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The mixing action of two crossed ultrasonic beams has been studied. The theoretical
treatment of Taylor and Rollins is extended to include the all-pure-mode cases for the prosess

&~ —cd' ~ T (dp

in cubic single crystals. Five such cases exist in cubic crystals; two in the (001) mixing plane
and with I (~& ) propagated in either of two fixed directions [100] and [110j;and the other
three in the (110)mixing plane and with I- (co&) propagated in any of three fixed directions
[110], [ill j, and [001]. The transverse waves are polarized normal to the mixing plane in
all five cases and propagate in directions within the plane corresponding to the selection rules
on frequency and propagation vector. The conversion efficiency was measured over a range
of input frequency ratios, a= co2ju~ for the two independent transverse-polarization states
for the above process in fused silica and for the two pure-mode cases in the (001) plane in
NaC1. A comparison technique using the interchange equivalence of T(~2) and T(~~ —cu2) effec-
tively eliminated the transducer-bond efficiencies. These measurements were used to deter-
mine two of the three independent third-order elastic constants of fused silica. In the case
of NaCl, the two ratios of linear combinations of second- and third-order elastic constants
corresponding to the two (001)-plane pure-mode cases were determined. The above com-
parison technique was not applied to the other three pure-mode cases because the transverse
anisotropy in the (110) plane leads to refractive effects on the transverse beams that render
the technique inapplicable.

I. INTRODUCTION

In this investigation we explore the mixing action
in the crossing of ultrasonic beams and the mea-
surement of the conversion efficiency to determine
parameters characterizing the nonlinearity of ma-
terials. %hen two large-amplitude ultrasonic
waves intersect in a solid at an angle appropriate

to the particular ratio of their frequencies, a third
ultrasonic wave generally radiates from their com-
Moll volume of intersection. The third wave plop-
agates in still another direction so that there is a
conservation relation among the three propagation
vectors involved. The third wave has either the
sum or difference frequency of the two primary
waves depending on the particular mode combination.



ULTRASONIC BEAM MIXING AS A MEASURE 1099

Rollins, Taylor, and Todd' were first to make a
qualitative experimental study of these interactions
between ultrasonic waves followed at a later date
by Krasilnikov and Zarembo. Jones and Kobett
had previously carried out a classical wave analy-
sis for the wave mixing processes in isotropic
solids. Taylor and Rollins later obtained the
same results through a semiquantum-mechanical
approach.

The present work is concerned with primarily
two developments: (i) extension of the theoretical
approach of Taylor and Rollins to include interac-
tions in cubic crystals, and (ii) a more quantitative
experimental study of both isotropic solids and
cubic crystals to obtain information on the nonlinear
parameters involved.

II. GENERAL THEORETICAL CONSIDERATIONS

Most of what is included here is repetitious of the
general semiquantum-mechanical approach as out-
lined by Taylor and Rollins and is included as a
review.

The deformation of an elastic medium is com-
pletely characterized by the components p;& of the
deformation tensor:

1 ~BU BU~ BU~ BU~

2 Bx~ Bx Bx Bx

where the U, are the components of the displace-
ment vector for a point in the medium and the x'
are the initial coordinates of the point. The defor-
mation energy density 8 is expressed as a Taylor
series expansion in the p;&, retaining only terms
through third order in the deformation tensor com-
ponents. After the terms in 8 are effectively re-
ordered according to order in the displacement
gradient components BU;/Bx, the collection of
terms of second order in the BU;/Bx~ is taken as
the "unperturbed" part of 8 and, correspondingly,
the collection of terms of third order in the BU,/Bx J

is taken as the "perturbation energy density. "
Note that it is the terms of higher order with re-
spect to BU;/Bx~ that give rise to nonlinear effects.
This becomes more evident once the BU,/Bx~ are
"quantized" by writing them as an appropriate com-
bination of the creation and annihilation operators:

BU,
&

=ie;k& (ae" '+a*e '"' ') . (2)

Here e, are the components of the unit polarization
vector k; the components of the propagation vec-
tor, and a* and a, respectively, the creation and
annihilation operators of the linear harmonic oscil-
lator. Examining Eq. (l), which is derived from
purely geometrical arguments, reveals that p&& has
a term already quadratic in the BU,/Bx~. Hence,

nonlinear phenomena have two fundamental sources:
(a) an intrinsic geometrical contribution arising
from the form of p, &

and (b) physical contributions
arising from the nature of the effective interatomic
force field.

Once the perturbation energy is obtained, then
the standard techniques of time-dependent perturba-
tion theory can be applied to calculate the transi-
tion rate for the mixing process. This requires
visualizing the two intersecting beams as ideally
dense homogeneous beams of "phonons. " This is
where, as was pointed out by Barrett and Mat-
singer, ' the procedure fails to be rigorously quan-
tum mechanical. The results, however, are'in
agreement with the classical wave treatment.

The transition rate gives the rate of creation of
"phonons" in the new third mode. The results are
written in terms of the displacement amplitudes of
the three waves by equating the classical energy
density for an ultrasonic beam to &@ad, where p is
thephonon densityin the beam, (d is its angular fre-
quency, and 8 is Planck's constant divided by 2m.

From this it can be seen that it is the rms dis-
placement amplitudes that appear in the final ex-
pression.

III. THEORY: ISOTROPIC SOLIDS AND SINGLE
CRYSTALS

The theoretical procedure outlined above was
applied to isotropic solids by Taylor and RoQins.
Only the results will be repeated here for the in-
teraction

L((o, ) -T((u3)-T((u, —(u3) .
The displacement amplitude X3 of the interaction
wave T(e& —&u3) is given in terms of the displace-
ment amplitudes X, and X~, respectively, for the
input longitudinal wave L(&u&) and the input trans-
verse wave T(&u3) by

X3 X/X3 (V(uq/gvrpc, c,) D?"(a)

In this expression, V is the common volume of
intersectionof the two input beams, +& is the angu-
lar frequency of the input longitudinal beam, x is the
distance from the center of V to the receiving
transducer, p is the material mass density, and
c,and c „respectively, are the transverse and longi-
tudinal velocities of propagation in the material.
The factor D represents a linear combination of
second- and third-order elastic constants and de-
pends on the polarization of the two transverse
modes. The remaining factor I'(a) is a function of
the input frequency ratio a = e3/&u&, the form of
which also depends on the polarization of the trans-
verse waves. Two independent polarization states
exist in isotropic materials for the class of inter-
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actions I T+ T. One has the polarization of the
two transverse waves parallel to the plane of in-
teraction, whereas the other involves. transverse
waves polarized perpendicular to the plane of in-
teraction. The explicit form of DF(a) for these
two polarization states is given in Table I for the
interaction case

Q(O, ) —T((O2) -'r((O, —(O2),

along with expressions for the angles P and y be-
bveen I, ((o,) and T((o2) and between I ((ol) and
T(v, —"2), respectively. The angles are uniquely
determined by the selection rules on the propaga-
tion vectors and the frequencies. The constants
A, 8, C, X, and p, appearing in the table are de-
fined as the coefficients in the expansion of the
strain energy density to third order in the invari-
ants of stx'ain as follows:

E = 2 X(I1) + P, I2+ 3 AI3+BI1I2+ 3 C(I1)

The first-, second-, and third-order invariants of
strain, Ij, I2, and I„respectively, are

IP, ~g k& I3 ~l ~m~k
k — k l — k l m

Cases involving polarizations that are intermediate
between these two cases are described by replacing
DI'(a) by the following linear combination of D3Fp(a)
Rlld D4I'2(Q):

DI'(a) = [sin82 sin83D4I'2(a)

+ cos82cos83DgI p(Q)]

The angles 83 and 83 are those, respectively, be-
tween the input and interaction transverse polari-

zation vectors and the interaction plane.
In cubic single crystals, sevex al complications

arise. The anisotropy gives rise to impure modes
and to the deviation of Poyntings vector from the
propagation dil ection. TI1e latter is probably the
more severe limitation on the experimental tech-
nique presently employed. It is desirable to tx'eat
only cases with all modes remaining pure over the
entire allowed band of input frequency xatios. An-
alysis of the eigenvalue-eigenvector problem for
an elastic wave propagating through a cubic single
crystal reveals that five such pure-mode cases
exist for the interaction L (&u, ) -T(&u2) - T(&ol —A&2).

Two of these cases occur with the (001) plane as
the plane of interaction and have the longitudinal
wave propagating down either the [100]axis or the
[110]axis. The remaining three take place in the
(110)plane with Q",) propagating down any one of
the three axes [110], [ill], and [001]. The two
transverse waves are polarized normal to the plane
of interaction in all five cases. Note that in each
case the longitudinal wave is propagated in a fixed
direction whereas the transverse waves, which x e-
main pure for arbitrary propagation directions
within the respective interaction planes, propagate
in directions that correspond to the conservation
conditions on the propagation vectors and the fre-
quencies. Thus, the propagation direction for the
transverse waves varies with the input frequency
x atio.

The displacement amplitude of the interaction
wave is obtained in a manner analogous to that for
an isotropic material. The strain energy density
8 in this case has the following form~:

~ 2C11(011 + 122 +$33)+C12(lllU22+ 722733+ 43 /11)+2C44(/12+ 43 + 731 )+ 6C111(011 + 722+ 733)
2 2 2 2 2 2 3 3 3

2/ 2I 2+ 2 C112L"11 ~ 122+ 733)+ 722 &%3+ /11)+ )33 (711+ 722)] +C12gllgl22033+8C436012923931

+ 2C144(711 723 + 722031 + 633012 )+ C166[U12 (611+022)+ 23 (722+ 733)+ 731 ( 133+%1)]

The third-order eleastic constants C,» are in
Brugger's definition. The g;& are the usual La-
grangian strain parameters previously defined.

Upon rewriting g in terms of the symmetric and
antisymmetric parts of the displacement gradient

l

SU, /85„namely, e,1 and &u, l, respectively, and

regrouping the terms according to order in the &,&

and m&&, one obtains the following form:

g-g +gi

yABLK I. D r (a) for the two independent polarization cases in isotropic materials. cos Q =&/e —(& -e )/2ac,
t»y = (a sin p) /(a cos P -c).

T-polarized normal
to mixing plane

D~ I'~ (a)

2@[(A,+4@)(0 —a cosy) cosy +2(B+A) {ccosy —a)j

T-polarized parallel
to mixing plane

ta/2(l -a) j[2(2B+A+A, +3@)(e cosg —a) —(2B+4+2p) (1-g) J
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The first term $0 represents the collection of
second-order terms in the &,&, and the second
term 8' represents the collection of terms of
third order in the &;z and ~,&. The terms in 80
represent, in perturbation theory, the unperturbed

1

part of the strain energy density, whereas 8'rep-
resents the perturbation energy density. In in-
finitesimal elastic theory, the terms contained in
8' are the ones that are neglected. The explicit
forms of Soand 8' are

86= 3 cll(«ll +«22 + «88 ) +c12{«11«M+«M«ss+ «83«ll) + 2c44(«12 + «23 +«31 )
2 2 2 2 2 2

(10)

gr 1 g k g m k f m & f k k k
2 Cll(«$6lm+1 + 2«k«m1 1 ) + 2 la 1«11(+$2+2+4'$8+2) + aa{ kl 1++$3

+ «3$((Llka(02 + 1621(61)+ 2«11(«$2462+ ks 8) «22(«kl+1 + «$3+8) + «83{ k2 2+ 11 1)]

+ 2C44 [«12+$1+2+ 23+$2+3+ «81+$3+1+ «la(«$1+2+ «$2+1)+ 2$(«$2+3+ «$3+8)
k k k k k k k

+ «$1( k3 1+«$1+8)] + 6 (C111+3cll)(«ll + «M + «88 ) + 2{C112+c12)[«11{«M+ «33) + «M («11 +«38) «8$ («11+«M)]

+ C128«11«22«83 + (8C456+ 6C44)«12«23«31+ (2C144 +Cia)(«11«28 + «22«31 + «83«12 ) + $(4C166+Cll +Cia+ 4C44)

+[«12 {«11+«aa) + «as («22+ «88) + «81 {«31 («38+ «11)] ~

3

u(r) =E u'"'(r) . (12)

Equation (ll) is used to calculate «;& and &o,
&

ex-
plicitly in terms of the creation and annihilation
operators, and then Eq. (12) implies that

3 3
&n) (fi)and (0]g = ~

n= 1. n"-1

The bracketed superscript n numbers the three
ultrasonic waves. The convention will be to take
n= 1 as I,(1d,), n= 2 as T((ua), and n = 3 as T((o, —ala).

The Golden Rule of time-dependent perturbation
theory can now be used to calculate the transition
rate for the mixing process described above. This
rule gives the transition rate as

B=2rjN f(ffH'fa) f uf{$1), {13)

where 8& is the energy of the initial state and g&

(8;) is the density of final states about 8, . H' is
the perturbation energy and is given by

H'= f b'd7 (14)

The volume integral extends over the common vol-
ume of intersection for the two input beams. The
initial- and final-state vectors are given, respec-
tively, by

Next, the displacement amplitudes axe written,
assuming plane waves, in the quantum representa-
tion in a manner corresponding to Eq. (2),

«&n)(«r) (n)( &n) 42 r+ 4n&* -42 "
r) (11)

with a " and a "~ as the creation and annihilation
operators for the linear harmonic oscillator. Then,
the total displacement vector field for the problem
is taken as the sum of the fields of the two primary
waves and the assumed third interaction wave:

»d
ff) = fv, -l) fX,+I) fl),

in which N, and N2 are the initial numbers of pho-
nons in beams 1 and 2, respectively.

When this calculation is carried through, Eq. (3)
is again obtained relating the displacement ampli-
tudes. The form of I'(a) for the five cases is

I'(a) = (c —a cosg) a cosg —5aa sinai

—«a sing (c —2a cosg). (16)

TABLE IT. Conversion parameters 6 and c for I (v1)
—T(~&} T(~1 —~&} in the (001) plane in cubic materi-
als. All three waves are pure modes.

L (&1) Propagation
direction

I.100]

[&so]

(C»+ C«4)
(C11+ C166)

(C,1+C» - 2C44+ C1«+ C«, —2C„,)
12 ~44 C144 C186+ 2C456)

The parameters 5 and E are given in Tables II and

III for the five pure-mode cases.
It should be pointed out that, while there is trans-

verse isotropy for the cases in the (001) plane, the
transverse velocity in the (110) plane depends on

the direction of propagation in this plane. Hence,
the Poynting's vector P for the transverse waves
involved in the three pure-mode cases in the (1TO)

plane deviates from the propagation vector k by
as much as 10' in NaCl. The angle of deviation

P of P from k is a function of orientation angle 8

be'tweell k Rnd 'tile [110]Rxis ill NRC1, Rs s11owll ill

Fig. 1. Because of this complication, the present
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reveals that I'(a) is a function of the product a(l —a)
Hence, I'(I -a) = I'(a) for all values of a = &2/

u&, . Also, Q(l -a) =y(a) and conversely, y(1-a)
=Q(a). These relations are merely a consequence
of the fact that the interaction I (e,) —T(&u2)- T(&oz
—&ua) is analogous to stimulated emission. The
primary transverse beam T(&u~) acts as a stimulat-
ing field, when the angle P is appropriate, to in-
duce the longitudinal phonons to split into two trans-
verse phonons, one enhancing the primary trans-
verse beam T((d2), and the other T((dy —cd') pro-
pagating at an angle y with respect to the L(&o,)
beam. However, the process could have been
stimulated by a T(~, —u&, ) beam at the angle y with
respect to L(&u, ) to produce the interaction beam
T(&u, ) at the angle Q with respect to L(&u, ) This.

equivalence can be applied to eliminate the propor-
tionality factor between the displacement amplitude
of an ultrasonic wave at the center of the disk spec-
imen and the voltage produced on the receiving
transducer. This proportionality factor, while
constant for a given bonding, is not measurable
with any degree of precision.

The arrangement shown in Fig. 3 illustrates the
method used to get reliable data for the dependence
of the conversion efficiency on the frequency ratio
by a comparison method. In this figure, transducer
1 is an X-cut quartz transducer affixed to a flat on
the edge of the disk specimen. It is used to gene-
rate the L(&u, ) pulse. The transducer 2 is I' cut-
quartz mounted on a piano-concave aluminum bit
machined to fit the edge of the disk. It is used to
generate the transverse pulse T(ez). The trans-
ducer 3 is then used to observe the interaction sig-
nal T(&o, —~2), while the transducer 3' is used to

observe the straight through T(&u2) pulse. The ratio
of the voltage amplitude vs on transducer 3, which
is receiving the interaction signal, to the voltage
amplitude v2 on transducer 2, which is receiving
the primary signal, is related to the ratio of the
corresponding displacement amplitudes X3 and X2

~p~, = (zpx, )xpx, . (17)

In this expression K3 and K~ are the respective pro-
portionality constants.

For the complementary process, the transducer
2' is used to send in a T(ar, —co2) pulse, which is
observed on transducer 3, while the I (ar, ) pulse is
still sent in through transducer 1. The interaction
transverse signal T(~~) is observed with trans-
ducer 3 . The ratio of the voltage amplitude v3,
due to the interaction wave T(&oa) and appearing on
transducer 3 to the voltage amplitude va, due to
the straight through T(v, —v2), is related to the
ratio of the corresponding displacement ampli-
tudes X3 and Xa by

~,'/~,'= (z,/z, )x,'/x, '. (18)

Note that the same two proportionality constants
E, and K, are involved but in a reciprocal fashion.
These unknowns can be eliminated by taking the
geometric mean in the following manner.

[(t,/v, ) (vs/e2)]'~' = [(X3/X,) (xpx,')] ' '
Note that while the unprimed case refers to a fre-
quency ratio a= +2/~, , the primed case corre-
sponds to a frequency ratio a'= (1 —a). Hence,

=x V"" '
Dl()

a~~pc,'c,

t(~i))-- /

/

The invariance I'(1 —a) = I'(a) was made use of in
this result, and V,z, (a) —= [V(a) V(l -a)]' . The in-
teraction volume V(a) depends on a through the an-
gle Q. It is taken as the common volume of inter-
section of two completely intersecting cylinders.
The displacement amplitude X, and the angular fre-
quency &o, of the L(e,) beam are assumed to re-
main constant.

Next, we define a quantity,

MINU
BIT SP EC !MEN

FIG. 3. Schematic of disk specin1en with transducers
in place.

Then it becomes clear that G,„,„(a)= const && DI'(a).
Again it is assumed that X& and co& are heM constant.
In the case of isotropic materials, two independent
polarization states exist for the transverse waves,
and, since by definition there is transverse degene-
racy in isotropic solids, the angles P and y are in-
dependent of the polarization state Hence, .V„,(a)
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is the same, at a given a, for both states of polari-
zation and

G,„„„(a)[(vs/v, ) (v,'/v, ')],', '
xyt i(s) [(vs/v&) (@'v,')]i

Q(s, g B)DiI'i(a
(22)

In this case, then, the measurements are made for
each polarization state at selected values for the
input frequency ratio a=&@2/ru, . The function g(a;
A, B) is fitted to this experimental data versus the
frequency ratio a by varying A and B for the best
fit.

For the two cases studied in NaC1, the procedure
is necessarily a little different since there is only
one pure-mode polarization state for each case.
In these ca.ses, a relative fit of I'(a) to G,

„
i(a) was

carried out by introducing the "renormalization"
factor a. This was done by fitting the function
o.l'(a; 5)/1 (ao; 5) to G,„„(a)/G,„„(ao)by varying o!and

5. The data G,„~&(a)and the conversion efficiency
I'(a; 5) are normalized at some arbitrary measured
frequency ratio ap, as shown above. The best fit,
however, may not correspond to the situation where
the relative conversion efficiency passes through
the data point at ap. This constraint is relaxed by
introducing the "renormalization" parameter a, as
shown above. This parameter n has no physical
significance but is introduced merely as an artifice
to obtain the best relative fit. The conversion
parameter 5 is the quantity to be determined.

The geometric mean of the voltage ratios dis-
cussed, [(v, /v2)(v, /v, )]', was measured using a
calibration procedure illustrated in Fig. 4. The
particular signal being received was observed with
the connection schematically illustrated as "1"in
the figure. The Arenberg preamplifier (APA) was
tuned for peak video signal, which is observed on
channel A of the cathode-ray oscilloscope (CRO).
The gain of the Arenberg wide-band amplifier

(AWBA) was adjusted to give a prescribed video

voltage amplitude vp on the CRO. This video level
was selected to be well below amplifier saturation
and was chosen the same for all signals measured.
The rf signal voltage amplitude v„is related to vp

by

Vp gnVn &
(23)

g n= &FIgg ~

The net gain g„is measured by use of a dual-chan-
nel oscilloscope. The video signal is observed on
channel A while the rf test signal into the trans-
ducer simulator is observed on channel B. With
equal sensitivities in the two channels, the two
traces are superimposed and attenuator A is ad-
justed to make the video signal just envelop the rf
test signal. Then the net gain g„canbe read di-
rectly off attenuator A. The attenuation factor n„
remains unknown.

where g„is the over-all gain of the preamplifier
wide-band amplifier system.

Next, the connection schematically illustrated as
"2" in Fig. 4 was used to get a relative calibration
for the gain in the previous arrangement. The gain

g„is left unaltered and attenuator B is adjusted un-

til the video voltage amplitude on the CRO is again
vp. This is necessary inasmuch as the system is
nonlinear and g„depends on the signal level. Fur-
thermore, the frequency of the rf test signal being
generated by the Arenberg pulse generator (APG)
has been set precisely equal to that of the rf signal
under study. The transducer simulator and decou-
pler serves the purpose of approximately simula-
ting the impedance of the particular transducer in-
volved in connection "1"and isolating the pream-
plifier from channel B of the CRO. This simulator
introduces an attenuation factor u„,which depends
on the particular transducer being simulated.
Hence, in this configuration, it is the net gain g„
that is measured:

RF SIGNAL
RF ULTRASONIC ~ ANGULAR

PULSE ANGULAR ~+A FREQUENCY +n
FREQUENCY Iud +~~-( Rl

IIII ~RECEIVING
TRANSDUCER frI

APG

RF TEST SIGNAL
ANGULAR

F RE QUE N CY cu~
M

ATTENUATOR 8

ATT E N UATION
FACTOR a,

TRANSDUCER
SIMULATOR

AND OECOUPLER

GAIN ~h

TUN A8LE
APA

I

I

I

I

I

I

I
II2 II

J

Vo
7 CHAN- DUAL

ADJ GAIN CHANNEL

AW8A CRO
ATTE N-

UATOR A

CHANNEL 8

TRACES A AND 8
SLIP E RIMPOS ED

FIG. 4. Block diagram of arrange-
ment for comparison calibration tech-
nique.
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50 =g353 Rnd g3 = 0|sg3 . (2s)

For the straight through transverse signal T(&os),
we have

&o=gH's and g2=+ag2 ~ (28)

In the case of the complementary interaction, we
get, for the interaction signal T(&os),

f)0 =F53 Rnd g3 = Qpg3 ) (2V)

This procedure is applied to the method described
in connection with Fig. 3. For the interaction sig-
nal T(tel —&us), we obtain, from Eqs. (23) and (24),

20,0
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N
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1 I

I
I
I
I
I
I
I

I
I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

0.20 0.30
0 = 4LI2/Ql)

0,4G

and for the straight through transverse signal
T((u, —(us),

0=gaea and gl=+Sg

The following relations then result from Eqs. (2S)
-(28)

~s/~s=gs/gs, ~s/~s= gs/gs

gs/gs = (~s/ &s)gs/gs = (~s/ ~s) ~s/ ~s,

gs/gs = (&s/&s) gs/gs = (Iss/&s) &s/&p i

hence,

[(~s/~s)(t s/1 p)]"'
= [(g~/g )(gal)]"' (30)

From Eq. (30) it can be seen that the experiment
involves only the direct measurement of the four
net gains g~, g3, ga, and gs . These gains were
measurRble to ~1 dB.

V. EXPERIMENTAL RESULTS AND DISCUSSION

An oscilloscope display of the two impressed rf
signals T(&us) and I (&ul), and a typical rf interaction
slgllal T((dl (os) 18 sllowll ill Flg. S. Tile fil'8't

pulse, labeled 2& is T(&up) with fs=&us/2w=13. VO

MHz wlllle tile secolld pulse, labeled 1, ls L(~ )I
with f, =&el/2II = 31.14 MHz. The third pulse, la-
beled 3, is the interaction signal T(&ul —&os).

The fit of g(a; A, 8) to the data for fused silica
was carried out by use of a general computer pro-
gram for a maximum likelihood fit. The results
are shown in Fig. 6. The open circles are the data

FIG. 6. Best fit of Z (a; &, &) to the experimental
data (open circles) for G. E. Type 151 fused silica.

points and solid curve is g(a; A, I3) for the best
fit, . The VRlues of A RIll B for the best fit Rbove,
along with those determined by Hogardus' using
the velocity versus stress method, are presented
in Table IV. Note that while there is good agree-
ment for the constant A., the constant 8 is about 1.7
times smaller as determined by the present work.
The reason for this discrepancy is not clear. One
possibility is the fact that the sample used by
Bogardus was G. E. Type 102 fused quartz, where-
as the sample used in the present work was G. E.
Type 151fused silica. Fused quartz andfused silica
differ in the method by which they are produced.
Fused quartz is cast from a melt of crushed crys-
talline quartz, whereas fused silica is formed by a
chemical vapor deposition process. Type 151 fused
silica is of high chemical quality, has very low re-
sidual internal stress, and is homogeneously amor-
phous. Type 102 fused quartz is of lower chemical
quality, may have relatively high residual internal
stress, and may contain small quartz crystallites
embedded in the amorphous matrix. Whether or
not these differences can account for the discre-
pancy. in 8, however, can only be resolved by a
more systematic investigation.

The relative fit of I'(a; S) to the data for the two
pure-mode cases in the (001) plane in NaC1 was
also carried out by use of the general computer
program mentioned above. The graphical results
are shown in Figs. V and 8 for I (a&, ) propagating,

sll h, .. . I . Ilail/

2 1

TABLE IV. Values of the third-order constants A and
8 from present work and from Bogardus in units of 10".
dyn//cm' for fused Sio,.

FIG. 5. Display of two impressed rf pulses and

resulting rf interaction signal. Horizontal scale: 10
p sec/cm. Vertical scale: Arbitrary.

Present
Bogardus

—5.27+0. 30
—4. 4 +1, 2

+5.42+0. 33
+9.3 +0. 8
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FIG. 7. Best relative fit of I'(a;6) to the experimental
data (open circles) for the (001) mixing plane and with
L (&) propagating down the 1, 100] axis for NaCl.

FIG. 8. Best relative fit of I'(a;6) to the experimental
data (open circles) for the (001) mixing plane and with
I (~&) propagating down the [110] axis for NaCl.

respectively, down the [100]and [110]axes. The
conversion parameter 5, determined for each case
from the best relativefit, is givenin Table V, along
with values calculated from the data of Chang" and
Swartz. As was pointed out by Huntington~ &3 there
are large discrepancies in the three small third-or-
der elastic constants Cf23 Cg44, and C4g8, as re-
ported by Swartz and Chang. These discrepancies
are reflected in the value calculated for 0 in each
case, as canbe seen in Table V. It is curious to
note that the values of 5 determined presently fall
very close to the means of the values calculated
from the data of Swartz and Chang. This is prob-
ably coincidental. As a result, the present mea-
surements lend no preferential support to either
Swartz or Chang.

VI. SUMMARY AND CONCLUSIONS

The mixing process L(&o,) —T(~z)- T(&o, —&u, )

was studied in fused silica and for the two pure-
mode cases in NaCl that occur in the (001) plane.
The conversion efficiency for these cases was
measured. The third-order elastic constants A
and 8 were determined for fused silica from the
best fit of theory to the experimental data. The
value for A in the case of fused silica is in good
agreement with that measured by Bogardus, but

the constant B from the present work is a, fa,ctor of
1.7 times smaller than that reported by him. In
the case of NaC1, the conversion parameter 5 was
obtained from the best relative fit of the conversion
efficiency to the experimental data. The values of
5 determined presently lend preferential support
to neither Swartz nor Chang. This is due to the
error intervals occurring in the data and the fact
that the present values fall close to the mean of the
values determined from Swartz's and Chang's
data, respectively.

The zero in the conversion efficiency for the
pure-mode case in the (001) plane with L(e, ) pro-
pagating down the [110]axis was well determined,
yielding good precision in the value of 5. This in-
dicates that the technique can yield precise results
if a zero in the conversion efficiency occurs well
within the measurable range of input frequency
ratio.
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TABLE V. Experimental values of the conversion parameter 6, as determined presently and calculated from the data
of Swartz and Chang. The mixing plane is the (001) plane.

L(~&)
Propagation

direction

f 100]
[110]

Present

+0.73
—0. 5803 + 0. 0025

Chang

—3.29 +0. 33
—0.496 + 0. 046

Swartz

—2. 185 + 0. 555
—0.6615+0. 1275
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Magnetic Circular Dichroism of the I'' Band in KF and Quenching of f'-Center
Spin Polarization by Optical Pumping*
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The magnetic circular dichroism (MCD) of the E absorption band in KF has been detected.
The field and temperature dependence of the MCD signal yielded god 1 and ~= —3.2+0.4meV
for the orbital g factor and spin-orbit splitting of the excited state of the E center. The ef-
fect of unpolarized optical pumping on the MCD signal was investigated, with the result that
at the maximum power level used (- 10' photons/sec) approximately 75% of the signal was
quenched. The data have have been interpreted using a simple model involving a small
(efficiency & - 0. 01) spin-memory loss while the E-center electron is in the excited state.
The fact that the spin polarization of the F center can be completely quenched if the pumping
intensity is high enough is sufficient to explain the absence of a spin-dependent contribution
to the magnetic circular polarization of the E-center emission observed by Fontana and Fitchen.

INTRODUCTION

Recently, the effect of a magnetic field on the
emission of the E center in KF was successfully
detected. ' The effect, a small circular polariza-
tion of the emission, was independent of tempera-
ture and was assigned to orbital Zeeman mixing in
the relaxed excited state. The absence of a con-
tribution due to the spin polarization in the ground
state of the F center was peculiar, since for all the
alkali halides studied in absorption, the paramag-
netic contribution to the magnetic circular dichroism
(MCD) was dominant for T&4. 2'K. Also, in the
case of KCl, the F electron has been shown ' to
preserve spin memory during an optical pumping
cycle with an efficiency better than 95/o. On the
other hand, there is a small spin-memory loss
during a pumping cycle, and the light levels used to
excite the F luminescence in KF were sufficiently

high (& 2x 10"photons/sec) to expect that any given
F center would undergo many optical cycles in a
time short compared with the spin-lattice relax-
ation time. In fact, Schmid and Zimmerman have
already shown qualitatively for the F center in KCl
that optical pumping can destroy up to 95%%uo of the
EPR signal due to spin polarization of the ground
state. This spin polarization can also be observed
by monitoring the paramagnetic component of the
MCD of the E absorption band to which it gives
rise.

We have used this latter method to study the ef-
fect of optical pumping with unpolarized light on
the spin polarization of the ground state of the F
center in KF.

Since data on the MCD of the F band in KF are
not available in the literature, we first detected
and determined the basic properties of the MCD of




