
GAP EQUATION FOR THE TWO- BAND SUPERCONDUCTORS ~ ~ ~ 135

the absence of impurity atoms is

rl„(„)= 1+2mngN, ~(0)
-1 (m.m, )"'

ms+ ~d

x —((V,'g) o+(V,Vg&o) .
n

(46)

Using this result in (42), we see that an additional

integral occurs in the self-consistent equation at
T equal the old critical temperature. The effect
of this additional term is that the gap energy at
the old critical temperature is not zero. Whether

this change in the gap energy is positive or nega-

tive, resulting in an increased or decreased criti-
cal temperature, respectively, will depend on the

same consideration as discussed by Chow in the

interband phonon-coupling limit.

V. CONCLUSION

As we stated in Sec. IV, the exact behavior of
the critical temperature can be obtained by solv-
ing Eqs. (40)-(42) along with (32)-(36). However,
this was not attempted due to the mathematical
difficulties involved in attempting to do it except
in two limiting cases. It is hoped, however, that

by picking the right values for the impurity scat-
teringpotentials V, (p), V~(p), and V„(p) the defin-

ing set of equations [(32)-(36)]will become simple

enough for the substitution (43) to be useful.
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The parameter K2(p is studied for superconducting alloys (dirty limit) in the electron-phonon
model. An equation for K2(T) is derived which contains the frequency-dependent part of the or-
der parameter right at the transition from the normal to the superconducting state and which
can be used as a starting point for a detailed numerical calculation. At Tc, K2 is expressed in
terms of other measurable quantities, and at T=O a rough estimate of the order of magnitude
of the strong coupling corrections to K2pcs is given. It is found that the strongcouplingcorrec-
tions to K2 are very small, even for lead.

I. INTRODUCTION

In the generalization of the Ginzburg-Landau
(GL) theory' to lower temperatures, ' the well-
known GL parameter a is replaced by three differ-
ent temperature-dependent parameters Kg(t),
where i =1 to 3, and t= TjT, =reduced temperature.
Within the framework of the weak coupling micro-
scopic theory, it was shown that for t- 1, all K;(t)

K, For lower temperatures, Eilenberger has
made a detailed calculation of K,(t) and K2(t) and

studied in particular the influence of the mean free
path on K, (t) and K~(t). In the extreme dirty limit,
Eilenberger confirmed the result found earlier by
Caroli et at. ,

3 that K, (0) = K2(0). All these calcu-
lations, however, apply to the weak coupling limit
only.

For strong coupling superconductors, Eilenber-
ger and Ambegaokar (EA) presented a calculation
of II„(t) in the region (1-t) «1. An extension of
this theory can be combined with the well-known
H, (t) calculations to derive K,(t). Such a calcula-
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tion of «,(t), however, requires a large numerical
effort which has not yet been done. Experimental-
ly, there is much evidence that the temperature
dependence of v, (t)/«, (1) is stronger than that pre-
dicted by weak coupling theory. On the other hand,
experiments' indicate that «2(t)/«3(l) is much less
affected by strong coupling than «, (t)/«, (1). There-
fore, it may even be possible that the BCS relation
«&(t) =«2(t) is changed into «, (t) = «,(t) for certain
temperatures and certain values of the electron
mean free path.

In this paper we study the parameter «,(t), re-
stricting ourselves to the extreme dirty limit.
Following closely the work of EA, we derive an
equation for z«(t) which contains the frequency-de-
pendent part of the order parameter for the 8,3

solution, thus showing that from the numerical
solution of the H,a problem it is easy to get also
the parameter «2(t). But we will not undertake the

large numerical effort which is necessary to get
explicit expressions for both «q(&) and Kg{f). We
will only give a rough estimate of the deviations of
«z{t = 0) from the well-known BCS value, and we will
express «~(l) in terms of measurable quantities.
As a by-product, we derive «, (1)=««{1). This
equality is expected from the GI theory, and one
can show with methods used in this paper that its
validity is not restricted to dirty materials. From
a mathematical point of view, the relation «~{1)
= ««(1) is due to a certain separability of the fre-
quency-dependent order parameter just below the
transition into the superconducting state.

II. EQUATION FOR tf:2 (T)

Our starting point is the Green's -function ma-

trix in the phonon model given by EA, which we
expand into powers of the frequency-dependent or-
der parameter 4(r, v). The Gieen's function in
the normal state is given by

The asterisk denotes complex conjugation, The
quantity C' ' is due to the modified electron self-
energy in th.. superconducting state for strong cou-
pling materials, and it is given by

G'2' ((o, r, r ')

= fd 1 G„((o, r, 1) Z'" ((o, 1) G~ ((o, 1, r '), (4)

while Z'" has tn be determined self-consistently
according to

Z' '((u, r)
= —TZ &(&o, e')[G(&u', r, r) —G„(&u', r, r)]. (5)

Finally, we have to write the equation for the or-
der parameter C(&u, r):
C ((u', r) = —r Z„&((o', (o)

x(fd 1 G„((u, r, 1) 4 ((u, 1)

x G„*(~,1, r) +II"' ((u, r)],
with an R"' given by

Il"'((u, r) = G„((o, r, 1) 4'(~, 1)

xG„*((u, 1, 2) Z""*((u, 2) G„*((u, 2, r)

+ G„((u, r, 1)Z'" ((o, 1)G„((u, 1, 2) 4 ((o, 2)

x G„*((o,2, r) —G„((u, r, 1)e(~, 1)G~„((u, 1, 2)

x 4 *((u, 2) G„((o, 2, 3) 4 ((g, 3) G~~ (a), 3, r).

Of course, in all the above equations we have to
perform the impurity average in an appropriate
way. In doing this, we use the usual approxima-
tion, neglecting all overcrossing diagrams, i. e. ,
we neglect those diagrams where an impurity line
connects a Green's function with 4 or Z.

First of all, we note that the self-energy Z„
&& (&, r) is independent of the magnetic field and the
impurity scattering (after the impurity average)
and thus independent of r. Putting Z„(e)=i &u

&&[1 —Z(ur)], one gets

(o [1 —Z((o)] = wN(0) TQ X((u, (o') sgn(u '.

with a self-energy determined by

Z„(&o, r) = —T Z X(&u, u ') G~ (w ', r, r) . (2)

G(ur, r, r ') = G~ (ur, r, r ') + G~ ' (w, r, r ')

—fd 1 d 2 G„(&o, r, 1) C (ur, 1) G„*(v, 1, 2)

x e*(u), 2) G„((o, 2, r ') . (3)

The symbols in these equations have their standard
meanings and we work in units with c = h =k~ = l.
The normal Green's function in the suyerconduct-
ing state expanded to second order in C (v, r) is
given by

Therefore, the renormalization of the normal-
state Green's functions due to the electron-phonon
interaction can easily be taken into account by the
replacement of i+ by i&a Z(&o) in the weak coupling
Green's functions. Bearing this in mind, we see
that the above formulas differ from the corre-
sponding weak coupling expressions mainly in the
following two ways: (a) The order parameter de-
pends on a, and (b) the second term on the right-
hand side of Eq. (3) and the first and second term
on the right-hand side of Eq. (7) are absent in the
weak coupling case. But as we will see in the fol-
lowing, the calculation of «2(T) can be done very



PARAMETER x (r) Foll STRONG COUPi, iNG

similarly to the weak coupling calculation.
Let us consider the transition into the super-

conducting state which is determined by the linear
part of Eq. (6). Performing the impurity average
and considering only the dirty limit, one gets

These equations determine the upper critical field
28HGP = 6'P,

For an external magnetic field II, slightly
smaller than H„(and T fixed), we choose the
ansatz

4 (0'((o, r) = —TZX((o, (o')

x(2~x(O)/[2i ~'Z(~')
i

-D'5']]4 "'(~', r) . (9) @((o, r) =n4'(r))f((o)+n'p(r, (o)+ ~ ~ (14)

4 "'((o, r) = y((o) 4'{r)

and choose 4 as an eigenfunction of 8 to obtain

&'+(r) =-e& @(r) . (i2)

Then we get

X((o)=-TQX((, (o') =-,g,
i D, )t((o') .2m'

(i3)

r

The operator 8 is defined by

a =~ +2ieA(r), (io)
Br

and A(r) denotes a vector potential of the external
magnetic field, while D = vf/3 denotes the diffusion
constant. Equation (9) clearly allows a separation
of variables. %e put

y((o), whichcsnbe assumed to be real, is anor-
malized solution of Eq. (13) and is independent of
the magnetic field. 4'(r) is now understood to be
the normalized ground-state solution9 of Fq. (12)
in the external magnetic field H, & B,a„which shows
the periodicity of the fluxoid lattice, and e is an
expansion parameter proportional to (H,2

—H, )ii~.
Qur aim is to calculate this quantity a. %e multi-
ply Eq. (7) by

2&X(0) T)({(o')nC *(y)/[2i(o 'g((o ')i+Deo],

integrate over a unit cell of the fluxoid lattice, and
sum over v'. Using the symmetry property
&((o, (o ') = X((o ', (o) of the kernel A. , we get

)f((o)n 4'* (r) C ((o, r) d'~
2'((O)r

—T p a)(&)[fa'~jest) e*(|)(O„(r,|,1)GN(r, )())O(r, )) +fd'rf &) +"[&)(&"'(r, |'))1,
where ( ) denotes the impurity average. We use the well-known expression

2viV(O)

g( )i -D(s' O' A 2ieT s-4e'X')

(15)

where A, is a vector potential of the supercurrents
(which can be gauged in such a way that it becomes
proportional to n ), insert Eq. (14) into Eq. (15),
and take only terms to the ordex' of Q 1nto account.
Then we see immediately that the function q(r, (o)
cancels out and we are left with the following ex-
px'es sion:

;.(.tx. ~, -. x.i.) ~i

= T Z „n'[y((o)]'E") ((o), (1V)

where we have defined

B = Drn~27[N(O) Q „[y((o)]3/[2 i [oZ((o) i+Deo]~ (13)

8( )((o) d'r dld2 I(Z(')*((o 2)) q*(r)(4'I ~)

&& (G)) ((o, r, 1) Gg ((o, 1, 2) G„* ((o, 2, r)) 4 (1)

+ e*(r)&&("(~,1)) &G) ((o, r, 1)

&«GN (~ 1, 2) GN (~, 2, r)) 4'(2)]

—f )'~f)1 dR d3 k" (r)(~i 4)

x )f(1)C*(2)4(3)(G„((o,r, 1)

x G~ ((o, 1, 2)G„((o,2, 3)G„*((o, 3, r) ) .
%e note that the last term on the right-hand side
of (19) also occurs in the weak coupling calcu-
lations; it was evaluated by Maki~ and later cor-
rected by Caroli et al. To evaluate the remaining
terms, we begin with the impurity-averaged self-
energy (Z(@((o,r)) . Going back to Eq. (4) we im-
mediately see that (G' ' ((o, r, r ')) is negligibly
small for r = r', since the poles of the product of
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the normal-state Green's functions lie on the same
side of the real axis in the complex i~plane. Thus
lllserflllg Eq. (3) illfo Eq. (5) we see tllRt {Z ) llRS

no longer to be determined by an integral equation,
but is simply given by

Z ''& ((o, r) =+ Tg &([d, [d ') [I2 (y ((u '))~Jd 1 d 2 +(1)

&& (G„([d,r, 1) G„*((o,1, 2) G„((o, 2, r) ) 4l* (2). (20)

Here we inserted Eq. (14) and took only the first
term into account. To evaluate 8' ', we therefore
have to calculate the impurity average in various
terms which contains three normal-state Green's
functions. This can be done using standard tech-
niques and we will write only the following final
result:

4)IN(0) n'
i 4 i

'

I
+I'

[x(~)]' i[di Z'"(~)
[s}tdz(to}},as,['+ [2}tdz(to}}+as,}')'

with

[2&( y)
2&IN(0)T g (

)
)

sgn+ [X (+)]
[2i(oZ((o) i+Dao]' '

(22)

-4&)M= (H, —H, )/P„[2)I (T) —1], (25)

where P„depends only on the structure of the flux-
oid lattice and is defined by

P = I~i'/(i&i')', (26)

we get for the parameter )[2(T), using standard
methods,

Next we consider the supercurrent density 1, (I')
which can be determined from Eq. (3) according
to

j, (f) =(fe/m) Tg „(8I—a~, +2ieA(r))

& [G(ar, r, r') —G„(u&, r, r')]I I, .

Again it is easy to show that the contribution of
G'2' (w, r, r') to the current density is negligibly
small. The remaining term which contributes to
Eq. (23) was already calculated by Maki in the
weak coupling limit and can be taken over to the
present calculation with only sljght modxfzcatxons.
Vfe then get

l,(r) =H2fe{5, —8,*)+*(2) +(1) i. .., (24)

where use has been made of Eq. (14), and only the
term proportional to ea has been written down.

The magnetization M is determined by Eqs. (17)
Rnd (24). Wr1tlng fills quantity Rs

~,'(T) = g„—,3 e'D'N(0)4~TI&~„,
i

[1+x(T)] ." 2)(oZ u) )+Dao 2 i &a}Z [z& I +De[)
(2'f)

The fullctloll E(T) 18 def1ned l&y

2 „ i~ I [y,([d)]'Z'" ([d)/[2i»(~) i+ Deo]'

Z„[)((~)]'/[2 i ~Z(~) i+ Dso]'

(23)

This final expression for &['3(T) contains the

H,a solution y([)&) which is defined as a solution
of Eq. (13), thus showing that we are left with a
rather complicated problem. But we will not go
into the great numerical work which is necessary
for a detailed calculation of both )[3(T) and H„(T),
and we will only give some limits for the strong
coupling corrections to v, (T).

III. DISCUSSION

apart from an + independent factor, identical with
the order parameter for bulk material with no

magnetic field applied, i. e, , it can be written

X(~)=y~([0)l&(T, T) r=r .— (29)

Therefore, we can express )[~(T,) in terms of the
quantities I, , Ia, and I,' introduced by EA, obtaining

~,'(T,) = (I, +I,')/4we'ra . (3o)

But one can also derive vl(T, ) directly from the EA
paper to show that )I,(T,) =))~(T,). '0

Let us now express v(T, ) in terms of measurable
quantities. Introducing the correct renormalized
)Icos(T) of the BCS theory [cf. EA and Eq. (36)],
we get

Let us first consider the transition temperature
where we can put 80=0 in Eq. (2V). The function

y(&o) which enters into this equation clearly is,

~'(T, ) = ~'„, (T,) [1+x(T,)],

32&le (D*) N* [ 'I&(—')]3

(31)

(32)
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and (33) D D+ =D/Z(0) .
c BCS obs,

(34)

For lead, we get F(T,) = —0. 09. In deriving this
value, we have used the energy-gap data of Gas-
parovic et al. ,

"which yield [6,~(T)/bees(T)]
= 2. 08 for T-T„and the data of Decker et al. "
for H„~(T). To derive dH, scs/dT at T=T„one
has to multiply the reduced BCS slope of 1.736
with 1.764(6 y/w )'~2, where y is the measured

electronic specific heat T. his gives H„~/H, ~s
=1.8S for T-T,.

Next we consider the general case, i.e., Eq.
(27). The first term on the right-hand side of
this equation can be simplified very much. First
of all, it always seems to be a good approximation
to replace the normal-state renormalization fac-
tor Z(co) by a constant Z(0), thus neglecting all
pair breaking due to the electron-phonon interac-
tion. This Z(0) then renormalizes the density of
states and the diffusion constant in exactly the
right way; thus,

N(0) N=-Z(0)N(0),

Because of the good convergence of the (d sums
in this first term, we may also replace y(cd) by a
constant value. After these approximations, the
first term on the right-hand side of Eq. (27) clear-
ly goes over into the following BCS-like x~ expres-
sion which we call Tc~:

1 —4 '
(,'+D@-J4mT)

32ve (D*) N* 4 (-, +D~vo/47cT)

Therefore, we have

cc,(T) = cc,(T)[1+F(T)]"' .

(36)

(36)

For T=T, and for T=O, Tc2 is identical with the
correct renormalized BCS v~. For intermediate
temperatures, however, Ic,(T) is not equal to
ccrc scs(T), since the temperature dependence of
Tc2(T) is given by the H,z(T) modified by strong
coupling, i.e., by the measured H,2(T).

Now let us consider the function E(T) which does
not appear in a BCS-like calculation. Using Eq.
(22) we rewrite this quantity as

g& [y(cd) sgne[X(&d —&o ') —X(&u + e')] sgn&u '(y(co'))
2 }cdz(cd) } + Dao]'[2 } co'Z(cd') } + Dao]'

[x(~)l'
„. [2}cdz(&o) }+D&,]' (37)

Here we have assumed )f(&o) to be an even function
of cd, since X(a&, cd') =X(}or —&o'}). The prime on

g denotes summation over positive frequencies.
To get the order of magnitude of F(T) at T= 0, we
replace X by a step function, X( } cd })= -ge(cdo
—}to }), with an ufo of the order of the Debye tem-
perature, and neglect the &o dependence of y(&o) and
Z(&o), i.e., we replace these quantities by their
values for small v. Performing then the v inte-
gration, we get

N(0)g x x 1 x+ 2

Z(0) 1+~ 2 (1+~)'
(36)

where g = oc/&oD, o. = D*eo(T = 0);

The positive quantity N(0)g is of the order of unity.
Since n is of the order of T„E(0)is completely

negligible for weak coupling superconductors (T,
«&uD). For strong coupling superconductors as
lead alloys, E(0) may be of the order of 1(P&, i.e.,
of the same order as E(T,).

The above calculation shows that the parameter
cc2(T) is only slightly modified if the strong elec-
tron-phonon interaction is properly taken into ac-
count, at least in the extreme dirty limit. But we
believe that this statement remains valid indepen-
dently of the mean free path, as suggested by the
experiments quoted in the Introduction.
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Analysis of a simple model of the excitonic insulator shows that the ordered phase exhibits
electrical superconductivity whenever the conduction-band mass differs from the valence-
band mass. Intexband scattering of electrons by the magnetic vector potential plays an essen-
tial role. States of finite electric persistent current are demonstrated explicitly. The ex-
citonic insulator is a system where diagonal versus off-diagonal long-range order is a function

of one's bookkeeping.

I. INTRODUCTION

It is commonly believed that the excitonic insula-

tor, ' a hypothetical many-particle cooperative
thermodynamic phase involving valence-band holes
and conduction-band electrons, has the electrical
properties of an insulator. ' In this paper, we

show that this is not the case for a simple model;
rather the model has the electrical properties of
a superconductor. Our model consists of a single
spherical valence band (k /2m, ) (kz —k') and a
single spherical overlapping conduction band (k /
2m~) (k -kz), energies being measured relative
to that of the Fermi surface k= kz. We show that
whenever m. ,0 m„ there is superconductivity.
Crucial to this demonstration is the inclusion of
both intxaband scattering and iztexband scattering
of electrons by the magnetic vector potential. The
latter kind of scattering has not been considered
in the past.

Note that a hole at -k in an otherwise filled va-
lence band can be consistently thought of as an ex-
citation of momentum + h k, mass + m„energy
(k'/2m, ) (k' —k~), and electric charge+e (-e be-
ing the electronic charge). We designate by c~~, ,
c, , the creation and destruction operators asso-

ciated with such an excitation of momentum Sk.
(Thus ct„removes an electron from one-electron
state -k in the valence band. ) We designate by

ck „ckf the creation and destruction operators
associated with an electron of momentum Sk in
the conduction band.

In the absence of external electric and magnetic
fields, the Hamiltonian for the excitonic insulator
ls

Fio= ~ Ek& Ckg Ck& —~ vkk&C kl)ck&f Ckf
k, o' k~ k

where

~,.=(@'/2m. ) (k'- k',), m, =m. , m, =m, .
(l. 2)

Vkk ~ is the matrix element for the attractive Cou-
lomb scattering between holes and electrons. The
ground-state wave function of the ordered phase
has the form

40 being the state of filled valence band and empty
conduction band. In the interest of simplicity, we


