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A spin-wave calculation of the temperature dependence of the resonance frequency of a two-
sublattice ferrimagnet leads to a modification of the macroscopic result at low temperatures
which may be conveniently represented by a temperature-dependent Weiss field parameter

gpss, (0) +y,~,(o) "'
q m, (r)+ y, M, (r)

The analysis for the antiferromagnet is consistent with the Kanamori-Tachiki semiphenomeno-
logical spin-wave theory. The complete Nagamiya-Keffer-Kittel formula is recovered provided
that g~ takes the value predicted by linear spin-wave theory rather than molecular field theory.

1. INTRODUCTION

y,M, (0)+ yPS, (0)
y2My(T)+ ygM2(T) /

(1.2)

Thus the use of a temperature-dependent gneiss
field parameter presents the spin-wave results as
a simple modification of the macroscopic theory
at low temperatures.

A special case of the ferrimagnet is the antifer-
romagnet, which has been the subject of investiga-
tion by several authors. The macroscopic theory

The resonance frequency of a two-sublattice
ferrimagnet in an applied field H and anisotropy
fields Hz" a,nd II„' on the sublattices 1 and 2, re-
spectively, is '

2~ =+ [y&(H+ H„"')+y, (H —H„' ')+ X(y&M, —M,y, }]

+ f).'(y, M, —M,y, )'+ 2X[y, (H+ H„' ') —y, (H —H~ )]

x(y,M, + y,M, )+ [y, (H+H~ ') —y, (H- HP&)]'P~' .
(1.1)

Here y, =g,g~, y, =g, p, ~, and A. is the %eiss field
parameter. M, and M2 are the sublattice magne-
tizations. Antif erromagnetic coupling is assumed.
Equation (1.1) was derived in the molecular field
approximation which one might expect to be valid
at high temperatures when spin correlations are
unimportant. The subject of this paper is a spin-
wave analysis of a two-sublattice ferrimagnet or
an antiferromagnet in which the temperature de-
pendence of the resonance frequency arises from
spin-wave interactions. In a high-temperature
approximation, the spin-wave theory yields (1.1)
exactly, if appropriate substitutions of effective
fields for microscopic parameters are made. At
low temperatures, however, the spin-wave results
differ from (1.1), but in such a manner that the
form of (1.1) is preserved provided that the follow-
ing substitution is made:

is due to Nagamiya' and Keffer and Kittel' (NKK).
Keffer and Kittel obtained for the resonance fre-
quency of an antiferromagnet, in the presence of
an axial crystal field and applied field II, the ex-
pression

—=+H 1-——' + +

(1.3)
where x, takes its molecular field value which is
temperature independent, K(T) is the uniaxial an-
isotropy constant, and y}}, y, are the parallel and

perpendicular susceptibilities, respectively. On

the other hand, the Kanamori-Tachiki4 phenomen-
ological spin-wave theory suggests that, in zero
applied field, the substitution of y, (T) for y, —
where the temperature dependence of y, (T) is given
by spin-wave theory —properly accounts for spin
correlations omitted by (1.3). The Kanamori-
Tachiki result is in good agreement with experi-
ment.

Previously, Oguchi and Honma' had calculated
the temperature dependence of the resonance fre-
quency in an applied field by explicitly treating
spin-wave interactions. They diagonalized the
bilinear spin-wave Hamiltonian and apylied the
transf ormation to terms of fourth order in syin-
wave operators (such terms arise from expansion
of the Holstein-Primakoff substitutions for Bose
operators). This essentially perturbative treat-
ment led to an ambiguity concerning the nature the
spin-wave interaction terms —more specifically,
spin-wave interactions arising from anisotropy
and exchange were not separated correctly. Con-
sequently, low-temperature corrections to the
macroscopic results (1.1) were attributed to a,

change in the power of the anisotropy constant
rather than the substitution y„-y,(T). Antiferro-
magnetic resonance will be treated as a special
case of ferrimagnetic resonance in this paper.
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Contrary to the Oguchi-Honma technique, the spin-
wave interaction terms are subjected to a tempera-
ture-dependent Hartree- Fock approximation, so
that the appropriate substitutions of measurable
macroscopic parameters are quite transparent.
The complete Keffer-Kittel result, including the
term in Ha [Eq. (1.3)] which did not appear in the
Oguchi-Honma analysis, is recovered provided
tha. t )(,(T) is substituted for X,.

In Sec. 2 the ferrimagnetic system is examined

by a microscopic- equations-of- motion method.
The spin-wave energies so obtained reduce, in the
limit of zero external field and anisotropy, to those
of Nakamura and Bloch. ' In Secs. 3 and 4 the spe-
cial cases of antiferromagnetic and ferrimagnetic
resonance, respectively, are discussed.

2. SPIN-WAVE ENERGIES

Let the system be characterized by the Hamil-
tonian

X=y&HQ (S;)+y HZ (S') —BQ (Si)a
l m

—BZ (S')' —2 Z Jl Sl'S
(l,m)

(2. 1)

where y, =g, p, ~ and y =gmp. ~ S» S arespinsonthe
sublattices l and m, respectively, and are not nec-
essarily equal; J, is negative, resulting in anti-
ferromagnetic coupling, and (1, m) denotes a sum
over pairs. B is a uniaxial anisotropy parameter
and the applied field II is in the negative Z direc-
tion.

Spin-wave operators S,"', S,' ' are defined

S =(I/KN)Q S "
(lgN)g S(m& 'i&' m

(2. 2a)

(2. 2b)

where N is the number of atoms per unit volume

per sublattice. The spin-wave operators obey the
commutation relations

[S,-', S-'.]= + (I/u N)Sz -.

[S;-,S,-.]= (2/VX)S-;„-,

(2. 3a)

(2. 3b)

S(l)zS(l)z BQ S(m&zS(m)z
a a

+y)H(VN)Sz" + y H(KN)S

where j(q) =p,. J(le"'"ig
(2. 4)

(2. 6)

Then the equations of motion for 8-. are
(l )'

[S(l )+
3C] (2//~)Q g(q) (S( l )z S(m)+ S ( )zS( l )+

)7

+ (B/gN) P& (2S(l&'-S-'"+ S ' /gN) —y,H

(2. 6a)

From (2. 1) and (2. 2), the Hamiltonian becomes

g(~)[ l (S(l)+S(m)- S(l )-S(m)+) S(m)zS(1)z]
q, (1

S(l )a

S( ) S(m)g Z
g

(2. 7)

Complete ground-state alignment and spin magni-
tude are defined by

S 'lo&=-S(~N)bz, olo); Tzlo&=T(SN)b.-,olo&, (2. 6)

where [0& is a hypothetical fully aligned ground
state.

8,'-, T~ may be expressed as normal ordered
products of spin-wave annihilation and creation
operators by an expansion due to Wortis':

Sz = —S( N)6; + (I/2S&&'N)g;. S;'„-.S;.+ ~ ~ ~, (2. 9a)

Tz = T(i/N)5- ()
—(I/2Tv'N)Q-. T-';.T -. + ~ ~ ~ . (2. 9b)

Substitution of (2. 9) into (2. 6) allows the equations
of motion to be decoupled in a symmetrical fash-
ion. We shall use slightly different expansions
from (2. 9), however. Thus,

SI= —S(vN)6- 0+ (I/&&N)P-. a~,-.a=. + . . . , (2. loa)

T-'= T(»N)6;, 0
—(I/»N)Q-. b „.b=. + .-. . , (2. lob)

which imply

S,'=(2T) a, S.=(2S) i a'-, (2. 11a)

Tz = (2T) b', Tz = (2S) b=, (2. 11b)

so that a;, b~ obey boson commutation relations.
Equations (2. 10) and (2. 11) may be identified with
the expansion used by Brout' for just the Heisen-
berg Hamiltonian.

Equations (2. 10) and (2. 11) are substituted into
(2. 6) and the equations of motion linearized in the
following manner. Only terms of one and three
operators are retained in the equations of motion.
All fluctuation parts of the three-operator terms
are neglected and these terms are then decoupled
symmetrically. It may be seen from (2. 6) that the
relevant nonzero expectation values are (a-'a;&,
(b b,=), (a;'b; &, and (a;b;)-. Therefore, the linearized
equations of motion may be written

[a-' i 3C] = —&A- a'- —A-3'a-' —rzB- b, —B'3'b=-
q

1 1

(2. 12a)

[bi[, X]= —&A~ b&( +A& b —ibB- a~ +B(3)al'(
1

1

(2. 12b)

[Sg ', K]=(2/&(N)Z- J( )(S- -'S-' '- S-'"S(( -')
1

+ (B/KN)Q (2-S- '-' S-' '+ S- '/KiV) — HS-a1a a + a, ym

(2. 6b)

The following redefinitions of S; are appro-

priate:
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where SA;=-,'[Ag" &-Wg"&+(y&+y )B],
) (B(1& B(3&)

(2. is)
A.,-"& = —,

' [w('&+ ~,"'+ (y, —y.)H],
B(3 & ) (B(1)+B(3))

q 2 4 +
(2. 14)

and A~( '= (2S —1)B[l—(2/I&)'S)Q;(a a;)]—2T«+ (2Jz/&)(T/S)' Z;y; &a;b;&+ (2«/&)Z; &b b;)
I

W(" = (2T —1)B[1—(2/XT)+ &b,"b,= &]
—2S«+ (2«/1)1)(S/T)'"Q, y, &aP;&+ (2«/1))) Z;& a a;-&,

1

B&'&= 2(TS))~3ezy,-+(2«/X)(T/S)'~3y, ,2~&a a,=&+(2«/1&))~y,.; (a b )

B3,'= —2(TS)' JzyZi (2«/1)t)(S/T) ~
y(& Z3 &b(& b3&+ {2Z /f)&) Z(& y-,; &;b j&

where y((= (I/z)Z, ,e iQ R. .

(2. 15a)

(2. i5b)

{2.16a)

(2. i6b)

(2. 17)

tanh28, = B(3&/X,(3&,

and also c~ e~=&~,

(2. 19)

(2. 20)

The solutions to (2. 12) are then (zero-point ener-
gies neglected)

~ [g (3))3 B&1)B (3&]1»'3 (2. 21)

For long-wavelength magnons, (2. 21) reduces to
the Nakamura, -Bloch resultv for ferrimagnets in the
limit of vanishing applied field and anisotropy, and
to Nagai's result" for an antiferromagnet in the
limit of vanishing applied field.

The solution (2. 21) will be examined for the
special case of the uniform mode, and the results
will be expressed in a form suitable for compari-
son with the macroscopic theories.

3. ANTIFERROMAGNETIC RESONANCE FREQUENCY

In this case

(3.1)

The solutions for the excitation energies are given
by (2. 21), (2. 15), and (2. 16). Since B3( &» r B3,
a convenient expansion for the product B~ B& is

—B,"'B,"'=- (B,"')'+{~B„)', {S.2)

whence (2. 21) becomes, for the uniform modes,

E3 ()=+(nA&))

[g &3) B(3))g (3) B (3)) (+B )3]1i3 {3 3)

The coupled equations (2. 12) are diagonalized by
the transformations

e3- cosh83a(&+ sinh8((b(&, c(&= (c,-') *, (2. 18a)

d3= sinh8((a3+ cosh83b(&, d3= (d))", (2. 18b)
x p(( {cosh283—y((slnh283)&N«+ M3)] (s. 6)

It may be shown that, if zero-point energies are
neglected, the temperature-dependent perpendic-
ular susceptibility is given, in the spin-wave ap-
proximation, by

».t»')=
»

) — ~~ Z» («»+M»)) . (»»)2I J tzs ~y'

Using (2. 18) and (2. 19), (3. 7) becomes

The anisotropy constant for an antiferromagnet is
given by'

where the magnetization is

M (T)/M(0) = 1 —(I/2b)'S)g; cosh28; &¹+M~ ) .
(s. io)

The ratio of the parallel to perpendicular suscep-
tibilities is given by'

yH —' = 2SI Jfz
xs Pr- M-&= 2(~w -)=-2(~-B ) .

(s. ii)

&&I
' —B(I

' = 2S
~

4 ~Z8[1 —(I/NS) cosh28(&&Ã(&qM(&&]

(s. 5)

a,(3&+B&'& = 4S
I
Z ~Z[i —{I/2VS)

If 8 = (2S —l)B/2S i J I Z «1, i.e. , the anisotropy
is small compared with exchange, we have, from
(2. 13) —(2. 16) and (2. 18)—{2.20),

From (S.5), (3.6), and {3.8), (3.9),
(g(3 & B(3&){4(3&+B(3 &) y?[21'(T)/~ (T)] .

(3. 12)

AA(&-—BB(&———(2S
~
J,Z/2iVS)P, 3 &1&&3-M(&& (3 4) therefore, from (3.3), (3.11), and (3. 12),
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The spin-wave modes are uniformly populated,
therefore'

Z- y-&o-b-) =g- y-&a-b'-& =0 .
Then, from (2. 15) and (2. 16),

~,")= (as- i)B[i —(2/b)'s) Z- &~'-~-&]

+arlzlz[i-(1/~r)Z;&b b;&],
Ao(') = (2S —l)B[1—(2/NT)p;&b, '-b;)]

(4. i)

(4. 2)

+ asl zl z[1—(1/xs)g; &a,'a;-&], (4. 3)

Bo"= 2(rs)')'~lzl z[i - (1/Ns)g;&a a~ & ], (4.4)

B',"=2(rs)'"lzl z[1—(1/xr)Q», &b';b,=&] . (4. 5)

On the other hand, the sublattice magnetizations
M(T) and reduced magnetizations m(T) are given
by (the sublattices f, I are now denoted by 1, 2)

M, (T)=ygNs(l — Z-(a a,"),m, (T)= );
(4. 6a)

l

(3. ia)

Equation (3. 13) differs from the Keffer-Kittel re-
sult only in that y~(T) [Eq. (3.7)] is used rather
than the molecular field result, and agrees with
the Kanamori-Tachiki result in the limit of vanish-
ing applied field. The present expression also
agrees with the Oguchi-Honma result in the low-
and high-temperature limits apart from the term in
H . Qguchi and Honma claimed that it would be
necessary to include terms up to the sixth order
in spin operators to obtain this term, but the rea-
son for its absence in their result is a consequence
of their incomplete treatment of fourth-order
terms.

4. FERROMAGNETIC RESONANCE FREQUENCY

In the ferrimagnetic case, useful evaluation of
Eqs. (2. 13)-(2.16) for the q= 0 modes may be made
in low- and high-temperature limits.

A. High Temperatures

u, (r)=b, (0)(m, )', b, (0)=vs(s- —.')B,
u, (r) =b, (0)(m, )', b, (0)=Nr(r -'.)B—;

y,H„" '= au, (r)/(m, ) = au, (0)(m, )',
y,H„"'= au, (0)(m, )' .

(4. 7)

The correspondence between the %eiss field and
the Heisenberg Hamiltonian is given by

&4 9)

Thus, from (4. 2)-(4.9),
g(» g (»

0 0

= y&H~~) —y&H&+)+ X[y&M&(T) —y2M2(T)], (4. 10a)

~&»+a&»
0 + 0

= y,H„"'+y,H„"'+ X [ypS, (r)+ y~&(r)],
B,"'B,"'=M, (r)M, (r)~'»» . (4. 10c)

Therefore, from (2. 13), (2. 14), (2. 21), and (4. 10)
it may easily be shown that

2E~ 0 = s [y~(H~ + H) + yp(H H~ ) X(y~M( y)M2)]

+ iA, (y2Mq —ygMp) + 2)(.(ypMq+ yqM2)

&& [y, (H„"'+H)+y, (H„"'-H)j

+ [y, (H„"'+H)+ y, (H,"'-H)]'P", (4. 11)

which is precisely Eq. (l. 1), in agreement with the
macroscopic theory.

B. Low Temperatures

Only long-wavelength spin waves are excited,
hence'

Z; y;&~;-b;-&-Z;&o b & . (4. 12)

Then, from (2. 15), (2. 16), (2. 18), and (2. 19),

M(T)=yNT(1 — 2;(h b;), m, (T)=

(4. 6b)

and sublattice anisotropy constants and anisotropy
fieMs may be defined as

A," H„"))y, 2T+l J l
z [1—(1/xr)Q; &b;" b; &+ [1/2N(T+ s)]p; &a~ a]+ b~ b~&)

xo"' = H~( 'y2+ asl ~l z &1 —(1/its) P,&a', o;&+[1/aiv(T+s)]g &a a;+ b'; b; &],
B,"'=+ 2(rs)'"

l
&I z ii —(1/its)Z; &~l oi&+ [1/aiv(r+ s)]Z;&~!o;+ b!bi&],

Bo ' = 2(TS) ~
l
J

l
Z (1- (1/NT)g; &b b;& + [1/2N(T+ s)]Z; &a a~+ b~ b; &3 .

(4. iaa)

(4. 13b)

(4. 13c)

(4. 13d)

However, using (4. 6) y,M, (o)+ y,M, (o)
y2M, (r)+y, M, (r) ' (4. 14)

1+
(

Q-&a-'a=+ blab;) Exa,mination of (4. 13) and (4, 14) and comparison
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with (4. 2)-(4. 5) and (4. 9) shows that at low tem-
peratures the expression for the resonance fre-
quency (4. ll) may be used provided that X(T) is
substituted for X, where

-
y,M, (o)+ yes, (o)
y,M, (r)+ y,~,(r) (4. 15)

5. CONCLUSION

The temperature dependence of the antiferro-
magnetic and ferrimagnetic resonance frequencies

has been evaluated by spin-wave theory in a tem-
perature-dependent Hartree- Fock approximation.
Corrections to the macroscopic theory, due to spin
correlations at low temperatures, are best repre-
sented for the antiferromagnet by a temperature-
dependent perpendicular susceptibility, as is al-
ready well known. In ferrimagnets, when a static
perpendicular susceptibility may not be defined in
the absence of anisotropy, the same corrections
are represented by an effective temperature de-
pendence of the Weiss field parameter.
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Nuclear-magnetic-resonance techniques have been used to measure the spontaneous polariza-
tion of ferroelectric Rochelle salt in the vicinity of the higher-temperature Curie point (Tz).
The polarization was found to be proportional to {T~—T), but the technique did not allow mea-
surements closer than 0.1 C to Tc. In addition, the Na23 nuclear quadrupole coupling constant
and field gradient asymmetry parameter in the low-temperature phase were found to be 1363
+3.4 kHz and 0.737+0.004, respectively. These values are in accord with the model of Blinc,
Petkovsek, Zupancic, and with the notion of an antiferroelectric low-temperature phase.

INTRODUCTION

The use of the Na yiupiear magnetic resonance
(NMR) to study terroelectricity in Rochelle salt
has been discussed in three earlier papers. '
In the first of these, ' the measurement of the Na'

electric quadrupole coupling constants in the fer-
roelectric phase and in both nonferroeleetric
phases of deuterated Rochelle salt is described.
V(1th the aid of a model proposed in the same pa-
per, the experimental results are analyzed to de-
termine the atomic displacements responsible for
the ferroelectrie behavior of the crystal. The

second paper makes use of the same model and a
similar set of measurements on nondeuterated
Rochelle salt to find values for the displacements
causing ferroelectrieity in that material. However,
in the second case, the measurements were made
only in the ferroelectric phase and the higher-
temperature nonferroelectric phase. The third
paper describes methods of determining sponta-
neous polarization and domain characteristics
from NMR measurements and the application of
these methods to the study of radiation effects in
Rochelle salt.

The present paper is concerned with further


