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Considering the anharmonic phonon-phonon interactions, two-phonon resonances arestudied

by Green's-function methods. The two-phonon spectrum exhibits an asymmetric peak near
the top of the two-phonon continuum. In the special case of a resonance consisting of two

acoustic phonons, the hybridization of the resonance with a single optical phonon is possible,
ln agreement with experiment.

It has recently been proposed that the anhax-
monic phonon-phonon interaction can give rise to
two-yhonon bound states which explain the anoma-
lous peak observed in the second-order Raman
spectrum of diamond. a~ 3

The purpose of the present work is to show that
phonon-phonon interactions can have a striking
influence on the first-order as well as the second-
order spectrum. Fix'st we show that the second-
ol d@r spectrum 18 modified 1Q RD essent1al wRy

by the fox'mRt1GQ of two-phonon x'esoQRDces UQdex'

quite general conditions, in contrast to the case
of two-phonon bound states which can occur only
for a limited range of anharmonic coupling. Fur-
thermore, we demonstrate that the first-order
syectrum may exhibit structure Rs a result of
hybridization of a two-phonon resonance with sin-
gle-phonon stRteso

We wish to relate our results to Raman scatter-
ing experiments and therefore consider only res-
onances with total momentum K=0. In the case
Gf x'esonRI1ces cGQ818tlng Gf optic-IQode yhonons
the momenta of the individual phonons k, and k~

obey the relation k, = —ka= O. For resonances of
acoustic phonons, the individual yhonons have
wave vectors kz = —ka=7 ', where the tc'(i = l, 2,
.. .) refer to equivalent edges of the Brillouin
zone. In both cases the I'680QRQce 18 fox'IQed fx'om

states near the top of the phonon band.
The HRIDlltoQlRQ lncludlng third- Rnd foUx'th-

order anharmonic terms can be written as X

~~ntq+K3+Xgq where +mmamtq ls the usual
phonon Hamiltonian in the harmonic appx'oxima-
tion. The third-order term X3 will contribute to
the finite lifetime of the single-yhonon excitations.
We include these broadening effects for the single-
phonoD states by means of R phenomenologlcal
%1dth X q wh1ch will be considered 38 R constRQt 1I1

the energy range of interest.
Since the yhonon energies of intexest are much

greater than the thermal energies considered ex-
perimentally, we employ the Green's-function
formalism for zero temperature. The effects of
finite temperature can then be included in the
phenonleQologlcRl pRI'RIQetex'8 which 6Qter 1nto the
calculation.

Following the usual notation, we introduce a
p1 opRgRtox' fox' R 81ngle phonon

a,(k, &) = —,'(u (k) ((a& —[Id (k) ——,
' ii"]J '

—((o+[(u(k) ——,'tr]) '),

where ~(k)~is the single-phonon energy and l" is a
phenomenological width against decay into other
yhonons, for example, the decay of a single optic
yhonon into two acoustic phonons. The above
Gx'66Q 8 fUnctloQ 18 the Foux'lex' transform of the
usual Green'8 function in the coordinate repre-
sentation D,(x, x') = -i(1[&(x)&f)(x'))), where 7
denotes the time-ordering operatox' and the pho-
non field amplitudes' Q (x) are given by
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I(x) =(I/I"")~ [~(k)/2]'"

&((h„elf ((-&v(f)t) +h('e-((f r-a&(I7)t)) (2)

In Eq. (2) the crystal volume is denoted by V and
the phonon creation and destruction oyerators are
designated by b„" and bg, resyecti. vely. In terms
of the (t) amylitudes, a model Hamiltonian for two
interacting phonons can be written in the follow-
ing form6:

&=~f~(k) [hier+-']

+(g,/4! V) f y(x)y(x)y(x)y(x)d'x .
To investigate the nature of the two-yhonon

states including anharmonic terms we consider
the Bethe-Salpeter equation for the two-phonon
Green's function

D.(, ') = — (Tf.e( )e(x)y( ')4(x')]),

which is related to the strength of the Raman
scattering. The Bethe -Salpeter equation corre-
sponds to the summation of the diagrams shown
in Fig. 1(a), and is given by~

D,(x, x') = i(2[D,(x, x')]'

+ig, f[D(x,x,)D(x„x')]'dx, +(ig4)'. .J . (4)

The solution of Eq. (4) for the case of total mo-
mentum K=O is given by

D.(K = 0, ~) = »(~)/[I -ag(&(~)], (

where E(&) is defined as

&((d) = [i/(2)() ]f d'0 fd~ D,{k, ro - (d) D((- k, (u) . (6)

ln order to evaluate the integrals in Eq. (6), we
assume R pRrRbollc dispersion lRw for the pho-
nona near the top of the yhonon band. The corre-
sponding one-phonon density of states can be then
written in the simple form

p, (~)=(r(~, —~)'"=(r(~')' ' for ~'&0, (7)

where &0 is the maximum single-phonon energy
and ~'-=o -&. In addition, we introduce a cutoff
energy 4 which corresponds to the single-yhonon
bandwidth. Making use of Eqs. (1) and {7)we ob-
tain the F(&) defined by Eq. (6) in the form of a
simple integral:

)"( )= -' '~f & '( ')'")(, . =2&f(e y) (8
(() —2((()0 —(() ) + il

where X= ,'c((()or '~', e—=((d —2(00)/n, @=I'/&, and

the dimensionless quantity f can be obtained by
numerical methods. In Eq. (8) we have restricted
our region of interest to energies near 20 and

Dp p + + + ~ 0 ~

gg g~
0—— D

~ —w e——M+0——+ D +— 0 PQp oe Qr)

1 2

FIG. l. (a) Bethe-Salpeter equation for the hvo-
phonon propagator D&, (b) Dyson equation for DP in dia-
grammatic representation.

consequently consider only the first terms of the
phonon propagator defined in Eq. (1) and subse-
quently, in the amplitude of the yhonon propagator,
we make the replacement (()(k) = &0. Finally, mak-
ing use of Eqs. (5) and (8), the two-phonon propa-
gator becomes

D (K=o, )=(4~/g')f[I/g'-f] ', (8)

where the dimensionless anharmonic coupling con-
stant is g4 —= Ag4.

The two-phonon spectrum pz is related to the
propagator in Eq. (9) by

p, (K =O, ~) = —I/(v~', ) lmD, (K = O, ru), (1O)

where the factor &03 arises from the use of the
yhonon field operators in the definition of the
Green's function. In the limit g4= 0, one obtains
the spectral density for two noninteracting pho-
nons as pz( '= (&/4)(&0 —&/2)' ~, for v & 2~0; and

p&
' = 0 for & 2&0. For the limiting case of I"

= 0, i.e. , phonon states having infinite lifetime,
the function f can be calculated analytically for
all values of the coupling g4, such a calculation
shows that for g4 & I, a two-phonon resonance ex-
ists and the width of the peak corresponding to the
resonance becomes quite narrow as g', approaches
unity. For values g4 & 1 a two-phonon bound state
is formed. '& In the present paper we consider
yhonons with a small but finite width l", and ar-
bitrary values of g4.

First we consider two-phonon resonances
(i.e. , g4 & 1) and calculate the two-phonon spec-
trum numerically using Eqs. {8)-(10). The re-
sults of this calculation are presented in Fig. 2.
In the figure it is apparent that as g4 approaches,
but remains less than unity, the spectrum exhibits
a sharp peak corresponding to a two-phonon res-
onance. As the value of the anharmonicity de-
creases, the peak, which is superimposed on the
continuum spectrum (dotted line), shifts in the di-
rection of decreasing energy and broadens sub-
stantially. Finally, as the anharmonic strength
g4 tends to zero, the spectrum reduces to the non-
interacting-yhonon density of states pa

' in agree-
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y = Q.op.

resonaQce energy can coincide with the energy of
a single optic-mode phonon whose momentum is
k= K. The hybridization is caused by the third-
order anharmonic terms in the Hamiltonian which
induce transitions fx om acoustic two-phonon states
to a single optic phonon.

In terms of our model Hamiltonian, the third-
order anharmonic terms can be expressed in the
form

0.0

PIG. 2. Spectral function p2 plotted as a function of
energy for different values of the anharmonic coupling
constant g4. Solid curve for g4

——l.l shows a peak cor-
responding to a two-phonon bound state and the g4=0.9
line exhibits structure related to a resonance. For com-
parison the dotted line shows the phonon density of states
in the absence of phonon-phonon interactions.

ment with the analytic limit discussed previously.
If the anharmonicity is sufficiently large (i. e. ,

g4 &1), a two-phonon bound state splits off the top
of the two-phonon continuum and a sharp peak ap-
pears in ps(K=0, (d) at an energy higher than twice
the maximum single-phonon energy in accord with
the results of Ref. 1. In the event that the single-
phonon width I" is much less than the separation in
energy of the peak from the top of the continuum,
the peak will be quite symmetric. However, as
the width becomes comparable in magnitude to the
above energy separation, the peak corresponding
to the bound state becomes very asymmetric as
shown in Fig. 2. It is gratifying to note that the
shape of the bound-state peak in Fig. 2 bears a
striking resemblance to the line shape of the
anomalous peak which has been observed in the
two-phonon Raman spectrum of diamond.

Recent experimental results for the Raman
spectrum of various crystals have exhibited in-
terference effects between one- and two-phonon
excitations. Using the theoretical approach dis-
cussed above we can interpret these interference
effects in terms of the hybridization of single-
phonon states with a two-phonon resonance or
bound state, as the case may be. In particular,
the two-phonon resonance with total momentum
K=O could be formed from two acoustic phonons
near the top of the acoustic spectrum and in spe-
cial cases (i.e. , for certain temperatures) the

where the superscripts "ac" and "op" designate
phonon field operators corresponding to acoustic
and optic modes, respectively, and g, is the third-
order coupbng constant. To illustrate the forma-
tion of the hybrid states we consider the Green's
function for an optic phonon;

DP(x, x') = —i (Tf())"(x)(j)"(x')I)

The third-order anharmonic terms in the Hamil-
tonian are responsible for the main contribution
to the single-phonon lifetime discussed previously.
Thus we can write the Dyson equation in terms of
the Green's function D) ) "(x,x') defined by Eq.
(1), with the &(k) replaced by the optical-phonon
energy &" taken at k = 0, and the width I' = O.
Broadening of the single optic phonon due to the
X, term will henceforth be taken into account ex-
plicitly.

Turning now to the acoustic-phonon resonance
we use the results of Eqs. (1)-(10)." Thus we
obtain the Dyson equation shown in diagramatic
form in Fig. 1(b), which has the formal solution in
the momentum representation

I PD(0) oy( )D(0) ac(K k )p 2

In Eq. (13) we again restrict our attention to en-
ergies near the resonance energy and use &-"-2(do, and then include for D&o'" only the
leading term in Eq. (1). Furthermore, we use
the propagator defined in Eq. (9) for D,'O' . As
in the derivation of Eq. (10), the spectrum for the
single optic phonon becomes

p)'(K= 0, ~) = -2()ado') ImD,"=—(I/v)

where we used Eqs. (1), (9), (13), and defined a
dimensionless coupling constant (gs)' = 2+', .

The spectrum p&' is plotted as a function of en-
ergy in Fig. 3, and exhibits in some cases two
peaks corresponding to (a) the optic phonon and
the two-acoustic -phonon resonance, respectively„
if they are well separated in energy, and (b) to the
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FIG. 3. Illustration of the hybridization of a two-
acoustic-phonon resonance with a single-optic-mode
phonon. Spectrum p& is shown as a function of energy
for various values of the renormalized (g3 ——0) optic pho-
non energy () . Arrows indicate the position of e()
= (p —2~~ )/6; e& ———0.10, e& = —0.05, and e& = —0.01.

shifted energies of the mixed state (hybrid) in the
case of strong coupling. One can see in Fig. 3
that as " moves to the top of the acoustic-phonon
continuum the corresponding peak becomes quite
narrow; thus the optic phonon is less likely to de-
cay into two acoustic phonons since the density of
final states p~

""decreases. When the renormal-
ized optic energy is above the continuum, the ex-
citation becomes stabilized against decay and ex-

hibits an extremely sharp peak [Fig. 3(c)j. In the
resonance region the hybrid peak corresponding
to the resonance is strongly deformed as in Fig.
3(b). It is worth noting that the optic peak is usu-
ally shifted more than the resonance. Calculated
curves of p&' for various values of g3' show that the
relative intensities of the above peaks are deter-
minedbyg, 'as follows: (a) for g,'«0. 2, the optic
mode dominates the spectrum; (b) for g,'=0.2,
the two peaks have approximately the same weight;
(c) for g', »0. 2 (i. e. , large-coupling limit), the
optic peak disappears.

The spectrum p&' would show up in first-order
Raman scattering; thus the appearance and be-
havior of the double peaks observed in Scott's'
experiments on quartz are compatible with the
present theory. Neutron scattering experiments
should also be able to resolve the structure in p&'.

In the second-order Raman spectrum the struc-
ture due to the renormalized pz' would appear as
well and would exhibit peaks at somewhat shifted
energies. Hybridization of phonon states in the
above manner thus suggests the existence of an in-
terference term between first- and second-order
processes which is superimposed on the first- and
second-order Raman spectra.

The present formalism can readily be extended
to treat several phonon branches as well. In this
case structure in the phonon dispersion relations
could result in additional structure in the spec-
trum.
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—

4t i ~ "~~ sq$2$3$4 K(s) keg k3s3 R4S4

where the summation is over k,K~K~k~SAS&$4, and where
the a„»'s are related in a simple manner to the phonon

operators a- = [h/2~ (k))~ (b~+b ). Near the top of
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