phase (e2= 0), we

may approximate the paramagnetic contribution

J,» by the relation

(2. ie)

The relation is exact at q=0. At finite q, it ig-
nores the weak net diamagnetism associated with
the normal phase. In the ordered phase (424 0),
we are interested in

J'p ——J p+J p+J p .(1) (2) (3)

Similarly, if we define

(2. 2i)

&k', I=+~~ (w -wo) 'l &2lci, c'k, +c i, ck, Io)l'
Zk z

= +Z; (W; —Wk)
'

l
(i

l c, , c k, —c g, c„,l 0) l

(2. 22)

ak' ', =+K;(Wg —Wk)
' (2lc, , ctk, +c, , ck, g l0)

x(2lc,', , c'2, -c, , ck, ,
l 0&; and

J(4) +(~ 1 ~ 1)2 (ff 2e2/c)Q Q(4)

J,= J,p+ J,D (2. 17)

in the limit as q -0. If lim J, as q -0 is finite,

X [(M„+Mk, )+(Mk +Mk, 2)]

X ( [(Mk+ Mk, ) + (Mk+ Mk, ) ] A4 j,
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JqP JqP +JqP +JqP(4) (5) (6) (2. 24)

Next, we need to evaluate the Cs. With the aid
of Eq. (l. 12), , we get

(cr&, k, k t, t)= «(l~l)6k r&

+( [h,(1 —hr)]'~'a [h,(l —h„)]' ']
X(Qr&tQ k&t +Q l&t Qk

+I[(1-hk) (1 —hr)]"'+ [hkhr j"']
X(Qr &Qk ~ +Q-k &Q-r &) & (2. 25)

(Cr & C-k&t 6 C 1&t Ck&t) = [hk(l —hk)] ( ) k, l

+( [h„(1—h, )] r~k t [h, (1 —hk)]1~0)

x (Q 1» Qk&& + Q k&t Q 1&t)

+ t [(1—h ) (1 —h, )] ' v [h„h, ]'
1&& -k&t+ -1,~ k, &)

From Eqs. (1.4) and (1.6), we have

([(1-h„)(l-h, )]' '+ [h, h, ]' ']'
= —,'+ —,'(1 —2h„) (1 —2h, ) v 2 [h„(l —h„) h, (1 —h, )]'~'
= 0 [1+(&k&rW&'0/Ek Er)], (2. 27)

([h„(l —h, )]"'~ [h,(l-h )]'

(a. 26)

= —,
' ——,'(1, —2h, )(l —2h, ) + 2 [h,(l —h, ) h, (1 —h, )]r~'

= 0 [1 —(~ker ~eo/Ekzr) j (a. 28)

([(1—hk) (1-hl)]"'+ [hkhr]'")

x([(].—hk) (1 —hr)]' —[hkh, ] }
= —,

' [(1—2h, )+(1—2h, )]

,'(&„/E, + e r/E r)—,

([h,(l-h, )] ' + [h,(l-h )]' ')
(2. 29)

—[h, (1 —h,)]"') ([h,(1 —h, )])~'

= - -,'[(1—ah, ) - (1 —an, )]

= —l «k/Ek —&r/Er).

:,"~'= ~0(m, r - m, r)'(h 'e'/c) Z k 2„",k) „(223)

x [(Mk+Mk, ) —(Mk+Mk, )]

x([(Mk+M„*, ) —(Mk+Mk, 4)] A4),

x [(Mk +Mk„) (Mk +Mk„) ' A,

—(Mk+ Mk ~ 4) (Mk+ Mk ~ «) A 4 ];
then we can write

&k& 1
—e o fktfr &1-fk&) (1 f«-)

, &.&1-e'o'I fk, (l-fr,), fr, (l-fk, )

EkEr r L(E» —Ert) (Ert E—kt)

(a. 31)

(1-fk ) (1-fr )

(E„+E„)
g(2) 1 1 k 1+ 0 fktflt

k, l
k l Ekt+El&

2
oker + &0 fkt(1 fit)-
z,z, (z„-z„)„fr (1-fk )

(2. 32)

Let S be the operator which interchanges iso-
spin indices. Obviously, J,'P and J,'P are invari-
ant to such an operation, provided that, at the
same time, we interchange m, and ml, and inter-
change (Mk+M„„) and its corn))lex conjugate.
This means that, in the equations for J,P, we can
replace Zk"', by L k"l without altering the values of

J,'P and J,'P. Here we are defining

k, r= 0 [ k, r+ k, I1 v= » (2 3'f)

and Lk"I = 0 LZk", I
— 4k",I], v= 3, 6 . (2. 38)

We get

g(3) 1 ~ ~~ kt l4
k, l 2 E, E, E„+E„

fkt(1 frt) fr (1 fk)
El ~(zkt E lt) (Er& Ek&)

(2. 33)

g(4) t ek41 eo fk&frt (1 fkt) (1 fr&)
k, l 2 ~ +

Ekz 1 - kt +E1t (Ekt

+El�&)

&.&r-&o f. (1-f ),f (1 f.)-
EkEr (Ekt Ert) -(Ert -Ekt)

(a. 34)

&,1&| t "' "& f f), ( . i, )t(t f)-2

Ekzl Ekt+Elt (Ekt+Ert)

&k&1+&0 fk, (l-frt) frt(l-fkt)
E E, i(E, E„) (E„-E,)-

(a. 36)

@(0), e~ ~k f„f„(lf„,) (1 f„-)-
k 1 kt 1 t Nkt +E 1&)

1 &~ ~~

~

fk (1 fi&) fit(1-fkt)
(E E ) (E E )

(a. 36)

We therefore get

(a. so)

L (1) 1
y

k l 0
k l + & E E

k l
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4

(2. 3O)

I rkr

~ + ~ dE (I fk--fk, ),
n

(2. 48)

(2.49)

„' I fkr -fr&-, I fk --fr

I
@k~+~rr i ~k~+~rr

1 k r Q frt fkt frr fkl
2"

+4 I+ +
k r & — k& 1&~ k& ri J

(2.4o)

0&l 4 E E l

La,a=o(6)

It is apparent that L~"~) is an even function of &~,
for all p. Note that

(2. so)

L~,a= L~,~+L~,a- L~,~ .(4) (5) (8) (1) (2. sl)

We next insert these results into the various
X,r' in order to calculate J,'J, and J'J', in the limit
q O. After averaging over all orientations of k,
we replace the k sums by the equivalent energy in-
tegral,„.I fkr -fr-I fkr fr--

Eyt+El, E~, +E

fr fk f-r fk-
E E E E, E E

(2. 41)

Z, =x(o) f „
where +(O)=sn(ii)rz) (mk +m, r) '.

(2. s2)

The attractive Coulomb interaction —V~~. = —V

is assumed finite over the region of k space given
by

2
(4) ) C~kl —C0

L~ l —+4 ~+ E E

X +fk'r frr I fk& fr&

Eat+El, Za, +El,

oker —eO frr -fk~ frr -fkr
+ +

kt lt && l&

(2. 42)

(5) 1 CkKl+~0
Lkl +4 ~ E E l

„I fkr -fry I-fkr -fr~—
EI t +El' EP4 +Elt

~g ~l+~0 lt Pt g4 k4

(2. 42)
L(6) + ~ ~ + ~

kgl 4 @ E
r)'t

-fkr -frr I -fkr -frr'~

'Pk &r L&k~-&r~& @k @r &'-
(2. 44)

Setting l =k, we get

ek
~

&Rd ~ (2. s4)

X I(M+I +)' f „ I,",,' «,
(2. 5V)

(Outside this region there is no pairing, and thus
no difference between the ordered and the normal
phases. ) In the vicinity of the Fermi surface, we
assume that M~ has the form

M =kM, (2. 55)

M being a complex number independent of k. In

performing the energy integrals, we assume the
magnitude of k can be replaced by k~. Since L~"~,
L~ ~), and L~(3&) are negligibly small at )&~I =ha,
we replace +km by + ~ in integrals involving these
L's. VVe get

Jo~= lim J,'~= (ne'/c) (m, '+m, ') Ao
a"0

X I f Lk kdfk+Q f
+ 2rrf „L,'k"kd ek j,

J,'~=lim J,'~=(ne'/c) (m, '+m, ')or'&0
aw0

L(1) 1 0

~",k= ld~ (I-f. -fk»-
k

(3) g ~& d
~k, k k g dg (fk fk )

(2. 4s)

(2.ae)

(2. 4V)

The expressions inside the brackets in these last
two equations can be considerably simplified.
Since

(
d

(fk f")+ cr
d~ (I -fk. -fk )-

(fk& fkr) &
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it follows that

Lk k &k+& Lk k d4kf (3) (2)

2 . . g dg k& kt
lim
60» 0

(2)
Lk k d&k-1 . (2. 6V)

where T is the temperature of the system and

T, is the ordering temperature. For the normal
phase, we have

+&dE (1 f»d--f». ) «»

d
2 (f»1 f»d) d»

00

Thus, J L»»d&»= —& f „L»,»de».(3) f' ~ (2)

(2. 59)

(2. 60)

We can rewrite Eq. (2. 5V) as

J0I = (ne /c) (m»'+m, ') a2A0 [- (M+M*)2

+(M+M*) (1 —n ) f L»'3»'dc»] . (2. 68)

Consider the identity

Our final result is

Jo= 1-lim
60 0

Joe= -Zoho (2. 69)

1 ,' f = -— (1 f„f„) dd-, -
k k

00

&n(1-f„f„) -—' de,
00

d
+» (1 —f»d —f», ) d&»

d+»; E dE (f»1 f»&) d»
k k.a 00

0O (j) 00 (3)Lk „d&k+a Lk, k d&k . (2. 61)

Thus,

f .L",»«»=1 ~ f.L»', »«»

= 1+o" f - L»', » «» . (2. 62)

J,'p= (ne'/c) (m»'+m-, ') A, (2. 68)'

is the same for both the ordered and the normal
phases. As anticipated, we see that Jo„, the cur-
rent resulting from intxaband scattering by the
vector potential, contributes nothing to the total
J0 calculated from Eq. (2. 18).

Equation (1.V) can be rewritten

1=X(0) V f „„L„",» de» . (2. 64)

Thus, in the ordered phase,

f,„L»',» «»= WO)~1 ', (2. 65)

The expression inside the brackets of Eq. (2. 56) is
therefore unity, and

where we are defining

& =(ne /c) (m '+m, ') o. (4MM*ln(T, /T)

+(M+M*) (1 —n») [1—f L»'2~&de»]). (2. VO)

Note that Ko & 0 if m~ 4 m, and T & T, . This dem-
onstrates e superconductive response in the or-
dered phase.

III. PERSISTENT CURRENTS

The time derivative of Eq. (2. 69) implies that
we can transform the ground state of zero current
into a state of finite electric current by applying
a transient electric field. We will show that such
a state is metastable, in the sense of having a
Positive quasiparticle excitation spectrum. For
simplicity we restrict the discussion to samples
whose cross-sectional dimensions are small
enough to allow the magnetic field resulting from
the persistent current to be negligibly small.
This means that the current density is uniform in
space.

Following a procedure very similar to that used
in superconductivity theory, we minimize the
free energy I' of the system subject to the con-
straint that

Js= —he(m»'+m, ') Z»k h»(1 f», f») (8--1)

be finite. J~ is the electric current density due
to exciton pairs in the presence of quasiparticle
excitations. In other words, although J~ results
from exciton pairs, J~ is modified by the presence
of excitations through the factor (1 -f», f», ). .-
The total supercurrent density can be written

J= Jg+ Jq ) (8. 2)

and similarly, in the normal phase

lim L»"» dc»= [N(0)V] '+ln(T, /T),
-r~

(2. 66)

where

Jo= —he Z» k(m» f», +m, 'f », ) .
In addition to the constraint that Jz be finite, we
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also want the constraint that the total electric
charge vanish. The exciton pairs can give rise,
to no electric charge, but the quasiparticles may.
In general, the net charge of the system is

@=-&Z»(f»,t-f. », }. (3.4)

x (1 f„, f»-, ,)-
x (I f», f"-,}-
+PsTZ [f, ,lnf, ,+(1 f, ,) ln(l-- f,„)],

while the additional terms in I" are

(n/e)K (J,+yJ„)
=-»vo. Z»kP»(i-f», f», }+y(f»-, f», )]. -

(3.3)

Here we have defined

vo=- »(m, '+m,-') aK .
We shall also define

Cp= cg —Ak ' vp .

(3.9)

(3.10)

Note that e~ is a spherically symmetric function
of (k —K). Since f», is appreciable in size only
near the Fermi surface, we can make the replace-
ment

Rather than constrain Q, it is easier to constrain
the current

Js-=Re(-m, '+m, ') Z,k(f, , —f, ,) . (3 5)

As we shall see presently, constraining J„to van-
ish will lead to vanishing Q. Thus we define

E'=E+(e/s)K (J,+y J,), (3. 6)

—(5/e)K and —(5/e) yK being the vector Lagrange
multiplier associated with the constraints that

Jz be finite while Ts vanish. Because of the sym-
metry of the problem, we can take these two
multipliers to be parallel. The ordinary free en-
ergy I" is

E=Z»«» [2@»(I f». ~ --f-», ~)

+ (f»,i +f », )+&(f», ~ -f », ~)]

-Z v», », [h»(1 —h») k»a(l —h». )]'~

1j=~Q
y (3. iS)

thereby ensuring that (f», +f „,) is an even func-
tion of «» and that (f», f», -) is an odd function of

The oddness of (f», —f „,) forces both Jz
and Q to vanish.

It is convenient to rewrite (3. 2) as

J= J(+Jp, (3. 16)

where

J,-=—Re(m»'+m, ')Z„kk», (3.1V)

J,=---,'a. (m-, "m-. ')Z, k[(1-2I,)(f„, f „.)
+&(f», f.», }].- (3.18)

Since the summand of Ja is odd in &~, we see that
J~ vanishes. Since h~ is a, spherically symmetric
function of (k —K), it follows that:

Z, (k-K) a, =o, (3.19)

J= Jg= —Re(m»'+m, ) Z»Kh»= —2nevo . . (3.20)

Although the situation here is analogous to that
of persistent currents in a superconductor, ' there
is one important difference. In the superconduc-
tor, J is a nonlinear function of vp which reaches
a maximum at some value of vp. This maximum
is the critical current density. In the excitonic
insulator, J has no maximum as a function of vp.

Rather it appears that the critical current density
will be set by that value of vp for which

I=-,'N(0)V f, d)»» f „" d«»(«,'+«oo) '"
x(1 f-,-f,). (3. ia)

In (3. 13), the correct limits on the «„ integral,
namely, (+K&o —Pzvop, »), have been approximated by
+I'e. This leads to negligible error for all values
of vp of interest here.

Minimizing E'with respect to f„,and f », , we
find that f», and f », are Fermi factors associated,
respectively, with energies

E» g
= ( «»+ «o) + Q «» + [1+ (0 —2y) ]pg 'vo i»»,

(3. 14)
~», ~

= («»+«0}' o' &»+ [I (o' 2y) ]Ppeo &» ~

We now set

k ' vo=Pz ~pp (3.1i) E(vo) =E„, (3. 2i}

I»= l [I-«»(~»+«o) "'l
where &p satisfies the gap equation

(3. 12)

in all terms proportional to f», . Here pz is the
Fermi momentum and p, ~ is the cosine of the angle
between k and vp.

Minimizing I' with respect to k&, we get

J'„being the free energy of the normal phase.
Here we have formed states of finite electric cur-

rent by pairing (k- K, 0) with (- k+K, 0). It has
been suggested by Kozlov and Maksimovs that a
state of zero electric current but finite energy
transport could be formed by pairing (k+K, 0}with

(- k+K, 0). Although this is correct, such a state
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appears to be physically inaccess@le in the sense
that there is no force which can generate it when

applied to the ground state. Thus such a metastable
state will play no role in ordinary physical
phenomena.

IV. LONG-RANGE ORDER

Jerome gt al. have buttressed their argument
that the excitonic insulator cannot superconduct by
pointing out that the ordered phase does not have

off di ago-nal long mn-ge ovder (ODLRO). Rather,
it has diagonal long tan-ge order (DLRO). Both
types of long-range order are defined in terms of
the two-particle density matrix, the latter being the
thermodynamic average of the product

0'(r2) 0'(r&) 4(rD ((ra') . (4. I)

%e have ODLRO when the density matrix remains
finite as ) r~ —rl I, provided r& = r3 and r& = rz .
In contrast, we have DLRO when the density matrix
stays finite as (r, -r2i -~, provided r,=r,', r,
= ra. In the above product, g(r) is the conventional

one-electxon wave operator, which can be written as

4(r) =le(r)+0,'(r) . (4. 2)

Here g, (r) is the wave operator associated with
ucfion band; (,(r) is the wave

operator associated with holes in the valence band.
In other words, g, is a linear combination of con-
duction-band electron destruction operators; g, is
a linear combination of valence-band hole destruc-
tion operators.

Let us define a slightly different form of two-
particle density matrix, ' namely, the thermody-
namic average of the product

('(r~) ('(r&) 0 (r ~) 0 (r2) .
It is easy to check that, in the ordered phase, this
latter form has ODLRO rather than DLRO. The
conclusion is that diagonal versus off-diagonal long-
range order is a function of one's bookkeeping. The
excitonic insulator is a system where Yang's
criterion seems ambiguous.
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