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In this paper, the density of states and the mobility of an extra electron or hole are calcu-
lated in the atomic limit of the Hubbard model. Both the half-filled single-band and multiple-
band situations are discussed. The problem is formulated in terms of the number of paths
which return to the origin leaving the spin configuration unchanged. The density of states then
depends on spin configuration and we have considered the random (R) (high-temperature) and
antiferromagnetic (AF) arrangements. Examination of the first five nonzero moments for the
simple cubic lattice indicates that the bands are narrowed by a factor of 0.745 (AF) and 0.805
(R). However, the exact bands have tails extending out to the full free-particle width for both
spin arrangements. An approxixnate one-particle Green's function is obtained by summing all
graphs with no closed loops. Such paths give a density of states that is independent of spin
arrangement and is relatively flat with a sharp square-root edge at 2(z —1) l-. Here z is the
coordination number and t is the nearest-neighbor hopping integral. Within this approximation,
we have calculated the mobility of an extra hole and have found typical values to be -1 cm /V
sec so that the mobility is rather small, even though the density of states has a width of order-1 eV. Intra-atomic exchange is shown to give a further narrowing of the band fa factor of
{2) in the two-band large-intra-atomic-exchange example]. The effect of finite E/U is con-
sidered, where U is the intra-atomic Coulomb interaction, and is shown to have a strong effect
on the band tail but relatively weak effects on the bulk of the band. Finally, we make a few
remarks comparing our results with the observed mobilities in NiO and the relevance of intra-
atomic exchange to the behavior of the dioxide and sesquioxide series.

l. IM'RODUCTION

In recent years there has been considerable
interest in the electron states in localized magnetic
insulators. 3 In this class of materials, the band
theory of the conduction electrons breaks down be-
cause of the very strong Coulomb repulsion between
the electrons. A model Hamiltonian which incor-
porates both the Coulomb repulsion and the kinetic
energy for these narrow-band materials has been
put forward by Hubbard. This model uses a %an-
nier representation for the electron states and

retains only the Coulomb repulsion between elec-
trons on the same lattice site. In this paper we
shall examine this model in the atomic limit in
which the transfer energy t is taken as much smaller
than the Coulomb repulsion U, and discuss the
density of states and mobility of an extra carrier.

The atomic limit of the Hubbard model with one
electron per atom has been studied previously by
Harris and Lange. These authors have shown that
the one-particle spectral weight function has a
series of bands separated in energy by U. They
also showed that the values of the first three mo-
ments for the lowest two of these bands are un-
changed from that of the tight-binding band.
Nagaoka has formulated the Hubbard model in this
limit in terms of the number of possible paths on
a lattice and has shown that the ground state of the
system with a small number of holes (or electrons)

is ferromagnetic. %e shall make extensive use of
his formulation in this work. %e shall consider
only the simple cubic lattice, though our results
may be generalized to other lattices.

In Sec. II, the form of the density of states for
a single hole (or electron) in a half-filled one-band
Hubbard model in the atomic limit is examined.
The first five nontrivial moments are calculated
exactly using Nagaoka's path formulation. 6 The
values of the moments higher than the second de-
pend on the spin configuration of the N- j. remain-
ing electrons. Three configurations are examined:
(i) ferromagnetic (F) in which case, as Nagaokae
has shown, the problem reduces at once to that of
a simple tight-binding band; (ii) antiferromagnetic
(AF) by which we will mean the simple up-down
spin configuration neglecting any zero-point spin
deviation; and (iii) random (it) an average over all
possible spin configurations with equal probability.
From a knowledge of the moments, an approximate
value of the band edge can be obtained by extrapola-
tion, and it is found that the band is narrowed by
approximately 20% (R) and 25%%uo (AF) from the full
(F) value. We argue, however, that there will be
a band tail reaching all the way to the full ferro-
magnetic bandwidth which does not show up in the
moment calculation. An approximate form for the
density of states is obtained by using an expansion
in Legendre polynomials. An analytic approxima-
tion for the Green's function of the hole is obtained
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II. NATURE OF BANDS IN ATOMIC LIMIT OF THE
HUBBARD MODEL

A. Formalism

In this section we will study the density of states
for an extra electron or hole in a half-filled one-
band Hubbard model in the atomic limit. We shall
restrict ourselves to a simple cubic lattice, though
the results which we shall obtain may be generalized
in a straightforward manner to other simple lattice
structures. The Hubbard Hamiltonian has the
form

H=~ t;~c„c~,+Urn;, n;, (2 1)

where ct, and z,, denote, respectively, the crea-
tion and annihilation operators for an electron in a
Wannier state localized at site i with spin o, and

n;,(=c;,c;,) is the number operator for electrons
with spin o at the site i. The first term represents

by summing all paths which are completely self-
retracing and contain no closed loops. This ap-
proximation leads to a band which is narrowed by
25%, but without tails and which agrees well with
the forms found from the Legendre polynomial fit
to the moments especially in the AF case.

In Sec. III, the mobility of the hole is calculated.
Since in the atomic limit all the spin configurations
have zero energy, the hole is elastically scattered.
Starting with the Kubo formula for the conductivity,
we again keep only those paths which are completely
self-retracing. The values obtained for the mobil-
ity are quite low (-1cm /Vsec at T-1000'K), and
it is argued that the carriers cannot be considered
as propagating freely with weak scattering but
rather undergo a diffusive Brownian motion through
the lattice.

In Sec. IV, we consider the corrections to the
atomic limit which are of order f/U While. these
corrections appear to reduce the band tails con-
siderably, their effect on the bulk of the band is
small. We also generalize our results to a mul-
tiband situation and incorporate the effects of
Hund's rule coupling. The same techniques as in
Sec. II are used to analyze the limit in which both
t/U and f/J -0, where J is the Hund's rule ex-
change energy. The qualitative features of the re-
sults are similar, with the bulk of band narrowed
and with band tails. The bulk of the band is, how-
ever, farther narrowed by the Hund's rule cou-
pling to give a combined reduction of = 50/0 (AF) and
70% (R) for a two-band model. The values of the
mobility we calculate are not much affected by the
inclusion of the Hund's rule coupling.

Finally, in the concluding section, we make some
remarks on the relation of our results to experi-
ment.

O' =PtZc;,„,c;,P
inc

(2. 3)

where n denotes the nearest neighbors of i, and P
is a projection operator such that I' = 1, operating
on a state with one hole, and P = 0, otherwise.

The one-particle Green's function G,'&' &(&u) is
defined as

(2 4)

Nagaokae has shown that poles of the one-particle
Green's function G; all lie on the real axes be-
tween —zt and zt, where z is coordination number
of the lattice. For the simple cubic lattice, z = 6.
The Green's function G depends on the n; and we
shall consider three sets of spin configurations:
(R) random orientation of the spins, (AF) antifer-
romagnetic array of spins (we shall consider only
the case of a simple antiferromagnet in which all
six nearest-neighbor spins are aligned opposite
to that on the central site), and (F) ferromagnetic
alignment of all the spins. (We shall evaluate ex-

the hopping of electrons from site j to i with an
effective hopping integral t;, . We shall consider
only nearest-neighbor hopping so that t;&= t for
nearest-neighbor sites, and t;&= 0 for all other
sites. The extension of the techniques which we
use and the results which we obtain to include next-
nearest neighbors is nontrivial, and we shall not
consider the matter further. The second term
represents the repulsive Coulomb interaction be-
tween two electrons on the same site. We shall
restrict ourselves to the atomic limit in which
U- ~. Consider a system with N- 1 electrons
distributed over N sites, i. e. , a single hole in an
otherwise half-filled band. (Because of the par-
ticle-hole symmetry of the model, we shall only
discuss an extra hole. ) For large values of U,
the states of the system will be composed of a
series of bands separated by an energy U corre-
sponding to configurations with one hole, two holes,
etc. In the atomic limit we need only consider the
lowest band of states corresponding to configura-
tions with only one hole, and we may ignore all
terms in the Hamiltonian which link it to configura-
tions with more than one hole. The manifold of
states with one hole can be spanned by the set of
states 0; .,t,'

(2. 2)

where n; denotes the set (o„oz o;,, o;„on) of
possible spin configurations of the N- 1 electrons
and ~ 0) is the vacuum state. The Hamiltonian H
may be replaced by an effective Hamiltonian H' of
the form
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B. Moment Expansion for Density of States

Nagaoka has pointed out that the Green's func-
tion G(~) may be expanded in a power series in
I/&u for large values of &u and that the coefficients
are related to the number of possible walks on a
lattice. The derivation is straightforward. By
repeated use of the identity

we can expand G, and we obtain the result for
(cu j &zt,

(2. 6)

where A~' is the total number of paths which start
at site i with spin configuration ni and return to
the same site i with the same spin configuration
n, after exactly p steps.

The moments of the density of states M, can be
directly related to the coefficients A~. Using the

-zt zt

FIG. 1 Contour used in evaluating the moments of the
density-of-states function.

pectation values within a given spin arrangement
and then average over all possible arrangements. )
In the ferromagnetic case (F) the spin plays no

role and the problem reduces at once to that of
spinless electrons. The Green's function and

density of states in this case have the well-known
form for a single particle moving in a tight-binding
band.

It is well known that Anderson kinetic exchange
gives an antiferromagnetic coupling between
nearest-neighbor spine of order t /U. Inthe atomic
limit, the strength of this coupling goes to zero.
This gives rise to problems associated with the
degeneracy of the energy of the spin configuration
which have been studied by a number of authors.
Physically, our case (R), in which we average over
all possible spin configurations a with equal prob-
ability, can be thought of as the finite-temperature
atomic limit in which U» f & kT» f /U. The AF
case can be arrived at if we take the limit U-~
and kT & ( /U, and neglect the zero-point spin de-
viation. Following Nagaoka we can consider the
F case as the limit U ~ at T = O'K with the num-
ber of holes (or electrons) held fixed and finite.

(a) (b)

(ii )

(c)

(a) (b) (c) (e)

FIG. 2. Illustration of possible paths in (i) second
order, (ii) fourth order, (iii) sixth order.

relation between the density of states per site
p" (&u) and the imaginary part of the Green's func-
tion, we can write

(2 7)

(2. 8)

Now G(e) is an analytic function of m everywhere
except for a cut on the real axis between —zt and
zt. Thus we may write the integral (2. 8) as a
contour integral around the cut

M,"= 'Z f (
—
)
—G;,'(w) '". (2. 9)

It remains to calculate the coefficients A, . This
can be done by examining all possible paths and
assigning a weight factor to each path depending
on the spin configuration and calculating the weighted
sum of all paths. It is convenient for this analysis
to divide up the paths in each order according to
the type of geometric figure described by the hole.
Thus, in second order we have only one possible
type of path, a walk to a nearest neighbor and im-
mediate return, which is shown in Fig. 2(i).
Since the spin of nearest neighbor is returned to
its original position at the end of the walk, this
path clearly has weight independent of the spin
configuration. In fourth order there are three
types of paths shown in Fig. 2(ii). For each type
of configuration we calculate first, the lattice
constant, or the number of ways it is possible to
place the geometric figure on the lattice, second,
the path factor or number of walks on such a geo-
metric figure and third, the weight factor which
depends on the spin configuration. The lattice

where C denotes the contour shown in Fig. 1. Sub-
stituting the series (2. 6) for G and deforming the
contour to a circle of radius zt, we find the result
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o o o o AF

(a) (b) (c)

FIG. 3. Spin arrangements in the AF case which are
obtained by successively walking around a square, (a)
initial state, (b) after one revolution, (c) after two rev-
olutions, and (d) after three revolutions.

constants and path factors for paths up to eighth
order for a number of lattices have been tabulated
by Domb. Thus, in fourth order the types (a),
(b), (c) in Fig. 2(ii) have values of 3, 15, and 3,
respectively, for the lattice constants and 2, 4,
and 8 for the path factors. The total number of
paths of 2l steps x» is given for the simple cubic
lattice by

(2l)!
&2)= Z

( ))3( ))2( ))2, u+v+ur=l . (2. 11)
~ ~

In ferromagnetic spin configuration (F), all paths
clearly have weight 1 and thus A, =x,. For the
random-spin case (R) we examine the spin con-
figuration at the end and assign a weight equal to
(—,')" ' for each subgroup of n spins which must be
aligned to make the path an allowed one. In the
antiferromagnet (AF), we assign a weight 1 or 0
according to whether the final spin configuration
is equal or not to the initial configuration. Apply-
ing these rules in fourth order, we assign weight
1 to the paths shown in Fig. 2(ii)(a) and 2(ii)(b),
since the initial configuration is restored at the
end of these walks. In fact, all paths which exact-
ly retrace all the steps have weight1 independent
of the spin configuration. However, walks on a
square, shown in Fig. 2(ii) (c), permute the initial
spins. Thus, if we start with an antiferromagnetic
spin configuration shown in Fig. 3(a) and walk on

the square in an anticlockwise direction, we find
the spins as shown in Fig. 3(b). Walks on a
square, therefore, have a weight of —,

' (R) and 0
(AF) in fourth order. Note, however, that a walk
on a square will contribute in twelfth order with

weight 1, since, as shown in Fig. 3, the initial
spin configuration is restored if the hole moves

I

10

FIG 4 Function v(n) versus n

=0,
~

N/8t~ &(do

around three times.
In this way we can evaluate the A. , in a straight-

forward manner. The algebra, however, expands
rapidly with each order. In sixth order we find
six types of path as shown in Fig. 2(iii}. Follow-
ing our rules we assign weight factors asfollows:
(a)-(c) have weight 1 for (R) and (AF), and (d) and

(e) have weight —,
' (R) and 0 (AF), and (f} has weight

+, (R) and 0(AF). In Table I we tabulate the results
we have obtained up to tenth order. We note that
while, as pointed out previously by Harris and

Lange, ' the first two moments Mo and M2 are in-
dependent of spin configuration, there are signifi-
cant deviations in higher orders between the three
spin configurations. The higher moments for the
(R) and (AF) are substantially reduced suggesting
a narrowing of the band.

From a knowledge of the moments M„, we can
determine in an approximate way the position and
analytic form of the renormalized band edge. Thus,
if we assume a simple-power-law singularity at
the edge, of the form

TABLE I. Number of weighted paths and the values of the moments.

2

4
6
8

10

90
1860

44 730
1 172 556

6
72

1 0722
17 7814

314403

6
66

876
12 786

197 796

0.166 67
0.06944
0.039 87
0.026 63
0.01939

0.166 67
0.055 56
0.022 99
0.010 59
0.005 20

0.166 667
0.050 926
0.018 776
0.007 612
0.003 271
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we can approximately determine wo and v from the
exact M„. Substituting the form (2. 12) in Eq. (2. 7)
one can readily show that the ratio of succeeding
moments M„has the form

I.O

0.8—

M„„/M„= (u', (n+ 1)/(n+ 2v+ 3) (2. iS)

This suggests that we write the ratio of the exact
moments in the form

0.6

M„,s /M, = (n+ I)/[n+ 2v(n)+ 3]

or solving for v(n) we find

(2. 14)

v(n) = n+ 1 —(n+ 3)
n+S n n" (2. 15) 0.2

In Fig. 4 we plot the function v(n) determined by
(2. 15). This plot shows up in a dramatic way the
difference between the different spin configurations.
While for the ferromagnetic ease v(n) is clearly
approaching its asymptotic value of (s), in the R
and AF cases v(n) appears to be increasing lin-
early with n. If we write v(n)=an+b, then from
(2. 13) we find that

ohio—- 1/(1+ 2a); 2v= (2II+ 3)/(1+ 2g) —3 . (2. 16)

I

0.2
I

0.4
OJ/Zt

I

0.6
I

0.8 I.O

FIG. 6. Values obtained for p(co) by truncating the
Legendre polynomial fit at order 6 (dotted line), 8 (dot-
dashed line), 10 (dashed line), and 12 (solid line) for the
R case.

I.O I I I I

FIMOMENT EXPANSION)

I

0.2 0.4
Qf/Z t

I

0.6
I

0.8 I.O

FIG. 5. Values of the density of states p(~) given by
the Legendre polynomial fit up to twelfth order for the
spin configurations (F), (R), and (AF). For comparison
the exact results for the case (F) are also shown.

From the intercepts and slopes of the straight lines
in Fig. 4 we then arrive at the values of ~o = 0. 805
(R), Ioo = 0. 742 (AF), v = 0. 40 (R) and v = 0. 195 (AF).
These results suggest that for the R and AF the
bulk of the band is narrowed by approximately 20
to 25%, respectively. These results differ con-
siderably from the results found previously by dif-
ferent techniques. We shall return to this point
below in Sec. II F.

We can also construct approximately the shape
of the density of states for the whole band by ex-

ztp (&o)=Z B,P,
Q Zt

(2. i7)

and substitute into Eq. (2. 7), we find the following
relation between the moments M, and the Legendre
coefficients B, :

1

M, = Q C(l, m)B„ (2. IS)
m=O

where C(l, m) = I'( —,
' l+ —,')I'( —' l+ 1)/2I'( —', m+ —,

' l+ —')
&&&(s 1 —s m+1). From the known moments, the B
up to I= 10 are determined. We choose B&z so
that p(+zt)=0. In Fig. 5 we plot the values of
p (Io) obtained in this way as well as the exact re-
sults for the case F. The Legendre expansion to
twelfth order for the F case gives a reasonably ac-
curate representation of the exact band structure.
In the R and AF cases the Legendre representation
shows clearly the narrowing effect we discussed
above. The over-all band shape appears to be
rather flat at the center with a rapid drop off at the
renormalized edges. The convergence of the
Legendre polynomial expansion appears to be quite
good. For example, in Fig. 6 we plot the values
obtained for p(Id) by truncating I egendre polynomial
fit at sixth, eighth, tenth, and twelfth order for
the case (R). It is clear that the over-all shape we
obtain does not vary much. Because of the finite
number of Legendre polynomials used, there are

panding p in a series of Legendre polynomials
whose coefficients are determined by the moments.
Thus, if we write
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some unphysical oscillations in the shape. In
particular, near l~) =zt the curves go negative.
In fact, as we shall discuss below, we believe that
there is a band tail with a finite density of states
stretching down to v = zt. However, it appears to
be necessary to go to much higher order than
tenth to obtain a significant contribution to the mo-
ments from the tail.

It is also of interest to represent p "(e) as a
series of Legendre polynomials within the range
l& ) (~ozt, where we use for the ~0, values de-
termined above by considering the ratios M„/M„„.
Again we determine the 8, for l &10 from the
moments and fix BPz by demanding p'(a~, zt) = 0.
The results obtained by this procedure are shown
in Fig. V. While there is some change in the
detailed shape, the over-all conclusion for the
body of the band is unchanged.

G, .'((o) = I/(o [1—Z"„'(&o)], (2. 19)

C. Walks with No Closed Loops

It is clearly desirable to have @n approximate
description for the states in the body of the band.
If we examine the contributions to the moments
which we have calculated, we find that the dom-
inant contribution is from the class of walks in
which the hole completely retraces all steps.
These walks which involve no closed loops enter
with weight 1. Domb' refers to this class as walks
with no closed configurations or walks on a Bethe
lattice. This class is clearly not exact for the R
configuration. For the AF configuration, however,
the first correction to the mordent expansion does
not occur until twelfth order when the walk three
times round the square becomes allowed. A com-
parison of A. ", and A. + for l ~ 10 from Table I shows
that the graphs with weight 1 give the largest con-
tribution to A", also.

We can sum all walks with no closed loops and
calculate the corresponding Green's function by
using a technique similar to that used by Anderson
in his paper on diffusion in random lattices.
We first write the Green's function in terms of a
self-energy

2
(2) Zt

(o'[I —(z —1)f'/(o'] ' (2. 21)

The coefficient (z —1) arises since we must include
at the second step only forward going steps. We
can now repeat this procedure, and by repeated
application we generate a continued fraction for
Z:

Zt
( )-

( I)P
(z —l)t'

(z —1)i'
~

~ ~
(0 1—

(2. 22)

In this way all paths which completely retrace
themselves, i.e. , those with no closed loops, are
summed. We can solve this continued fraction. If

we write Z"(&o) for the sum of all forward going
paths, then

E( ) = [./(. - I)]E"( ),
and Z satisfies the equation

&"(a ) = (a —I)&'/~'[I —&"(~) ] .

(2. 22)

(2. 24)

Equation (2. 24) can be rewritten as a simple qua-
dratic equation for Z" whose solution is

E"((o)= —,'+ [-,
' —(z —1)t'/(u']v ' (2. 25)

I.O

3

N

Consider now the modification if we wish to include
a walk in which we proceed from the nearest neigh-
bor to one of its nearest neighbors. We can include
this contribution by modifying the denominator in
Z"' with a higher-order self-energy. The next
approximation is, therefore,

E (1&(~ ) g fa/~ a (2. 20)

where Z«'(~) is the sum of all graphs which do not
have the original state (in,) as an intermediate
state. In the remainder of thi@ section we will
suppress the superscripts 0.'„since the class of
walks we wish to consider do not depend on the
spin configuration. The simplest approximation
to the self-energy Z'" is a walk to the nearest
neighbor and an immediate return shown in Fig.
2(i). Clearly,

I

0.2
I

0.4
I

0.6
I

0.8 i.o

FIG. 7. Density of states obtained by (a) AF case
Legendre polynomial expansion to twelfth order, (b) AF
case, Legendre polynomial expansion in restricted re-
gion, and (c) from the sum of all walks with no closed
loops.
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Substituting in (2. 23) and (2. 19) we find

z &1 1 (» 1)fz
z —li2 4

(2. 28)

tion of H' is

0 10 1 0
1 0 1

0 1 0 1 O (2. 29)

where we take negative root for Z" so that G(&u) has
the correct limiting behavior as co -~. The Green's
function G(&u) is purely real for ~&u ~

& 2(z —1)'~ t.
For z = 6, this gives a value for the edge of Mp

= 0. 745. Using the relation between the density of
states and the imaginary part of G we find

zt p(u) = (1/7r) [(5 —9uz)'~z/(1 —uz)], u = (0/zt

(2. 27)

In Fig. 7 we show the resulting curve for p. The
density of states is very flat with a sharp square
root singularity at the edge. Comparing with the
Legendre fit based on the moment expansion re-
sults, we find good agreement, especially for the
AF case. In the R case the agreement is less good,
as one expects. Nonetheless, it is clear that by
summing all walks with no closed loops we obtain
a reasonably accurate representation of the body
of the band. We do not obtain any band tails, and
we shall return to this point in Sec. II E.

1 0 1
1 1 0

The matrix has sides N(N 1)XN-(N- 1). However,
apart from a different size, the structure is the
same as in the ferromagnetic or single-particle
case. Thus, the density of states is the same for
all spin configurations.

While the density of states is the same as that of
a single particle, the nature of the eigeniunctions
is clearly very different. For a general spin con-
figuration the eigenstates will be linear combina-
tions of the 4&; for i=1 'N and the N-1 distinct
values of n; for each i. These eigenstates are
clearly true many-body states. They do, however,
share one important property with the single-par-
ticle states. They are also eigenstates of the cur-
rent operator. This can be seen by commutation
of the current operator with H'. The current op-
erator J may be written as

D. One Dimension

~ Y'J=eatZ ~ C~+1 eCja Cg-1eC& v
gfy

(2. 30)

In this section, we digress somewhat from our
main presentation to discuss, in detail, the pro-
blem in one dimension. This problem has been
solved exactly by Lieb and Wu. ' In fact, since
there can be no walks on squares or other closed
loops, the procedure we used in Sec. II D is exact
in one dimension. Substituting the value z = 2 in
Eq. (2. 28) we find the diagonal Green's function
has the form

G**(")= 1/(~'- 4f') "' (2. 28)

independent of the spin configuration. Thus, the
density of states in one dimension is just that for
a single particle moving in the band. Various
Green's-function decoupling schemes, however,
lead to incorrect predictions that the band will be
narrowed in one dimension. '

The reason for the simple result in one dimen-
sion can be seen ky examining the structure of the
Hamiltonian. Consider N sites on a ring with the
hole initially at site i and spin configuration @,-.
Then by repeatedly applying the Hamiltonian H',
we may move the hole around the ring. If we move
the hole around the ring once, we have a different
spin configuration except for the special case of
ferromagnetic ordering. However, if we move the
hole around N —1 times, then we arrive back at the
same spin configuration we started with. Thus, in
the space of the states 4~ „ the matrix representa—

where a is the lattice parameter. It is straight-
forward to show that in one dimension

[PJP, ff']= 0 (2. 31)

Therefore, all eigenstates of H' are eigenstates
of the current operator.

The many-body nature of the eigenstates shows
up clearly if we examine the off-diagonal com-
ponents of the Green's function. Consider an anti-
ferromagnetic spin configuration. Then it is
straighforward to show that

G";~~((u) = 0, i xj (2. 32)

The argument proceeds as follows. Using the de-
finition we may write

G" ( l=(O* '0")1
(2. 33)

Clearly, since H' conserves spin, only even values
of (i —j) can be nonzero. Consider a specific
value of j—i=4. Then the states 0"; and C

&

are as shown in Figs. 8(a) and 8(b), respectively.
The question now arises whether by repeatedly
applying the Hamiltonian operator H' we can find
a matrix element to link these two states. If we
move the hole from i to j, the resulting state has
the form shown in Fig. 8(c). Clearly, this state
is not 4& . The argument can immediately be
generalized to walks where the hole takes n steps
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k ~ 1 i i i L i (g)t ~ t V t V I
Let us examine the imaginary part of G". In the
quasiparticle description, ImG should be a sharply
peaked function. However, from (2. 88) one finds

i a i i h i i
I j

I M 1 I

V ~ ~ " T V

I

FIG. 8. Illustration of the states (a) +&, (b) +&
and (c) the state obtained by moving the hole from i to j.

ImG "(k, &o) = {{p(&o)

X(2 —cos(k —ko)a 2 —cos(k+ ko)a+ — - { ~,).)
(2. so)koa = cos '(~/2f )

The function in the large parenthesis is a slowly
varying one whose maximum value is 2, so that the
G does not have the form of a single Lorentzian
peak which is characteristic of a quasiparticle
picture.

in the positive direction and n —4 steps in the
negative direction. The argument also does not
depend on our choice j —i =4 and is quite general
for all j& 1. Since G",

& (co) is a 5 function in real
space if we transform to reciprocal space we get
at once

G" (k, {0)= 1/(&o —4t')'i (2. 84)

This structure is very different from that of a
single-particle Green' s function

G (k, {d)= 1/({d —2t coska) (2. s5)

G";&(~)=(z)' 'G';&({d) .
Taking the Fourier transform, we find

(2. s8)

G"(k, )=Z„, + —2tcosk a

(1)N( {MQ {{) 2M{k k )) (2 SI7)
n=O

1 1
ta(x-a') + ~ c ~

Rr
(d —2tcosk a 1 —

2 8

(2. 88)

Thus, one cannot give a quasiparticle description,
i.e. , single-particle propagation with weak damp-

ing, of G . This stresses again the essential
many-body aspect of the problem.

Similar results are found for the random con-
figuration. We start with a given random-spin
arrangement and study the states 4'& and O'J which

arise if we annihiliate a down spin, say at sites i
and j, respectively, for this given configuration.
We now apply the argument given above for the AF
case. The argument still applies except for the
configurations in which all the spins from i to j
inclusive are aligned in the same direction. For
such a configuration, clearly, G&& =-G;&. Averaging

over all possible random configurations we arrive
at the result

E. Band Tails

So far, the approximations we have discussed
have led to bands which are narrowed by approxi-
mately 20-25% and have sharp edges at &u = +{dozf.
Nagaoka has shown that the ground state for an
extra electron or hole is the uniform (k = 0) state
with ferromagnetic alignment of the spins. The
uniform hole state has an energy (d = —zt. The
question immediately arises as to whether there
are states in the region vozt & (v I &zt. In this
section we will examine this question and present
arguments which lead us to believe that there will
be such states and that in the true band there will
be tails stretching to ~(d I =st.

The important paths which we have to consider
here are those in which the hole walks and rewalks
over a limited number of sites. It is interesting
to ask how large a cluster is needed to obtain a
state below the edge at ~ = —(dort. One can include,
in addition to all possible walks on the central
cluster, all paths which are completely self-re-
tracing and which start from the corners of the
central cluster without reducing the weight on the
state. It is straightforward but rather tedious to
perform such calculations, and we shall merely
state the results. One finds that a central cluster
of twelve sites arranged on a solid rectangle is
required to obtain a bound state just very slightly
below the edge. The weight in this state is very
small, 1/2048 (R) and 1/5548 (AF), respectively.

Clearly, as we expand the size of the central
cluster, the bound state will move to lower ener-
gies until, by making the size of the central cluster
as large as we like, we can approach as close as
we like to the edge of the ferromagnetic band at
~ =st. However, the larger the central cluster, the
smaller the weight contributed by the bound state.
We can use the argument given by Lifshitz for
the form of an impurity band tail to give us an ap-
proximate form for the density of states in the tail.
Consider first the random case. The probability
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that a cluster of M states is ferromagnetically
aligned is (2M+ 1)2 ". The lowest state in such a
configuration will have energy measured from the
bottom of the ferromagnetic band

(0+zf=fx M ' x =(4)2'3we'3 (2 40)

In writing (2. 40) we take only spherical clusters.
Solving for M in terms of (or+st) we find the den-
sity of states, assuming that each cluster of M spins
contributes one state

3/2 3/2
R( x/(co+a y «t /2l

CO+St 3

(2. 41)

(-,'M)!
exp( —Mln2 —

2 lnM)1

M. (2. 42)

This leads to a form for the density of states
3/4 3/2

P
AFt x + +~t -),/(„+gg)

t e (2. 43)

The existence of band tails in this model raises
several interesting questions. First, will these
states in the tail carry a current or will they be
localized in the Anderson' sense? Second, does
the edge of the narrowed band that we find corre-
spond to a real singularity in the density of states?
We do not have a complete answer to either ques-
tion. Although we derived the existence of tails by
arguments similar to those used for impurity band
tails, there are important differences between the
two situations. In the AF case, the system has
translational invariance so that there is no fixed
constraint to force the wave function to zero over
most of the crystal. Similarly, for the random
case the motion of hole itself can change the spin
configuration unlike a configuration of fixed im-
purities. These considerations lead us to believe
that these states will carry a current. However,
undoubtedly these states will have extremely low

mobility. In a sense these states can be thought
of as large magnetic polarons. This also suggests
that the edge which we find at (dost will not be a
true singularity, but only a region of rapid varia-
tion of the mobility and the density of states.

F. Comparison to Other Treatments of the Hubbard Model

Itisof interest to compare this composite pic-

The constant X is only approximate as, for example,
large ferromagnetic clusters which are far from
spherical can contribute terms of the same form.
We can also apply similar arguments to the AF
case. Here we must use for the probability factor
the projection of the up-down alignment for a cluster
of M sites on the ferromagnetic state. This pro-
jection has the asymptotic form

ture, in which the bulk of the band is narrowed by
20-25% depending on the spin configuration and

in which there are band tails stretching to +st,
with the results obtained by other approaches. In
his original papers on this problem, Hubbard

used a Green's-function decoupling scheme. He
limited his attention, however, to random-spin
configurations. In his first paper, his approxima-
tion for the band shape was similar to the mean
field approach to the alloy problem. He found a
band which was narrowed over all by a factor of

In his third paper, Hubbard presented an im-
proved version of the decoupling scheme which led
to density of states with the full bandwidth without
band tails in the atomic limits. Subsequently,
various authors have considered other decoupling
schemes.

An alternative approach has been given by Bula-
evskii and Khomskii. ' These authors have started
in the atomic limit by taking the interaction term
in the Hamiltonian (2. 1) as the unperturbed Ham-
iltonian and used the hopping term as a perturba-
tion. They consider both the AF and R configura-
tions. Their results lead to a bandwidth which is
strongly dependent on spin configuration. Thus,
they find a bandwidth for the AF case of

~b 2~t 1 2 1/2 +0 (2. 44)

where (S; S;,",) is the expectation value of the
scalar product of the spin operators on nearest-
neighbor sites, and So is the sublattice magnetiza-
tion. Thus at T=O'K, one finds a bandwidth which
is proportional to the zero-point deviation. At
temperatures much higher than the Neel tempera-
ture when the spin configuration is random,
(S; S"„;)= —,', and one finds the result of Hubbard' s
first paper. There is a large change in bandwidth
with spin configuration in contrast to the rather
small changes which we have found in this section.

III. CALCUALTION OF MOBILITY

Within the approximation that the dominant paths
for the motion of the hole are those with no closed
loops, we can calculate the mobility of a hole. The
picture that emerges from this calculation is that
the hole essentially undergoes a Brownian motion
because of the strong scattering due to the non-
ferromagnetic arrangement of the spins. The scat-
tering of the hole is elastic in the limit f/U=0,
since all spin waves have zero energy. The results
will therefore be unphysical within a characteristic
spin-flip energy of the band edge. The results
should therefore be valid at temperatures well
above the ordering temperature. In the AF phase,
our approximation will apply only to carriers whose
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energy, measured from the renormalized band

edge, is much larger than the exchange energy.
In order to calculate the mobility, we start with

the Kubo formula for the conductivity

dt d&Tr p J e' ""'"&

(3. 1)

In this expression the trace is to be taken over all
states with a single hole and arbitrary spin con-

-/Hefigurations. pp is the density operator e, 0 is
the volume of the system, Z is the partition func-
tion for a single hole, and P= I/kzT. The tight-
binding expression for the current operator for
the simple cubic band is

de„
Z„=eZ „c-„c„-,

A, e x
(3.2)

J, =eati Z (c',.„,c;,—c', „.c„),
i'

(3.3)

o= e 'F((u„(u, )
—P dCOg -gtd&

4 zt 7r

Here

(s. 5)

F((d &, (d o) = 7 (M ~ + I6, &d z +i5 ) + P (M ~
—'Ã, oo z

—I5 )

—6:(e&+i5, ez —i5) —6:(&u, —i6, &oo+i5),

(s. 6)

where

6:((u„(uz) = Tr [((u, —H') ' &„(~z—&') '&„],

6 ((u„(u,),

8 22~ 1 1=2ea t ~ Tr I ci ci f cj cg,.
co y

—H 602 —H

1 g 1
»i ci+ cecity»I g+ m' cga'

co
&
—H c02 —H

We consider the lowest-order approximation to
this expression and later show that the higher-
order corrections are not large and do not change
the physical interpretation. The lowest- order ap-
proximation is that in which only the i =j+x term
in (3.8) is kept. Then

5:o((o„(o,) = 2e'azt'G((o, )G((o,) (s. 9)

where (i+x) is the lattice site next to i in the posi-
tive x direction. By inserting resolvant represen-
tations of the two exponential operators and doing
the v and X integrals, we arrive at the result that

o = 5(Q) ~
—(do)

( —1) I d(d~d(do

Zn gt 4m

y[(e o"o —e "'}/(~, —&oz)]F(&q, ~z), (3.4)

Inserting this expression into (3. 5) and (3. 6), we
have

F'(~„&u&) = —8e a t [ImG(&o, )]
and defining the mobility of the hole as

(s. 10)

dc' g~= 2Pea t e "[ImG(ur —i5)]
gt 7T

&& ImG ((o' —i5)

~gt
dt's g~ e

e.-~ m

(s. 11)

Pea'zt (&uo- 1) 1+&so
ln +p

77 2 p

= (Pzt) XO. 14cm'/V sec. (s. 15)

These values of the mobilities are relatively
small even when the bandwidth is of the order of
1 eV. The reason for this low mobility is that the
hole is essentially undergoing Brownian motion
through the lattice. ' Although we have under-
estimated somewhat the mobility due to the limited
paths we have considered, especially in the random
case, it is clear that one cannot treat the bands in
magnetic insulators as freely propagating with
weak scattering. It is customary to ascribe the
low 'mobility in transition-metal oxides to polaron
formation. Although corrections of order t /U
must be included before any comparison with ex-
periment can be made, we note that the mobilities
calculated here without polaron effects are of the
same order of magnitude as the experimentally
measured mobilities in, for example, NiO at high
temperatures.

We now discuss the corrections to (3. 9) for
iw j+x. Substituting the expansion (2. 5) for (&o&

—&') ~into (3. 8), the 6: function is written in terms

Within this approximation the mobility is propor-
tional to the average over the thermally occupied
states of the hopping probability zt ImG(&u —i5).
The ImG(&u —i5) simply measures the density of
states at the neighboring site. To obtain some
typical values of the mobility, we substitute (2. 26)
for G, and we have

ImG(&o —i6) = —,'z[(&oozt) —&u ] / /[(zt) —co ], (3. 12)

(d Zt
ImG(~ —i5)= (o Mo) 3/o „,(3.13)

(1 —(dp )

for ar = &uozt. Inserting this expression into (3. 11),
we find for k~T «zt that

p, = [ea'4z/(z —2)'][2(z —I)/v]Pt'/'

x[2(z I ) 1/2 Pt/v ] 1/2. (3. 14)

if (Pzt) = 100 and a = 3 A, this gives p, = 't. 1 cm /V
sec. If we take k~T &st, we can perform the in-
tegrals in (3.11) to obtain
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(3. I8)

a a
Jx

a
Jx

FIG. 9. Illustration of the type of paths summed in
calculating the mobility. The steps labeled e make up
an irreducible path and those labeled P, a side excursion.

of paths in which the hole first takes a step with
the current operator, then m steps with the oper-
ator (H /~2)' then a step with the second current
operator and finally m steps with the operator (H'/
&u,). Only paths where the hole returns to its orig-
inal position and the spin configuration is left un-
changed contribute. We work with the approxima-
tion in which only those paths which contain no
closed loops are included. These are conveniently
classified according to the number of steps taken
using (H'/&u2) which are not retraces before the
second J„operates. Suppose there are n of these.
These n steps necessarily form a forward going
path, i ~ e. , a path with no immediate reversals.
Such an n-step path is an irreducible path to which
any number of vertex renormalizations or side ex-
cursions may be added. This is illustrated in Fig.
9. The steps labeled n in this figure form a pos-
sible irreducible path, while those labeled P form
one possible side excursion. The J„symbols on
the ends of the n path indicate that one of the steps
at that point is taken with the current operator.
Before the first step along the irreducible path is
taken, the hole can make arbitrary excursions,
always eventually returning to the first site. This
gives a contribution G(&o'). After the first step,
the hole can again take arbitrary excursions, pro-
vided it does not immediately return to the first site.
Such forward-going excursions were summed in
Sec. II to give [I —Z"(&e2)]"'. This can be done after
any of the n steps along the irreducible path. After
operating with the second J, operators, the return
path is completely determined, except for side ex-
cursions. These excursions can be summed in the
same fashion as those for the (H /"2) operator.
Therefore, from the sum of all nth order irreduc-
ible paths, we obtain a contribution to p, of the
form

2e'a't'G ((o,)G((u, )

p2 Qgn

)])"

Jx

Jx

Jx

(b)

0
"x

FIG. 10. Two irreducible graphs whose contributions
to the current cancel. The starting site is indicated by
the circle, and the J„indicates the steps taken using the
current operations.

where A„ is the number of paths in which both steps
taken with the J„'s are retraced by the (H'/&o2)

operator, B„is the number in which one of the J„
steps is retraced by (H'/&o2) and finally, C„ is the
number of paths in which neither J„operator is
retraced by (H'/+3)-type steps. In calculating these
coefficients there is a large cancellation between
the two terms in (3.8). First, consider all paths
in which the last step taken with(H'/"2) is not along
+x. When the step taken using the second current
operator is added, the return path is the same
length for both directions of this step. Therefore,
the two paths give equal and canceling contribu-
tions to the difference in (3. 8). Next, consider
these paths whose last l steps before the second
J„operator are along the positive x axis 0 & k & n.
If the step taken using the first current operator
was retraced by the first step taken using (H/&u2),

such a path gives a + 1 contribution to A„and a
—1 contribution to B„. If the first step is not re-
traced immediately, such a path gives a + 1 to B„
and a —1 contribution to C„. In either case, the
path which is identical with the above path, except
that its last l steps are in the —x direction instead
of the +x direction, gives a contribution which
exactly cancels the contribution from the original
path. Figure 10 illustrates this cancellation. Path
(a) gives a+ I contribution to A9, while path (b)
gives a —1 contribution to A9 so that they cancel
identically in the calculation of the current. There-
fore, the only paths left are those with all n steps
in the positive or negative x direction. These two
paths give A„= —1, B„=2, and C„=—1 for n ~ 2.
Since A& = 0, B,= 1, and C& = —1, we can sum the
series to obtain
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r((d „(o,) = 2e'a'f'G((u, )G((u, ) [1+1/o(,o, —(n', + n,'- 2)/

n, n, (n,o.,—1)] e (3. 17)

where

o.', =(u, t '[1 —Z"((u,)]
and

lated in Sec. II. In particular, the tails mill be
changed considerably. In order to discuss the
effect of these terms, we again consider a Ham-
iltonian projected onto the subspace of states with
singly occupied atoms, but which includes the
effects of virtual transitions to doubly occupied
states. This Hamiltonian was discussed by Harris
and Lange, ' and it can be written in the form

The cancellation of the contributions from all paths
but those along the x axis has led us to an expansion
in powers of (o.,nz) '. For (o, = (uz,

so that the higher-order terms give only a small
correction for the simple cubic lattice where z = 6.
To make explicit the size of the corrections to the
mobility, we define

v ((() i) = F((d ie (() i)/F ((d ie (() i)

H =Zt;, c„c,. Z—
U

c,.(1 n, -.)c,,w t g~); g

ig ijl
2t f3+Z ' (S;'S~ ——,'p, p~)

$,j
Here

c &Y'~
fyo sv $0

QQ

cr being the Pauli matrices, and

(4. 1)

(4. 2)

(4. s)

so that
Zf

re=mpee r ) e [)ma(re —(e)]'v (,)/
)I) ~Zg

e ~'ImG((o' —f5)
Z~ d(d

m

(3. 20)

The v'((d~) is the correction to (3.11) due to the
higher-order terms. After some algebra we find
that

z 4(2z —3)
v (~,)=

( 2)
1 —,

( 1)
—

f- . (3. 21)

This function varies by 20% over the band (z = 6),
so that the higher-order terms change the mobil-
ity by roughly z/(z —2) (= 1. 5).

In one dimension the above sum includes all
paths and is therefore exact. In this case v = ~,
and the mobility is infinite in accordance with the
discussion in Sec. II.

There will, in general, be considerable cancella-
tion between the last tmo terms in the determina-
tion of the over-all width of the band, since the
second term represents a propagation effect,
while the third term tends to inhibit the hopping
described by t;&. However, the states in the tail
of the band are those in which the hole is propagat-
ing in a ferromagnetic region of the crystal. To
the extent that this is true, we can ignore the
second term in (4. 1) in considering these states.
For the random configuration or for ksT» t /U,
the probability distribution for finding large fer-
romagnetic regions is the same as with t/U = 0
and, therefore, the tails extend to at least e =+st.
In the AF case the situation is similar to that for
double exchange discussed by De Gennes' and
applied to the present problem by Herring. ' As-
sume the hole is confined to a region containing N
atoms so that its total kinetic energy is (the region
is taken to be a cube and the wave function a pro-
duct of cosines)

IV. INCLUSION OF t/U TERMS AND INTRA-ATOMIC

EXCHANGE

A. Corrections of Order t/U

In the previous sections we have been discussing
the extreme atomic limit where no doubly occupied
atomic sites are allowed. The first-order correc-
tions to these results of order t/U are due to the
admixture of states with one doubly occupied site.
This admixture would be a small effect if it were
not for the fact that it gives rise to an indirect
coupling between the degenerate states with en-
ergies of order zero with respect to U. The mix-
ing of these states has nontrivial effects on some
of the properties of the spectral functions calcu-

(4. 4)

The hole can have this value of kinetic energy only
if all the spins in this region are aligned ferro-
magnetically. This costs an energy

Nzf'/U (4. 5)

N= (U/zt)' '(2v')' ' (4. 7)

Thus, the extent of the tails will be reduced owing

Minimizing the sum of these terms with respect to
N, we find a minimum energy of (assuming N» 1)

Z = —zt+3 (2z ) t(zt/U) (4. 6)

with the number of atoms involved being
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to the energy required to create large ferromag-
netic regions. Within this approximate calcula-
tion, we can estimate when this effect is strong
enough to eliminate the tails completely. This is
roughly when+ (2vz)"'f(zf/U)'~'= 4zt, —i.e. , when
the binding energy in the ferromagnetic region is
equal to the band edge calculated from (2. 26). This
gives (zt/U) = 0. 01, a, very small value. The cor-
rect answer is undoubtedly considerably larger
because energy can be gained by tilting the spins
slightly and not requiring them to be perfectly fer-
romagnetic. It should also be noted that (4. 4) is
only a crude estimate of the energy gained in a fer-
romagnetic region. For example, in Sec. II we
discussed a calculation on only twelve atoms which
gave a state below the continuum edge. Such a
twelve-atom state is not possible according to (4.4).
Physically, one expects these "spin polaron" states
to exist out to quite reasonable values of zt/U.

In contrast to the tails, the bulk of the spectral
function does not seem to change appreciably owing
to f'/U corrections. This can be judged by examin-
ing the corrections to the first few moments. These
moments are somewhat more complicated to cal-
culate, and we follow the methods of Harris and

Lange. The nth moment of the density of states
for a hole at i of spin 0 is

M,"„=(c;,[ ~ ~ ~ [[c„,H' j, H'
J ]„)/&c ct;, ) . (4. 6)

= —2zt'/U, AF (4. 9)

These are simply shifts in the center of the spec-
tral function. We measure the higher moments from
this shifted center. We have again taken the AF
configuration to be simply the up-down configura-
tion and have not included zero-point deviations:

Mq;, ———30t /U, R

=-0, AF

Thus, to lowest order, the major change in the
spectral function is a small shift of center, due to
the fact that it now costs energy to remove a par-
ticle at a site, and an asymmetry, due to the ad-
ditional means of propagating the hole through
the crystal for the R configuration. Neither of
these effects appear to be strong effects on the bulk
of the band.

We have normalized these so that the total spectral
weight is one. It is not difficult to see that the
first-order corrections to the even moments in
t/U are zero, since one cannot take an odd number
of steps with the direct t;& operator and return to
the origin with any of the other operators in (4. 1).
Using (4. 1) we find

M, ; = —zt/U, R

H=Z Z t,, 'c,'.c, .
Q mm';a

mm', i;ea'
ima i m'a' im'a' i me

+ ~ J ~ CimeCim'a'Cime'Cim'e
mm' i'ee'

Here J is the intra-atomic exchange integral, and

m labels the various degenerate states of the
atom. To illustrate the effect of intra-atomic ex-
change, suppose the hopping integral is diagonal
in nz and J» tt;&~. We again work in the atomic
limit f/U-0 and consider two electrons per atom.
A generalization to higher numbers is straight-
forward. The two electrons on each site are cou-
pled according to Hund's rule into triplet states.
A hole on one site can hop to a neighbor no matter
which of the three spin states the neighbor is in
before the hop. The matrix elements depend on

the spin state of the neighbor and the spin of the
electron on the site of the hole. If we designate
the initial atomic state of the two sites involved
in the hop by I + 1/2, m), m = + 1, 0 and the final
state after the hop by &m, a 1/21, then

(4. 12)

All other matrix elements are either zero or can
be deduced from these three by symmetry. Using
the matrix elements, we can calculate the first
few moments of the energy band for a hole pro-
pagating in both the R and AF configurations. The
sum of the weighted number of paths are listed
in Table II and are seen to be considerably smaller
than those for the one-band Hubbard model.
Again, the lowest few moments are dominated by
the diagrams with no closed loops, and approxi-
mate Green' s functions for them can be obtained
by renormalizing f in (2. 26) by E3/2 and 1/E2

TABLE II. Weighted number of paths with (A& ) and
without (A &) intra-atomic exchange.

A A) A) A
R R AF AConfiguration

)=2
l=4

4—12
4283

3
174

6
66

B. Intra-Atomic Exchange

If one considers a more realistic situation there
will be more than one band, and intra-atomic ex-
change becomes important. The modified form
of the Hamiltonian incorporating this effect is
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for the R and AF configurations, respectively.
Clearly, there will also be tails extending out to
the full bandwidth +st in this case as previously,
and the remarks in Sec. IV A regarding f'/U
terms will qualitatively continue to apply. The net
result is that the bulk of the band is narrowed
considerably more than in the one-band Hubbard
model, the total narrowing being of order 50/o in
the AF configuration and 35% in the R configura-
tion, for the two-band model considered here.

The results for the bandwidth obtained here are
similar to what one obtains using the model of
De Gennes, in which an extra conduction electron
moves in a conduction band interacting via intra-
atomic exchange with a set of localized spins when
quantum-mechanical effects ' are properly treated.
De Gennes treated the localized spins classically,
and this leads to the result that the conduction
electron cannot hop (except for zero-point fluctua-
tions) in the AF arrangement. Our results would
eventually go over to those of De Gennes if there
were a large number of electrons per atom. In

¹iOthere are only two electrons in the e~ bands
and, therefore, the maximum effect of intra-
t ' hag th 'g 1 ltdh

In the language of small polaron mobility calcula-
tions, this means that the hopping frequency
8o of a hole is reduced by at most a factol of 2.
Heikes and Appel have given a classical treat-
ment of this quantity, and Appel has estimated
that 8'o will be reduced by a factor of 10 at room
temperature in NiO. It is clear from the above
result that there are important quantum-mechan-
ical corrections to 8'0. The picture of a "spin
polaron" suggested by De Gennes and discussed
further by Austin and Mott only holds when the
spin cloud extends over many atomic distances,
since a hole cannot be localized on one or two
sites by any spin configuration. The spin polaron
is therefore unlikely to ever be a "small polaron. "

V. COMPARISON WITH EXPERIMENT

In this paper the character of the spectral func-

tion or energy band for the creation of a single hole

has been investigated for the half-filled Hubbard

model in the atomic limit. The composite picture
of the band shape which we obtain is that the band-

width is narrowed by 20-25%, but that there are
tails extending down to th0 full width of the free
band +st. Judging from the moments, the approxi-
mate Green's function obtained by summing all

walks which contain no closed loops gives a good

representation of the bulk of the band. The validity

of keeping only these walks in calculating the mo-

bility of a small number of carriers is xnore dif-

ficult to judge, especially in view of the cancella—

tion between different walks in evaluating the Kubo
formula. One can calculate a few of the lower-
order graphs and examine the corrections to the
mobility. We find that they are small for the AF
configuration, but non-negligible for the R config-
uration. This result is similar to the analysis of
the band shapes in Sec. II. It is interesting that
the values of the mobilities obtained are close to
those seen experimentally in materials such as
NiO. Several authors ' have argued that the low
observed mobilities imply small polaron formation
in these materials. While in our model calculations
we have ignored all ionic effects, and, therefore,
all possible polaron effects, we feel that the low
values we obtain for the mobility indicate that one
may have to reexamine the arguments in favor of
small polarons.

Another interesting comparison with experiment
is with the dioxide and sesquioxide series with
electronic configurations d', d, d', respectively. '
The behavior of these materials is discussed by
McWhan and Remeika. As one moves across the
series, there is clearly a transition from para-
magnetic bandlike behavior (VOz and Ti203) to
antiferromagnetic insulating behavior (MnO2 and

Cr~O~). In the sesquioxides the Mott transition
occurs in V~03." In the dioxide series the cor-
responding member CrO2 is a metallic ferromag-
net. ' It is likely that the basic band to localized
transition occurring with increasing number of
d electrons may be aided by the narrowing effect
on the bands due to increasing intraatomic ex-
change energies as we go across the series. From
this point of view the metallic ferromagnetic be-
havior of CrO& appears less anomalous. In these
oxide series we expect that zt- U. Under such
circumstances, if we try to stabilize the ferro-
magnetic state in an insulator, we will lose all
band narrowing. This makes it likely that any
ferromagnetic arrangement is metallic. Empir-
ically it appears that the magnetic instability of

the metallic phase at the critical boundary is to-
wards ferromagnetism rather than itinerant anti-
ferromagnetism. This raises the very interesting
and open question of why, in the dioxides, we have

an intermediate metallic ferromagnetic phase,
while in the sesquioxides we have a direct transi-
tion from an insulating antiferromagnetic phase
to a paramagnetic metallic phase.

Note added in Proof Recently ¹ Oh. ata and R.
Kubo [J. Phys. Soc. Japan 23, 1402 (1970) have cal-
culated the high-temperature mobility by calculating
the moments of the frequency-dependent conduc-
tivity. Their value of the dc conductivity is within

a factor of 2 of our result (3.15). Using their
technique they also calculated the magnetoresis-
tance and found a large negative magnetoresistance.
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The theory of the anisotropic Heisenberg antiferromagnet is developed in the nonlinear
spin-wave approximation. It is shown that the thermodynamic quantities of interest depend

on two renormalization parameters. These parameters can be calculated analytically over
the entire temperature range of interest. It appears that nonlinear spin-wave theory does
not give a good estimate of the transition temperature as the anisotropy increases.

INTRODUCTION

One of the most important methods in studying
the thermodynamic behavior of ferromagnetism or
antiferromagnetism is by spin-wave theory, first
initiated by Bloch. The assumption is that spin-
wave excitations do not interact. By the use of a
Holstein- Primakoff transformation the spin-wave
operators can be cast into the form of boson oper-
ators. This description of the system in terms of
noninteracting bosons loses its validity as the tem-
perature is increased. The theory suffers from the
drawback that its applicability is limited to a nar-
row range of temperatures.

With the use of a suitable transformation, Dyson

transformed the Hamiltonian of spin operators
into a boson form which consisted of quadratic and
quartic operators. The quadratic part yielded
the Bloch spin-wave theory, and the nonquadratic
part leads the now famous T term in the magne-
tization. He was therefore able to calculate the ef-
fects of spin-wave interaction for the Heisenberg
ferromagnet.

Bloch extended the regions of applicability of the
spin-wave theory by truncating Dyson's Hamil-
tonian and finding solutions at higher temperatures.

Liu extended the Bloch theory to a Heisenberg
antif err omagnet. Using Gr een' s -function formal-
ism, the model was studied at high temperatures
for spin-wave interactions. It was shown that the


