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In calculations of the transferred hyperfine field at ligand-ion nuclei in transition-metal
compounds, overlap and covalency effects are usually accounted for, but the exchange-core
polarization of ligand closed electron shells due to the unpaired metal-ion orbitals are ne-
glected. We have calculated this interaction for ZnF2. Mn, using the moment-perturbation
technique and a model of free-ion orbitals distorted only by overlap. We find that the net con-
tribution in this case is small because of an interesting cancellation of large individual terms.
The hyperfine field at the Mn55 nucleus arises from exchange polarization of the s cores by
the unpaired Mn" d orbitals. In the crystal, both the core s and valence d orbitals are dis-
torted by overlap, and thus the hyperfine field at the Mn" nucleus is changed from the free-
ion value. The major overlap contribution is found to arise from the Pauli distortion of the
Mn" s-core orbitals by surrounding ligand orbitals, and this effect is shown to decrease the
magnitude of the free-ion value, in agreement with experiment.

I. INTRODUCTION

The transferred hyperfine field and the hyperfine
field at paramagnetic-ion nuclei have been exten-
sively used to study the electronic distribution of

ionic crystals containing paramagnetic ions. In

particular, attention has been focused on ionic
crystals containing iron-group ions ZnF~: Mn,

MnFz, and KMnF3, to name a few. Several calcu-
lations' "have been carried out for the transferred
hyperfine constant (THC) of fluorine ligands.

The first such calculation included only Pauli
overlap polarization, where the unpaired spin of
the paramagnetic ion overlaps the ligand orbitals
of like spin. In effect this creates a net positive
density at the ligand nuclei since the like-spin
electrons on the F ions have their density
squeezed inward and thus increased at the F nu-19

cleus relative to the unlike spin. This Pauli effect
can be thought of as an overlap core polarization

(OCP) and results in a contribution to aT«as
given by the expression in Eq. (I) for an unpaired
valence orbital on site i interacting with a paired-
core orbital on site j:

where p, is the nuclear magnetic moment of the nu-

cleus. A comment should be made about the units
to be used in this paper since different authors use
a variety of units such as electron gauss, kG, cm ',
and Mc/sec. In this paper we shall reference our
values to the spin Hamiltonian K = a I,&S,) and will

give values of a in units of field, electron gauss,
by dividing a by g p, &. This description of a corre-
sponds to most of the experimental values relevant
to this study. The magnitude of aTHc at F"nuclei
from this effect alone is found to be only about 30%%ua

of experiment in the systems listed above.
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Ideally, one would like to have wave functions for
the crystal which would describe charge and spin
densities accurately over all regions. Such wave
functions would have to include covalency effects
such as charge transfer and deformation of atomic
orbitals as well as some correlation to account for
many-body effects. While such wave functions are
not currently available, several attempts to calcu-
late good wave functions with flexible basis sets
are in progress. On the other hand, there is a
body of literature where departure of aocp from
experiment is used to estimate the amount of
charge transfer present. Such transfer effects re-
sult in a transfer on to Mn' of ligand spin density
unlike the Mn Sd spin density, leaving behind a
net positive density at the ligand nucleus, positive
here being used for spin density of the same sign
as the occupied Mn d orbitals. Vile shall denote
this char ge- transf er-polar ization contribution as
+CTP '

However, it has long been realized' that it is
possible for a third mechanism to make a signifi-
cant contribution to a»c, namely polarization of
the ligand electrons through exchange with the un-
paired electrons of the paramagnetic center. This
effect may be termed exchange core polarization
(ECP). The importance of this third mechanism
has been dramatized recently by the experimental
measurements' '" of sizable negative THC's, partic-
ularly for Li'- and F -ion nuclei surrounding the
V~ center in LiF. For those ions lying on the nod-
a.l plane of the Fz molecular ion, aocp is zero and

(le Tp is either negligible or positive and could not
explain the negative OTHc. However, as will be
discussed later, apcp is capable of producing such
a negative term. In effect, previous calculation
in transition-ion compounds have been made under
the assumption that this ECP contribution to the
transferred hyperfine constant would be negligible.
Of course uhf calculations in Refs. 9 and 10 auto-
matically involve aEcp but the aim of that work
was not to attain wave functions of sufficient ac-
curacy at the fluorine nuclei to make quantitative
statements about the importance of aEcp One of
the two aims of this paper is to gain a quantitative
understanding of the role ECP plays in transferred
hyperf ine interactions.

Also of interest both experimentally and theoret-
ically is the hyperfine field at the Mn' -ion nu-
cleus. Here the situation is quite different from
that for the F ion since aM„.+ is not zero for the
free ion as was the ease for aT«. Although the
unpaired orbita. ls on Mn are d states and have
no density at the nucleus, they can exchange-core
polarize the paired s states yielding a finite con-
tact interaction. For the free ion no experimenta1
data are available, but theoretical calculations by

Watson and Freeman yield a negative value for
aM... that is larger in magnitude than the value
observed experimentally for Mn'' in ZnF2: Mn.
Some decrease from the free-ion value could be
explained by the charge transfer of negative fluo-
rine spin density to the Mn 3d unoccupied down-
spin state, in effect lessening the amount of un-
paired d spin density on Mn

'
and hence reducing

the magnitude of aM, +, . In addition, it would be
possible for transfer to the 4s state of spin one like
the d orbitals, yielding a positive contribution.
However, Simanek has pointed out that in order to
explain the large decrease in aM„, , observed for
Mn in more covalent compounds that large
transfer would be necessary, which mould leave
behind large THC's on the ligand opposite in sign
to experiment. Instead, he proposes that nearby
equal up- and down-spin transfer takes place in
the unoccupied 4s orbitals on Mn and that ECP
of this orbital which is large and positive for the
Mn atom is the explanation of the decrease in mag-
nitude of aM. .. in the solid state. However, with-
out transfer there could also be a change from the
free-ion value simply because of the influence of
the ligand orbitals overlapping the Mn' orbitals.
This effect must be included if we are to judge the
need for 4s charge transfer from comparison with
experimental hyperfine constants. The second
aim of this work is to gain quantitative understand-
ing of ~Mn+ + ~

In Sec. II we outline the theory for calculation
of aT«and aM, .~ we present our results and con-
clusions in Secs. III and IV, respectively.

II. THEORY

In our calculation we have utilized the moment-
perturbation (MP) technique" which handles the
differences of up and down s-state densities at the
nucleus a,s a perturbation. In previous calcula-
tions" it has compared quite closely to other per-
turbation calculations and in particular to results
from Brueckner-Goldstone many-body perturbation
technique" when many-body effects are unimpor-
tant, and has been utilized successfully to calcu-
late Knight shifts in metals. " This method had
previously been extended" to the case where the
orbitals are nonorthogonal, such as for the THC
calculations where Mn'' and F orbitals are non-
orthogonal. For problems such as the calculation
of aEcp the perturbing Hamiltonian is composed of
two parts, one representing the Fermi contact in-
teraction and one the exchange potential:

g &(r ) = s &g p&g&u, I S a (r ),

3C = —~ ~" . ~, (2) ~ (2) d7



HYPERFINE FIELDS IN ZnF 2: Mn 1221

where p, ~ and p,„are the Bohr and nuclear magnetons
and g and g~ are the g factors of electron and nu-
cleus, respectively.

Looking for terms in the total energy that are
linear in the nuclear moment p. , we could proceed
in either of two ways. One way is for XEX to
charge polarize the s cores which then have differ-
ent s4 and s4 densities which have a finite inter-
action with X&c. However, this method is diffi-
cult to apply to solid-state problems since one
must solve a multicentered differential equation to
obtain 6/Ex perturbed to first order in XEX. Alter-
natively, one could let XFC perturb the s-core
states of the atom or ions in question and then car-
ry out the exchange integral with the unpaired va-
lence states using XEX. The advantage of this lat-
ler method (MP) is that one expects the first-order
change in the wave function due to Rrc (5g„) to be
reasonably independent of its outside environment;
hence, solutions for the free ion can effectively be
utilized for solid-state problems. In this approach
we evaluate multicentered integrals involving 51)„
rather than solve a multicentered differential
equation. This method has already been applied to
the calculation of aEcp for Li — and F -ion nuclei
surrounding t/'E center in LiF and lying on the nod-
al plane of the F2 molecular ion2 where, as was
mentioned in Sec. I, a«p and acTp could not ex-
plain the experimentally observed negative sign of
aT«. From calculation it was shown that aEcp
could explain the sign and magnitude of a»c and
further showed that a«p could make a sizable con-
tribution to aT«, to neglect it in general is not

justified
Vfe shall consider the ZnF2: Mn system where

experimental data are available ' and where we
need consider only a pair-wise interaction between
Mn and F ions. We neglected the ligand-ligand
interaction, which should not alter our conclusion
about the importance of agcp since its main con-
tribution arises from the Mn and F exchange
interaction. The structure of ZnF2: Mn is rutile
and the local symmetry around Mn' ' is distorted
from cubic with two F ions being at a distance
slightly different from the other four. As will be
seen, it will not alter any of our conclusions if we
consider the F ions all to be at an intermediate
distance of 3.85 ao. This makes our situation
similar to KMnF, and MnF2 and the conclusion
reached here for ZnF2: Mn should also hold for the
other systems. Our model for the crystal wave
function is one in which it is assumed that the only
distortion from their free-ion form is due to over-
lap with their neighbors. The calculation for aEcp
is the type I situation in Ref. 19 and we can easily
write down its expression in Eq. (3). In evaluating
Eq. (3) we retain terms which are second order in

overlap and neglect higher orders. Here an inte-
gral such as

(Mn(1) F(1)
I
e /r, s I

F(2) Mn(2))

is counted as two orders in overlap. (Note that in
all formulas and tables we shall denote Mn and
F merely by the symbols Mn and F, respectively. )
We obtain

aEcp = —2A
5 2

&& 2 Z(Xd; (I&~X„(I)I(e'/3 is) Ig„(I)y„(2)&,
f =l j=l

X.i= N.ifFi.
—(Fid I

M"s & M"s —(Fid I Mnsp, ) Mnsp ],
y, =N, [F,

—(Fs, I
Mns, & Mns, —(Fs, I

Mnsp ) Mnsp ],
Ndi[Mnsdi (Mn3dil Fspi& Fspi] t

&tds =Nds[Mnsd i (Mn3d il sp

X~3= MnM, ,

Xq4
——Mn3q

yds ——Nds[Mnsds (Mnsds
I
Fi,) Fi,

(Mnsds I Fsd& Fsd (Mn3d
I Fsp & Fsp ]

&X.l = &Fl.

—F» IMns, & Mns, —(Fi, IMnsp& Mn, p,
&Xs2= &Fp

—(Fs, I
Mn„& Mn„—(Fs, I Mnsp) Mn, ,

A= sic y, /IS Xs(2m)/gs.

The 5X are defined as in Ref. 16 divided by 4~.
The expression for aM... is similar but like the
type II situation in Ref. 19.

III. RESULTS AND DISCUSSION

Before proceeding to the calculation of azcp we
shall present the results of aocp which had pre-
viously been calculated, including only the F2, or-
bital. However, as has been pointed out, ' a large
contribution comes from including F,, Using Eq.
(1) and the orthogonalized wave function in Eq. (2),
we obtain the expression

~ocr =3~ &/IS

x —,'IMn(r ) —S ' F, (0) —S ' F, (0) I, (4)

where S, is the overlap between orbitals a and b.
Contributions of the various terms are listed in
Table I. It can be seen that, we obtain almost the
same result as was found previously' for KMnF3.
The result of aocp = 6, 4 electron gauss is only
about 35/g of experiment, but if Fs, is not included,
the result is VOlo of experiment, as was found in
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TABLE I. Contributions to aocp.

0.000 067
0.005 335
0.046734

—0.031 520
—0.001 180

0.003 540

1 t Mn3&(rv) )

~ (F„~Mn:,, )F&, (0}l'
l (F~)MnM )F„(0}I'

4 2(F~ [ Mn~) (F~ t MnM )P~(0)F(,(0)

5 —2 (F(~ ) Mnm)Fg(0)Mn~ (rv)
6 2+2S f MTl3())F&(0}MnMO(rF}

Total of terms 1-6

aocp Total (electron gauss)

Tab1e II, in Parti|'-ular for the Mn, „,orbital and the
Ca,se of F -Mn pair oriented along the z axis.
The most interesting feature of these results is
that although the individual terms are quite large
because of cancellation, the net result is quite
small. Term (a) by itself would contribute about
10 g the amount needed to reach agre'ement with

experiment. It is possible to associate different
physical effects with the terms in Table II. Con-
sider first the effects that arise from the direct
ECP of the ligands by the unpaired Mn 3d orbit-
als and the unol thogonalized F2~ core, name]. y
terms a-d in Table II, which can be written as

Ref. 2. Thus, a proper treatment of cocp rules
out the possibility that it alone is able to explain
the experimentally observed THC.

%e now turn to the evaluation of a«p as given
in Eq. (3). The equation to determine the MP wave

functions for F and Mn' s orbitals was solved

using Eq. (1V) of Ref. 22, the local approximation

for the potential as was done in Ref. 16, and a non-

iterative approach to solve this integral differen-

tia1 equation as described in Ref. 22. F and Mn

wave functions are due to Clementi, "and Lowdin's

o.-function technique34 was used to handle the mul-

ticentered integrals in Eq. (3). A discussion of

the approximations made here is presented by

Duff 0 and it appears that they will not alter our re-
sults by more than lo%%uo and thus will not alter any

conclusions that we are attempting to arrive at in

this work.
The leading individual contributions to a«& that

we have obtained from Eq. (3) are presented in

Qscp ———2A ((Mng —SF Fg~)

X~F„~e'/~„~F„(Mn, —S,; F„)&. (5)

This expression can be compared to Eq. (4) with
the F~, absent:

' ~
=-' ' &/» x2 I».(~z) —&Ã;, Fa. (o) ~'. (6)

In Eq. (6) almost the entire contribution comes
from S

~
F2, (0) ~', that is, not the direct 3d density

at the F' nucleus but its effect on the F~, orbital
through Pauli overlap distortion. In contrast, in

Eq. (5) there is a balance between the direct-ex-
change polarization, by the 3d Mn

' electrons,
which is negative and the exchange polarization,
modified by overlap effects, which is predominate-

ly positive. Further comments about this point
will be presented in Sec, IV. Terms e-g are
direct ECP mediated through overlap with the F2&

electrons.

TABI Z II. Contributions to aEc& for F in ZnF&. Mn.

&(1}0.} f (e'/~)2} l (2}(2})

-2 ~,„aF~ llF~Mn„)
+2(MnM ] F~}(M „6F„ IIF~F2,)

+2(M,„l F„)(F~rF~ llF„M „}
—2r (Mn3~l F2,) l'~(F2, 6F2, llFp Fp )

(M „IF») |,'M,„aF~ lt F~F»)
+2(Mn~ I F») (F»6F2 lj F2~Mn3~)

—2(Mn, „I F») (M „I F») (F»DF„ ll F~F»)
—2(BF2 lMn3, ) (F2 I Mna, }(Mn3&Mn3, llMna Mn~z)
—2(6F2 l Mn3&) (F2, l Mns&) (Mn3&Mns& ll Mns&Mn)

+2(F2 l Mn3 ) (Mn3&BF2, llMna Mn3&)

+ 2(6F2 l Mna ) (MnMMnp ll F2 Mns~)

+2(Fp l Mn3p) (Mn3gAFp ll MnspMnag)
+ 2 (6F2 l Mns&) (MnMMn3& ll F2 Mns )

Total these terms Mns&

Sum of all other Mn&&

Total Mn3&

Total all other Mns«&
Mn3& ~2

amcz, Total (electron gauss}

—0.017 872
0.010 680

—0.001 988
0 004976
0.002 832
0.000 712
0.000 848

—0.000 448
—0.001 546

0.000 558
0.000 744
0.001 590
0.001 990

0.003 076
0.000 228
0.003 304

—0.002 044
0.001 260
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TABLE III. Contributions to aEcpMn" free ion re-
ferenced to spin Hamiltonian K= aI' S.

aEcp (Mn" free ion)

ls
2s
3s

aEcp (free ion)
Total (electron gauss)

0
—102
—21

—123

Next we consider indirect ECP where the Mn

3d orbitals polarize the Mn -filled 3s and 3p
cores which in turn overlap the ligand 2s core un-

equally, creating an unbalancing of the 2s density
at the F' nucleus (terms h-i). There are also
terms which are a cross between the direct and
indirect ECP, namely j-m on Table II, and we

prefer to group them with the indirect ECP since
they would vanish if the filled core orbitals on

Mn and F did not overlap. Again it can be seen
that among those indirect terms there is cancella-
tion and that they are individually about an order
of magnitude smaller than the direct terms.

The contribution from Mnl„and Mn,'„,'2 orbitals
have similar contributing terms, except that their
overlap integral with F s core orbitals is zero
and the direct ECP is dominated by the negative
terms. When all the terms are added together the
result is small.

The situation for aM... is quite different since
we are looking for a change to an already large
field. In Table III we present the free-ion values
calculated by the MP method. The result is -123
electron gauss, compared to Watson and Freeman's
uhf value' of —106 electron gauss. In Table IV we

give a few leading terms due to two-center ECP
effects for ZnF~: Mn. Since there are six F lig-
ands surrounding Mn, we multiply this contribu-
tion by 6. As can be seen from Table IV there
is one type of term which contributes significantly,
namely those that involve the effect of the F~, and

F&~ cores on Mn 3s core through orthogonaliza-
tion. In effect, this places density outside the 3d

unpaired electron which appears to then attract
more like-spin density inwards. The net contribu-
tion of 29 is positive and reduces the free-ion val-
ue of -123to -94, which is in the proper direction
and of sufficient magnitude to agree with the exper-
imental value ' -97. lail in electron gauss, which

are the units used in Ref. 21. We are able to ex-
plain the experimentally observed decrease with-

out any other mechanism such as 4s charge trans-
fer. In some measure this is in opposition to
Simanek's recent calculation in which he used a
charge transfer to the 4s state and subsequent one-
center ECP of this transferred 4s density. Re-

TABLE IV. Contribution to aM ~ in

Term ((1)(1)f (e /rq2) J (2)(2))

(Mn& I F&) (Mnm BMn3, II F»MnMP
QMn3, f F2&) (MnM F»llMn3, Mn3~ )
&,aMn„~ F„)&MnM, F„~~M „mr,„&

(Mnp I F2,) (Mnl &Mn3, I] F2,Mn3„)
Sum of above terms
Sum of all other terms with Mn3$p
Total from Mnl

p

Sum of all terms from Mn3yy f and Mnspp
Total 3s

Total 2s
Total ls
Total for one Mn-F pair

Total for Mn-F cluster

aM~ (electron gauss) from ECP effects
aM~ including free-ion value
aM (expt)

ZnF2. Mn.

Value/A

0.003 258
0.008 600
0.000 866
0.000 340
0.013064
0.003 272
0.016 340

0.019712
0.036 052

0.005 808
0

0.030 144

0.180 864

29
—94
—97.1

IV. CONCLUSIONS

Two basic conclusions can be reached from this
study. For an ionic model distorted only by over-
lap, exchange polarization effects do not contribute
significantly to the transferred hyperf inc field at
ligand F ions in ZnF2: Mn, but do for the hyper-
fine field at Mn nuclei where exchange polariza-
tion contributions are of proper sign and sufficient
magnitude to explain the experimentally observed
reduction in the field relative to the free ion. This
latter conclusion removes the necessity of 4s
charge transfer in explanation of aM, ++, For the
transferred hyperfine field, although individual
contributions are large, cancellation leads to a
small result and since overlap contributions to

ar„c for F are only about 35% of experiment, it
appears that further covalency effects must con-
tribute significantly. It should be pointed out that
other properties such as temperature dependence

cent configuration calculation by Hubbard et al .
would seem to be more in line with our calculation
to explain the reduced magnitude of aM,+. . For
more covalent situations such as ZnS: Mn, Simanek
proposed that quite sizable 4s transfer was needed,
but for these more diffused systems the overlap is
also large and hence we would expect a larger re-
duction of ECP at Mn' without 4s transfer. It
should be pointed out that overlap distortion does
bring into play charge density in the same vicinity
as would 4s charge transfer but is present with or
without 4s transfer. First-principle calculations
of 4s transfer or ECP in these systems are needed
to answer the question of whether there really is
sizable transfer.
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which depend on 4s transfer will also be effected
by this exchange mechanism.

%'e can also make some more general comments
about the role of ECP in ionic crystals with para-
magnetic ions or color centers by combining the
results of this calculation with two previous ones,
the transferred hyperfine interaction at Li nuclei
adjacent to an F center in LiF and Li and F
nuclei lying on the nodal plane of the V~ center in
LiF. In these systems there is a variance in the
overlap integral between the unpaired valence or-
bital and the ligand core s orbital; zero for Li
and F ions on the nodal plane of the Fz molecular
ion in LiF, O. OV for ZnF3. Mn and 0. 10 for Li
ion adjacent to the F center in LiF. The value of

QEcp in these systems is negative, nearly zero,
and positive, respectively. Thus, it appears with

increasing overlap a«p becomes more positive.
Physically, this may roughly be looked at in the
following way for two centers with overlapping
charge distribution: When the overlap is small or
zero, exchange acting like an attractive potential
pulls charge density into the region of the unpaired
spin and away from the nucleus where aTHC is be-
ing measured. As the overlap between the distri-
bution increases the unpaired electrons get more
inside the neighboring charge distribution and also
begin to attract charge density towards the nucleus
where aT« is being calculated. Since the density
in the second mechanism is much closer to the
nucleus than for the first, less unpaired density
is needed for a sizable contribution to aT«. There
is cancellation between the two mechanisms and the
sign of aT«can be negative or positive depending
on whether the first or second effect is more im-

portant. For intermediate cases QTHC ls small.
Of course it should be pointed out that as the

overlap increases, so might various covalency ef-
fects which make the simple model of distortion
only by overlap quite inadequate. For example the
orbitals in the crystal may contract or expand from
their free-ion form and charge-transfer covalency
effects may become important. There are two

ways that covalency effects could be important:
directly as from charge transfer, and indirectly,
where deformation of the orbitals could change
the value of a«p. It should be pointed out that
when detailed restricted Hartree- Fock self- con-
sistent wave functions are available for the crystal
we can proceed in the same manner or as was done
in this paper, i.e. , find MP orbitals for the new

charge density and then calculate a«p. This al-
lows an assessment of the importance of a«p by
perturbation techniques handling only the difference
of up and down s-state densities rather than sub-
tracting them as is done in unrestricted Hartree-
Fock calculations.

One further point should be mentioned concern-
ing aF-. In the treatment carried out here we have
neglected higher-order terms in XEX such as
XExXF~. Although expected to be smaller than

XExX~c for individual terms, it is not clear that
the total will be smaller due to the severe cancel-
lations among terms that we found in calculating
g~-. XEXXFc does not bring about another order
in two centeredness, but merely adds a one-center
XEX interaction; for example, Mn, „exchange po-
larizes F», which in turn exchange polarizes Fa,
on the same center. Our present method would
have to be reformulated to include such effects.
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The hyperfine structure constants of Pu ' in CaF2, SrF2 ~ and BaF2 are analyzed and the

values (1/r ) = 7 .57 + 0 ~ 57 a.u. and a~3+ = —(556 + 42) (gz —1)(p, N/I) Mc/sec are derived. Re la-
tivis tie Dirac-Slater and Dirac- Fock wave functions give a value for (1/r ) about 9% lower
than the empirical value . The core -polarization effect in the actinide ion Pus' is much larger
than in the 1anthanide series .

I. INTRODUCTION

Values of the nuclear dipole moment of Pu
derived from different types of measurements
varied widely when the data were first analyzed.
Subsequent analyses showed these results could
be brought into agreement by a complete theo reti-
cal treatment including intermediate coupling and
core -polarization effects .' Attempts to explain the
sign of the core -polarization term with basis wave
functions obtained from the central -field model of
atomic structure proved inadequate until admix-
tures of continuum states w ere included. ' Unfor-
tunately, this type of calculation is very difficult .
Exchange -polarized Hartree -Fock calculations
were able to account for the sign and approximate
magnitude of core -polarization effects in the lan-
thanide series.

The electron-paramagnetic -resonance spectra of
Pu ', 5f ', have recently been measured in cubic
symmetry sites in Ca F» SrF» and BaF2. The
Zeeman-splitting factors (g values) have been in-
terpreted by calculating the crystalline field mix-
ing of the first excited J' = +~ state with the ground
J = -,' state .' In this paper we analyze the hf s data
for Pu ' in a similar manner, and use the known
nuclear magnetic moment of 2 Pu to derive values
for the core-polarization effect and ( I/r ) . The
latter quantity is compared with various theoreti-
cal calculations .

II ~ THEORY AND RESULTS

A. Theoretical Summary

The nonrelativistic hyperf inc Hamiltonian may
be written as

3C= (2pp„p„/I) [ Z ( (N( ~ I/t() + —', 8m Z(5(r()s( ~ I]
1

(1)
Where p and p„are the Bohr magneton and the
nuclear magneton, respectively, p,„is the nuclear
moment, I is the nuclear spin, r, is the radius
vector for the fth electron, and 6(r() is the Dirac

function which is nonzero only for s electrons.
The operator N, for the ith electron is written in

terms of tensor operators as

(IP)1/2(s &I & C (2&) (1& (2)

where l, and s, are the orbital and spin angular
momentum vectors and C ' ' is a second-rank ten-
sor .' The operator N, has nonzero matrix ele-
ments only for electrons with l & O. In order to ac-
count for the effect of core polarization which pro-
duces a net unpairing of s electrons, the second
term is included in E(I. (1). The angular transfor-
mation properties of this term are proportional to

the operator s, ~ Relativistic effects also trans-
form as s

&
and are not distinguishable from core

polarization in our present experiments .
For convenience of calculation, we follow the

procedure of Bordarier et al . , and introduce the
coupled double -tensor operator w (ff' ~' For a
configuration of equivalent electrons, k ", the hy-
perfine operators are defined as

I = [-,' 2l(l + 1) (2l + 1)] '/2w 2'",

1/2P (1& «Cu&) &1& (f(1 + I) (2l + I) «(12)1
. (( (2l —1 ) (2l + 3)

(8)
[1(21 + 1)]1/2W» (10)1


