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A recent work on the critical properties of Ornstein-Zernike (OZ) systems in which the di-
rect correlation function C(r) behaves as —(kT) 'w(r), for r & 0, where w(r) is the finite part
of the pair potential between particles of a lattice gas with point hard cores, is extended to
long-range interactions se(r) ccr '""&,for 0 &0, where r =

( r ( and d is the dimensionality. The
relationship between OZ systems, the spherical model, and the mean spherical model is
established, noting that the conditions defining an OZ system are precisely those of the mean
spherical model. Explicit expressions for the asymptotic correlation functions in the critical
region are obtained, and it is shown that, despite the long-range nature of the interaction,
the relation between the exponent g and the shape of the critical isotherm coincides with the
relation predicted by the scaling theory, within a certain range of 0 for fixed d. The equa-
tion of state is considered both above and below the critical temperature T„and a breakdown
of Widom's homogeneity argument is exhibited. The equation of state for T & Tc makes pos-
sible the determination of the coexistence curve for all values of d and 0 for which the system
has a critical point; and it is shown that, when applied to short-range interactions, the dif-
ficulties found previously by Stell no longer appear.

I. INTRODUCTION

The use of exactly solvable models which exhibit
a, pha, se transition to study the nature of the criti-
cal point is commonly recognized. Among these
models the ideal Bose gas' and the spherical
model of a lattice gas or ferromagnet have re-
cently been reconsidered and the behavior of the
thermodynamic properties and correlation functions
in the critical region have been obtained with con-
siderable detail.

A class of exactly solvable systems, which
may also be viewed as models, the so-called
Ornstein-Zernike (OZ) systems, have recently
been considered by Stell. If the pair interaction
between particles a distance of r = Ir I apart is
given by w(r ) outside a hard-core radius a, these
systems are defined by the statement that the di-
rect correlation function C(r) = —Pw(r) for all r &a,
where P=(ksT) ', ks is Boltzmann'sconstant, and T
is the temperature, For r &a, the direct correla-
tion function is determined by the condition that
the radial distribution function g(r) vanishes inside
the hard core. The OZ systems thus defined in-
volve a stronger assumption about C(r) than the
usual OZ hypothesis, ' that C(r) behaves as —pw(r)
only for r such that pw (r ) « l.

The study of the critical properties of OZ systems
with short-range interactions reveals some inter-
esting aspects of the recent theories of the critical
point described by Widom's homogeneity arguments
and Kadanoff's scaling hypothesis. A breakdown of
homogeneity is found for a particular value of d, the
dimensionality of the system, and a result which

is not in agreement with scaling already appears
when d &4. These results come from an interplay
between correlations at large and small r, also
present in the ideal Bose gas and spherical model,
but apparently they have not been fully appreciated
in the recent works on these models. We believe
this is of some significance, since the scaling hy-
pothesis only refers to correlations at large r
(large compared to the lattice spacing in the case
of the Ising model or lattice gas).

In this paper we consider OZ systems with long-
range interactions of the form r '"", for r &p,
and o &0. Our motivations may be summarized by
the following remarks. First, we note the role the
dimensionality plays in exhibiting the previous fea-
tures of OZ systems with short-range intera, ctions
and ask if there are similar breakdowns for a long-
range interaction with varying range, for a fixed d.
It should be noted that the scaling hypothesis makes
the implicit assumption that the interactions cannot
be too long ranged and it would be interesting to
find out what this precisely means, at least for OZ
systems.

Second, the remark has been made that the
spherical model is an OZ system. The work
available on OZ systems presents then a difficulty
in the subcritical region. For a fixed 7 & T„« the
correlation length remains finite on the coexistence
curve for d&4, whereas it does not seem possible
to locate the coexistence curve for d =3. This
should be compared with the behavior of the spheri-
cal model, which has a well-defined coexistence
curve when d = 3 and for all higher d, as follows
from a generalization of the standard calculations
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for the spherical model. ' In all cases the corre-
lation length is infinite on the coexistence curve.
%e may therefore ask if the spherical model, and
the closely related mean spherical model, are in-
deed OZ systems as suggested by Stell. A clarifi-
cation of this point may enable a proper compari-
son with the recent work on the ideal Bose gas,
which has a critical behavior similar to that of the
spherical model.

Our main results for a system of particles on a
regular lattice are the following. First, we recog-
nize that the conditions which define an OZ system
are the same as the conditions on the direct corre-
lation function for the mean spherical model intro-
duced by Lewis and Wannier~ and extended by
Lebowitz and Percus. ' %e introduce a convenient-
ly generalized correlation length familiar for sys-
tems with short-range interactions„when o' &2, and
obtain an explicit expression for the asymptotic
correlation function in the critical region, which
exists for m &d, where I = min [2, o]. The crit-
ical exponents of the new correlation length are ob-
tained for T & T„where T, is the critical tempera-
ture. The exponents predicted by mean field theory
are obtained when o'& 2 and d &4. Next, the equation
of state is obtained from a modified fluctuation re-
lation and the exponents y and 5, describing the in-
verse compressibility on the critical isochore and
the shape of the critical isotherm, respectively, are
shown to exhibit the classical mean field values
for m &d - rn. Nonclassical exponents are obtained
for I &d —m and a relation between d, 5, and g, the
exponent describing the decay of the asymptotic
correlation function is obtained. This relation co-
incides with the one derived from sealing theory
when I &d —m, despite the long-ranged nature of
the interaction. %'e also note that the equation of
state is nonhomogeneous when m = ~ d.

%e use the modified fluctuation relation to show
how the coexistence curve can be derived for al/
d such that m &d, and remark that in the same way
the coexistence curve for d = 3, in the case of short-
range interactions can be derived. %e find that the
correlation length is infinite on the coexistence
curve for all d &rn, but that the compressibility re-
mains finite, and the exponent y hasitsmeanfield
value, for I &d —VE ~

The critical exponents we obtain are those of the
spherical model and the reason why this is so is
discussed in some detail and the difficulties pre-
viously encountered with OZ systems are, hopeful-
ly, somewhat clarified.

II. FORMAL RELATIONS

(2. lb)

(2. lc)

A convenient occupation-number description of
the lattice gas, consistent with (2. lb), is then pro-
vided by the occupation variable r; —= v{r;) taking
the values 0 or j..

In the spherical model, 7& can take any real
value subject to the spherical constraint

(2. 2)

while in the mean spherical ' ' model the condition

(2 3)

must be satisfied. The average is over the particle
distribution and, for a uniform system, ( [2(7,.
——,)] ) equals unity.

The lattice-gas analog of the radial distribution
function g(r) and the pair correlation function h(r),
or the related function g(r), are defined by

{2.4a)

=(7,) h(r, ,)+5;, , (2. 4b)

where 5;; is the Kronecker 6 and the system is as-
sumed to be uniform; T& being a typical occupation
number. Equations (2. 4) can be expressed in terms
of ( 7,) = p, the number density of the system. The
constraint of the mean spherical model states then
that

vector with integer components and the length of a
side of the lattice, I- = 0'~, will also be an integer
which we assume to be even. The lattice is as-
sumed to be wrapped on a torus to ensure periodic
boundary conditions. %'e shall restrict the discus-
sions to a lattice gas of N particles and point out
that similar results can be obtained for the corre-
sponding ferromagnet.

The particles are assumed to interact via a pair
potential v(r) with a "point hard-core" part q(r),
which excludes multiple occupancy of a lattice site.
It is conventient to break U(r) into

n(r) = q(r) +w(r),

g('Y(g) = 0 when 7 gg
——0, (2. 5)Vfe consider a simple "cubic" d-dimensional lat-

tice of 0 sites, with unit volume per site. Then
r&, the position vector of 'the ith site, will be a

where x&;= Ir;& I = lr& —r; I. In the spherical model,
Eq. (2. 5) only holds on the average.
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The correlation function }((r) and the lattice-gas
analog of the direct correlation function C(r) are
related to one another —via Eq. (2. 4b) —by an

equation which takes its simplest form in terms of

Fourier lattice sums,

)((k) = 1+pk (k)

= [1-pC(k)]-', (2. 6)

of the coexistence curve is given by

~p
—p, ~

-(T.—T)' as (T, p)-(T„p,), (2. 14)

where the exponent P is not to be confused with

P= (ks T) ' used as a coefficient throughout this
work.

III. PAIR CORRELATION FUNCTION FOR OZ SYSTEMS

where

f (k) = Q f(r) e '" ' ', (2. 'I)
C(r) = Co 5„0+C&(r) (S. 1a)

For a lattice gas with point hard cores it is con-
venient to separate the direct correlation function
C(r) into

the summation being over all lattice vectors and

f (r) = II-'Z;f (k) e'"'
such that

C,(r) =0 for r=0 . (S. Ib)

(2v) f f(k)e'"''dk as A-~, (2. 6)

where in the summation k is confined to the first
Brillouin zone, k= (2m/L)n, n having integer com-
ponents with values between —&L and &I . The
integral goes for k from 0 to 2g.

The correlations are normally assumed to be re-
lated to thermodynamic properties by means of the
fluctuation relation

P =Pp ——= [X(k)].
Bp Bp f o

(2. 9)

—=p —-(T —T,)y as T- T', for p=p, , (2. 10a.)BP Bp

Bp Bp

(T, —T)" as T- T, (2. 10b)

on the coexistence curve.

p- p.- p —p. ~p al' sgn-(p p.)-

where P is the pressure and p, is the chemical po-
tential. At the critical point, where (&p/sp) = (& p/
Sp) =0, one has with (2. 6), [X(0)] '=1 —pC(0) =0.
In the neighborhood of the critical point one expects
the behavior of X(k) and C(k), for small k, to be
relevant.

The critical behavior of the thermodynamic prop-
erties will be assumed to be expressed in terms of
critical exponents defined as follows':

The OZ systems we shall consider in this paper
are then defined by'

C, (r) = —Pw(r) for all r &0,

and Co is determined by the condition that

g(r) =0 for r =0 .

(3.2)

(3. 3)

Equation (3. 2) also defines C~(r) in the sphericals'8
and mean spherical model, while Eq. (3. 3) coin-
cides with the mean spherical constraint (2. 5).
Therefore, the direct correlation function C(r) and

the thermodynamic limit of the pair correlation
function X(r), for OZ systems, are identical to
those of the mean spherical model. Then it follows
that the Helmholtz free energy obtained by the
integration of the configurational internal energy

U„„&= -'p[w(0)+Z; w(r) k(r)] (3. 4)

over P —the P dependence of k(r) is not displayed
in Eq. (3.4} —is also the same for OZ systems
and the mean spherical model. The work of Lebo-
witz and Percus" can then be used to obtain some
of the thermodynamic properties of OZ systems,
which we consider later in this paper.

We extend here the work of Stell on OZ systems
to long-range interactions of the form r&&""' be-
tween particles at the ith and jth sites of the lattice.
We take 0 &0 and normalize the interaction to
yield a finite energy per particle,

as p-p, for T=T, , (2. 11) w(r, ,)= rw, !'"'/Q'r ""' (3 5)

where the subscript c stands for the critical point.
The specific heat C„can be described either by

C„-(T—T,) as T- T', for p=p, , (2. 12)

or, more conveniently, in terms of the singular
part of C„,

where mo & 0 and finite, and the prime denotes sum-
mation over i 4j.

The Fourier lattice sum of C(r) is obtained from
Eqs. (3. 1), (S. 2), and (3. 5). In the critical region,
where one expects the small-k behavior of C(k) to
be relevant, one obtains

C„-A(T—T,) ~+B as T- T,' for p=p„(2. 13)
C(k) = C (0) -A 2 k —A, k'+ (S. 6}

where A is not necessarily a constant but propor-
tional to ln(T- T,) if a, is an integer. The shape where k = Ik l, A2 and A, are non-negative finite
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» = [p A )((0)] " (s. 6)

m = min[2, o] . (s. 9)

It should be noted that Eq. (3. 7) is an asymptotical-
ly exact expression for OZ systems in the critical
region. When m = 2, following the argument of
Fisher and Burford, ' ~ ' may be taken as an ef-
fective correlation length. Upon Fourier inversion
of Eq. (3.7) one expects that, regardless of m,
)((r) for large r will be a function of »r with two
different asymptotic forms, one for ar «1 and the
wther for ar»1; both for small v. It is in this
sense that we will refer to ~ ' as a correlation
length whenever o & 2 in the course of this paper.

The explicit asymptotic forms of X(r) follow from
Eqs. (3. 7) and (2. 8). Transforming to polar co-
ordinates in the latter, one has, in the critical re-
gion,

»lol«r»)
d/2i-4(o k J4go i(kr)

dk
&m+ km (s. 10)

where r = Ir I, D is a constant, and J,(x) is the
Bessel function of first kind. The integral can be
evaluated, for small K, by a procedure outlined in
the Appendix and we find, for any fixed r

[» l4oolx(r~ »)]4~«i

=fo(r) +f i(r)» +fo(r)»

constants, and C(0) is finite and positive. The lead-
ing power is k when the second moment of 4o(r)
exists, i. e. , when o & 2, and it becomes k' when
«2. Furthermore, the leading power in k is the
same for all states of the system. This is no longer
the case for the lattice gas and the Ising model
where C(r) is much more complicated. Neverthe-
less, for a ur(r) of the form here considered one
still expects to find a C(k) like Eq. (3.6) with an
additional term that at the critical point appears to
be of the form A~k~. For the nearest-neighbor
case the k' term is absent but one still has a com-
petition between the k and k terms at the critical
point. In the two-dimensional Ising model with
nearest-neighbor interactions P = 74, and the k term
dominates.

Introducing (3. 6) in Eq. (2. 6) one finds that

[)((k)] '=PA~» [1+(k/») ], (3. 7)

where

do(»r)-"/r' '+. ~ ~, (s. Is)

where do is a finite constant. Equations (3.12) and
(3. 13) hold in the critical region, where»-0. The
former is for large and fixed r, while the latter for

It can also be seen that )t(r, »r) is a homo-
geneous function of r and ~ ', for large r and
small v.

Comparing y(r, »r) with the usual asymptotic
form of the correlation function in the critical re-
gion, it follows that the exponent p is given by

g 2 m Q (3. 14)

When m = 2 one recovers the expression for g and

}((r,»r), if »r «I, already found by Stell for near-
est-neighbor interactions. On the other hand, when
m = o our results generalize those obtained by
Joyce for the spherical model.

We describe the critical behavior of z in terms of
exponents as follows:

»-(T- T,)"' ' as T-T,'for p=p, (3. 15a)

-
l p —p, l

' ' ' as p- A, for T = T, (3.15b)

- (T, —T)" '~ as T- T, on the coexistence curve.
(3. 15c)

The explicit critical behavior of the asymptotic
correlation function in terms of IT- T, l and ip
—p, I

—via v —follows by taking into account condi-
tion (3. 3). This states that }((r)I„o=1 —p. To-
gether with Eq. (3. 11) we then obtain

»(1 —P) =[»(1—P)],+ 8(» )

i 6 (»' ) + 6 (»' ln»), (3. 16)

where the subscript c denotes the value at the criti-
cal point. Depending on which of the terms in the
right-hand side dominates near the critical point,
one obtains the following set of equations:

where n is an integer equal or greater than 2.
Equation (3. 11) is, of course, meaningful for a
finite P at the critical point only when m &d. Using
the asymptotic forms of f;(r), for large and fixed r,
one also finds that

[» l~o lx(r»)]

[»I4oo
I
y(r»r)] «1 [co+c1(»r)

+ co(»r) + co(»r) In(»r) + ~ ~ ~ ]/r4 ™,(3. 12)

where co, c&, c2 are finite constants and c3 = 0 un-
less d =nm.

We also find, in the limit of very large r,
[» la'olx(r»r)]. »i

+f,(r)»4 ln»+ (3. 11) —p, hP+P, M =8(» ) for m&d-m

where fo(r), f,(r), fo(r) are finite nonzero func-
tions at r=0, fo(r) =0 for all r, unless d=nm,

=6(» ) for m &d —m

=8 (» ln») for m = —,'d, (3. 17)
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where P = (haT) ' to distinguish from the exponent
P of the coexistence curve; ~P = P —P, and M = lp
—p, I are small quantities and terms of the order
M ~P have been neglected.

Several points should be noted. Equations (3. 17)
determine completely the critical behavior of K,

for T &T„ in terms of exponents. In fact, with
the definitions (3. 15) we obtain

v(m) = 1/m for m & d —m,

e(m) = 2/m for m & d —m,

v(m) =1/(d —m) for m &d —m,

e(m) =2/(d-m) for m&d-m,

(3. 18a)

(3. 18b)

where, for simplicity, we restrict ourselves to
m 0 2d. When m = 2d, it is clear from Eq. (3. 17)
that v is not a homogeneous function of ~P and M~.
What this implies about the equation of state will
be made clear in Sec. IV. It can also be seen from
these results that the classical exponents are re-
covered when m = 2 and d & 4.

It should be noted that while the exponent g is
determined by the behavior of y(r, xr) for large r,
the temperature and density dependence of the cor-
relation function for any vis determined by the
sma. ll-r behavior of )((r, xr)

Equation (3. 17) is valid in the one-phase region
around the critical point, both for T & T, and T & T,.
The computation of v (m) requires, however, the
form of the coexistence curve and will therefore
be considered in Sec. IV.

Finally, we note that despite of the fact that
X(r, xr) is a homogeneous function in r and w, it
is not a homogeneous function in ~P and M when
m=2d.1

IV. EQUATION OF STATE AND THERMODYNAMIC
RESULTS FOR OZ SYSTEMS

~p ~p.
P—= Pp —=pA K

~p ~p
(4. 2)

The source of the difference between the normal
fluctuation relation and the one satisfied by the
mean spherical model has been discussed else-

For systems for which the fluctuation relation
holds the equation of state may be obtained, up to
a function of T, by the integration of Eq. (2. 9). As
shown by Lebowitz and Percus, however, the mean
spherical model —and according to our previous
discussion, OZ systems in general —does not sat-
isfy the usual fluctuation relation. One obtains in-
stead"

~P ~P, ' ~K
6 =Pp =—pA:& +—p(p p. ) A -. (4. 1)

Bp Bp 9p

This should be compared with Eq. (2. 9) expressed
in terms of x with the aid of Eq. (3. 8),

where and we shall not go into it. We simply dis-
cuss the implications of Eq. (4. 1).

The nonhomogeneity of z as a function of bP and
M, referred to in Sec. III, implies that for m = 2d
the equation of state will not be homogeneous in
these two variables. This contradicts Widom's
homogeneity hypothesis and the point to be made
here is that, for OZ systems, this is due to the
interplay between the correlations for small and
large x.

The derivative of the equation of state given by
Eq. (4. 1) yields further relations for critical expo-
nents. Thus, on the critical isochore the usual
relation

y=(2 —q) v(m) (4. 3)

is obtained. On the critical isotherm one finds that

(6 —1) =(2 —0) e (m), (4. 4)

y=1 for m &d —m,

6=3 for m&d —m,
y =m/(d —m) for m &d —m,

6=(d+m)/(d —m) for m &d —m .

(4. 5a)

(4. 5b)

The mean field results are obtained when m &d —m.
This is the case when d &4 for a long-range inter-
action [Eq. (3. 5)j with finite second moment, and
when d &2@ if o & 2. One also notes that when use
is made of Eq. (3. 14) one finds

7)=2-d(5 —1)/(5+1) for m &d —m,
r) &2-d(6 —1)/(5+1) for m &d —m .

(4. 6a)

(4. 6b)

The first is the relation predicted by the scaling
laws but the second is not. The scaling-law theory
of the critical point is somehow based on the as-
sumption that the interaction should not be too long
ranged. What this precisely means does not seem
to be known and Eq. (4. 6a) illustrates, at least as
far as OZ systems are concerned, that the interac-
tion may be as long ranged as Eq. (3. 5), provided
d & 2m, where m is given by Eq. (3. 9).

The conjecture has been made that for any fixed
d, no matter how large, a region around the criti-
cal point should exist where the predictions of the
scaling-law theory should hold. The interaction
(3. 5), when o & 2, leads to a critical behavior for
OZ systems which in many aspects is that of a sys-
tem with a short-range interaction, and Eq. (4. 6b)
illustrates that the dimensionality conjecture
breaks down already for d = 4 when m = 2.

The behavior of q exhibited by Eq. (4. 6) is a

both for m 0 —,'d. It should be noted that Eq. (4. 4) is
the same as the relation that follows from the usual
fluctuation relation, Eq. (4. 2).

Using Eqs. (3. 18) we then obtain
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consequence of having imposed condition (3. 3) on

)((r). In the scaling-law theory the fluctuations
scale on a distance r which is large compared to
the lattice spacing. For our particular choice of
a lattice made in Sec. II this means r» 1. There-

foree,

correlations for small x, either r = 0 or x = 1,
are already outside the frame of the scaling laws
and one should not be too surprised, perhaps, that
(4. 6b) does not support the dimensionality
conj ecture.

We wish to emphasize that our results for OZ

systems, based on the exact asymptotic expressions
for the correlation function in the critical region,
are exact. Equation (4. 6) should be compared with
the inequality for quite general systems obtained
through a plausible argument by Gunton and Buck-
ingham. ' The same inequality seems to hold also
for non-OZ systems. '

We turn now to the equation of state in the sub-
critical region, with special interest in the coexis-
tence curve. First, we note that Eq. (4. 1) is not
restricted to the one-phase region but it also holds

inside the transition region of the mean spherical. "
For any fixed T &T, (P &P,) we may therefore write

p(p, P) —p(p, P) 1
I

' sv(n P) d
p —p, p —p, ~n

~c

K (n, P)+(n —P,) S
' dn .

As noted before, the correlation functions and,
hence, the solutions of Eq. (3. 17) are only definite-

ly valid in the one-phase region, and they may not

hold in states of the two-phase region. ' To deter-
mine the coexistence curve, however, all we need

is the analytic continuation of the one-phase a in

Eq. (4. 7) combined with the condition

+P,(p -p.)'] for m &d —m

= const'x [-p, &P

~p,(p-p, ) ] '" ' form &d —m.

l9 p,
=P

~P c.c.~P c.c.

QP Bp,
=p — =0 for m&d —m

a ac.c. P c.c.
) (4. 14b)

When m =2 and d=3, the second has precisely the
same form as the equation of state of the three-
dimensional spherical model with short-range in-
teractions, derived by Langer. The first equa-
tion has the form one finds for the d-dimensional
spherical model, odd d & 5, by a straightforward
generalization of the work of Langer.

Equation (4. 10) identifies the coexistence curve
with the locus of e = 0, for all m &d. When m = 2,
the analog of short-range interactions, this is the
case for all d & 3, in contrast to the result of Stell,
who found that the coexistence curve does not coin-
cide with the locus of ~ =0 for d &4 and that there
is no coexistence curve for d = 3, if the usual fluc-
tuation relation, Eq. (4. 2), is assumed to hold.
Equation (4. 10) also says that the correlation
length I(.

' is infinite on the coexistence curve for all
m &d. This implies that v (m), the exponent in
(3. 15c), is undefined. It should be noted that the
same occurs in the spherical, which is briefly con-
sidered in Sec. V. We note also that the exponent
P of Eq. (2. 14) is, according to (4. 11),

(4. 13)

The inverse compressibility on the coexistence
curve (denoted by the subscripts c. c. ) obtained
from Eq. (4. 1) and (4. 11) is given by

p(p, +M, P) = p(p, —M, P), (4. 8)
and in terms of the exponent y this means

the transition taking place at p = p, +M.
Integration by parts converts Eq. (4. 7) into

P(P P) —P(P„P) ~ p-1[ ( p)]
p —pc

and condition (4. 8) yields

K(p, P ) = 0, coexistence curve

or, in terms of Eq. (3. 17),

—p, AP y P, (p —p, ) = 0 all nn &d .

(4 9)

(4. 10)

(4. 11)

p
P(P& p) —P(Pc~ P „ t [

a

p —pc

Several points should be noted here. First, Eq.
(4. 9) combined with Eq. (3. 17) becomes

y =1 form&d —m,

y, undefined for m & d- m .

(4. 15a)

(4. 15b)

p=p, and T &T, ,

6 [(gT)mv-1] S[(gT) (d-m &v -1]

Again, these results are the same as those for the
spherical model with long-range interactions (3. 5)
when m = v & 2, and those for short-range interac-
tions when d & 3.'

We consider now the critical behavior of the
specific heat C~. This requires a term-by-term
differentiation in Eq. (3. 4), justified by the finite
specific heat which is thus obtained. Making use
of (3. 11) and (3. 15a) we find, for
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e 6 [(n,T)~" '" ln(nT)],

where ~T=T- T', and

8 = 1 for d =nm, n: integer & 2

= 0 otherwise.

(4. 16)

(4. 17)

The case where m = 2 leads to the same results as
those already obtained by Stell and we shall, there-
fore, restrict ourselves to m=0. We are interested
in C„for n.T-O, and the leading term in Eq. (4. 16)
will thus be the one with the smallest positive
power or largest negative power. Comparison with

Eq. (2. 12) then yields

v=(1 —n)/o for o & d- o,
v=(1 —a)/(d- o), for o &d-o .

(4. 18a)

(4. 18b)

From this and Eqs. (3. 18) it follows that n = 0 for
all d &0, and the specific heat remains finite. One

is interested then in the "singular part" of C~ and

in the exponent n, . This is determined as follows.
Let

f = min[o, d - o] . (4. 19)

W'hen / =0 the dominant part of C~ is given by the
first term in Eq. (4. 16) and the next to dominant
term has an exponent

—o.*= (d- 2o)/o & 0, d xno, (4. 20)

—o'*=(2o-d)/(d-o) &0. (4. 22)

In this case, C~ has a singular part and we have

n, = n* only for d/o 4 (no+ 1)/no, where no is an in-
teger equal or greater than 2. This behavior is
similar but somewhat more involved than in the
ca,se of short-range interactions, where there is
only one d, namely, d=3, for which no singularity
in C~ appears.

The above results can be summarized, for d+n0,
in the form

o.,=(2o —d)jo for o'&d —o

=(d 2o)j(d —o) for o &d —o,
or, with Eq. (3. 18),

(4. 23a)

(4. 23b)

&~= 2 —dv . (4. 24)

where use has been made of Eqs. (3. 18). More-
over, since d 4n0, —&* is not an integer and C~
has a singular part, with

(4. 21)

When d =no the 1n(AT) term is the next to dominant
one in Eq. (4. 16) and there is again a singular part
of Cv.

On the other hand, when I =d —0', the dominant

part of C» is given by the second term in Eq. (4. 16)
and the next to dominant one has an exponent

This relation is consistent with the result obtained
from scaling theory. When n, & 0 we have thus a
way of deciding between 0. =0 and n = 2 —dv, where-
as scaling theory does not. This result is the
same as for short-range interactions.

The simple considerations made up to here can-
not be used to determine C ~ for 7 & T, due to the
fact that v is undetermined. One would expect,
however, that if the specific heat is determined
from a full knowledge of the configurational internal
energy, the exponent n on the coexistence curve
would satisfy the symmetry n = n = 0.

V. COMPARISON WITH SPHERICAL MODEL

Our previous results indicate a clear resem-
blance with the results for the spherical model.
This is perhaps not surprising after our identifica-
tion of OZ systems with the mean spherical model.
Despite the fact that the constraints of the spheri-
cal and mean spherical model are not precisely
the same, the two models are expected to have the
same thermodynamic properties, as argued ex-
plicitly by Yan and Wannier' for the case of short-
range interactions. A straightforward extension
of their work to allow for long-range interactions
of the form (3. 5) shows that the distribution of
the variable ~; =- 2(»; —2) is a Gaussian with aver-
a.ge ( ~;) = 1 —p/p, and ( ur', ) = 1, for T & T„and a
superposition of two displaced Gaussians with

(m;) =+(1-p/p, ) and (&u;) =1, on the coexistence
curve, for T &T,. One also expects the correlation
functions in the thermodynamic limit to be the
same for the spherical and mean spherical model
but some differences may occur in the explicit form
of the fluctuation relation, as is apparent from
the work of Lebowitz and Percus. "

In addition to these remarks it is interesting to
note the following. The correlation function )i(r),
for r =0, can be expressed for OZ systems in the
form

up(1- p) l~ol =(»)" &-"" ""
dk, (5. 1)

w(0)

where w(k) is the Fourier lattice sum of w(r) and

(5. 2)

for the specific long-range interaction we consider.
Equation (5. 1) is then formally the same as the
saddle-point equation for the spherical model in
which g is the saddle-point parameter. Similar-
ly, )i(r) for» WO is also the correlation function for
the spherical model, and Eq. (5. 2) then associates
the inverse correlation length I( with $', a power
of the saddle-point parameter. The critical point
and the phase transition of the spherical model are
characterized by $ = 0, which means then, an in-
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finite correlation length. This is a result for the
spherical model which does not depend on dimen-
sionality provided the system has a transition, of
course, and it illustrates the fact that also in this
model the coexistence curve coincides with the
locus of K =0, as we found to be the case for OZ
systems, for all d &m.
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APPEND/X

We consider the integral

(A1)

where

(A3)

the dependence on K alone coming from the upper
limit of integration. We approximate F„(zr) by
Fo(zr), noting that this should yield the correct
asymptotic dependence on n, for large r and
small K, and the task is then to compute the result-
ing integral in (AS). We do not know of a simple
evaluation of such an integral and are forced to
use the following somewhat lengthy procedure.
First, we compute the integral for d & 0, the range
of convergence, and then we give the extension to
d &0, the physically interesting case in this paper.

Take the integral representation of the Bessel
function

and insert it in Fo(er) After i.nterchange of the
order of integration, use of the integral

where p = —,'d —1, m is given by Eq. (3. 9), and we
first let 0&a & 2. The extension to o &2 will be
commented later on. For x 10 it is convenient to
rewrite (A1) as

and making the substitution

2t+d —o =27,

I(r, z) =F„(xr)/r "'"' (A2) we obtain

(A4)

r=p+ 2(d —o) = zol (A5)

is satisfied. Thus, if d &0, the pole with P=O is a
simple pole. Figure 1 enables to visualize when
double poles do occur. The residues of these poles
are given by

where z = 2n. The integral is to be computed clos-
ing the contour of integration in the complex 7

plane. For z«1, this is achieved by a semicircle
to the right of the line R, 7'= z(d- o) and a deforma-
tion of the contour to include only the poles of the
integrand with R, v & 0. For z» 1, the contour is
closed by a semicircle to the left of that line. The
poles of the integrand may be simple or double, as
emerges from Table I. Since d &0, double poles
may occur only among those of types 1 and 2, and
this is the case when

[ao(7) +a, (r) Inz] z",
evaluated at v satisfying (A5), where ao(r) and a, (r)
are regular, nonzero functions of 7, d, and o.

The extension to d && is obtained noting that the
poles of type 2 move to the right together with the
contour, whereas the poles of types 1 and 3 stay
where they are. To obtain Fo(z), for z « I, the
contour of integration must be deformed to include
the poles of type 1 which remain outside the old
contour when shifted to the right. The new con-
tours, for z «1 and z» 1, in the case where d & 2o,
are shown in Fig. 2. When d &2o, the pole of type
2 with largest residue lies to the right of 7 = &o,
whereas the double pole with largest residue occurs
when P =0 in (A5), i. e. , at ~= 2o if d=2o. It is
also clear that further double poles occur for inte-
gers n such that d =no', n & 3, but their contributions
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TABLE I. Poles of the integrand in Eq. (A4). Only the simple poles are listed explicitly for d&o.. l and p are
positive integers or zero, q is a positive integer.

Function

r[- (2/0)&]

I'[ &d-20-v ]

r [1+(2/0) v]
r [cr/2+ ~]

Poles

(1) ~=-2~l

(2) v =p+ ~ (d —o)

(3) v= —~~0 (q+1)

Residues

(- 1) I'(—d -—o ——Ol) I'(1+l),)
r [-,'~(1+ l)]

(-1)p r [1-d/0 - (2/o)p] r[d/0+ (2/0)p] 2p

pt r(p+-,'d)

(-1)' r(-,'d+ 2~q)r (1+q),(„()
q'I r (- ~oq)

+c,(Kx)" ' ln(Kx)+ ]/x ', (A6)

I(x; Kx»1) do(Kx) ='/x" '+ (A7)

where co and do are positive constants, as they
should be, since the results are proportional to the
correlation function. Also, from our discussion it
follows that c3=0 unless d=na, where n &2.

A simple test of Eq. (A6) may be provided com-
puting explicitly the ratio c, /cg for d = 3 and o' = 1.

to Fo(z), for z «1, are dominated by poles of type 1
with I & 2. Also, the larger d/o becomes, the
more poles that have to be included by deforming
the contour in the way of Fig. 2.

The residues of the simple poles for d &0 may
be obtained from Table I by analytic continuation.
For this purpose, we assume that in the first
part d and o were such that (o —d) & 2 in the inte-
gral (A4), befoxe the extension to d&o. Then one
obtains, for small v and large r, the results for
(Al) in the form

I(x; Kx «1) = [co+c,(Kx)'+cg(Kx)"

The result is —m/2, and coincides with the one ob-
tained by Joyceg who studied I(x, K) only for o = 1

and d = 2 and d= 3. One can also see that the n and
x dependence of Eqs. (A6) and (A7) are those ob-
tained by Joyce in the particular cases he consid-
ered.

The procedure outlined for o & 2 can be extended
to 0 &2, i. e. , m=2 only for ~r«1. This is due
to the fact that a gamma function in the numerator
of (A4) cancels with the one in the denominator, for
all 7, and consequently, all the poles to the left of
the contour are removed and the integral for n»1
would be zero, which we know cannot be right from
the standard expression for I(x, Kx» 1) when m = 2.
However, for Kx«1, one obtains Eq. (A6) with o
replaced by 2, which has the known form of I(x, Kx

«1) for this case.
We look now at I(x, K) for small K and x 0and-

note that the integral has been obtained by Joyce in
the analysis of the saddle-point equation of the
spherical model. His results may be summarized
in the form

[I(x, K)]„p=bg+bg K +bg K +bg K
' 1nK+ ~, (A8)

d -a'
2

~l fm g&0

Complex V plane

A Im T&0

d-o,
l

2

Complex 'T plane

0 Re'1+0 0 Re T&0

d-a'
2

d-a'
2

FIG. 1. Poles of the integrand in Eq. (A4) in the com-
plex g plane and contour of integration for z «1. The
poles of type 1 are indicated by Q, those of type 2 by z,
and of type 3 by ~. The case d & a is illustrated.

FIG. 2. Poles of the integrand in Eq. (A4) in the com-
plex z plane and contours of integration for g «1 and
z» 1 in the case where (7& d & 20..
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where bo, b&, . . . are constants and b3=0 unless
d =2o. It is possible to see from Joyce's work that
additional logarithmic terms do appear for d =no,
with n an integer larger than 2. These terms are,
however, of higher order and they can be included
formally in Eq. (A8) extending b p to be zero unless
d=mo, where 1=2, 3, . . .

Equations (A6) and (A7) are valid in the limit of
very large r. For large but finite r, the constants
in these equations become functions of r and in the
limit of r-0 one should expect them to go over into

I(x'&»'r « 1) =fp('») +fy(t)»+fp(v')»

+f,(r)»' ' ln»+. ~ ~, (A9)

where fp(t'), fq(r), and f,(x) are finite and nonzero
for ~=0 and fp(~) =Ounless d=mo, where m =2,
3

p ~ ~ ~

the constants in Eq. (A8), if f(r, ») has the correct
dependence on Kr, for small K and any fixed r. In
other words, for any fixed r, we have
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The energy eigenvalues, eigenfunctions, and radiatively induced transition probabilities
are computed perturbatively for an axially symmetric paramagnetic ion for arbitrary relative
orientations of the crystal symmetry axis, static magnetic field, and time-varying magnetic
field. Exact calculations are also reported. for a system in which S= 2, I= 2. The bearing of
these results on dynamic-nuclear-orientation experiments in paramagnetic samples is also
discussed.

I. INTRODUCTION

The EPR spectra of many paramagnetic ions
that have been successfully studied xperimental-
ly' can be understood in terms of he spin Ham-
iltonian

X= p~ HI A, $&+& I„Acr S, +R„I H ~ I
Al kl

where the symbols have their usual significance.
The energy eigenvalues, eigenfunctions, and ra-
diatively induced transition probabilities for such
a system have been calculated perturbatively for


