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Optical nonlinearities in crystals are for the first time analyzed from the rotational-invari-
ance point of view. Several previous theoretical results are discussed on the basis of the
decomposition of a tensor into irreducible parts. A proportionality between the spontaneous
polarization and the vector parts of the nonlinearities is established, leading to new relations
for the second-harmonic generation and linear electrooptic-effect coefficients in the 5 for-
mulation.

I. INTRODUCTION

The optical properties of crystals can be de-
scribed by the constitutive relations between elec-
tromagnetic field and induced polarizations. The
linear properties are, for instance, determined

by the second-rank tensor y relating the electric
field E and the polarization 6'

The tensor X characterizes intrinsic properties
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of a given material which, ,
unlike the components

g&J, is not affected by a change of the coordinate
system. In nondissiyative and nonoytica. lly active
medlR thel 6 Rre ln genex'Rl six lndependent ggge

Nevertheless, all the linear optical properties can
be described in terms of the three principal sus-
ceptibilities, directly deduced from the three sca-
lRx' lnvRx'la, nts of g ' Three othex' quantities give

relative orientation of the index ellipsoid with
1 espect to the coordlnRte system.

The 10%'est-ordex' optlcRl QonllneRrlties such Rs
fregllency-mixing phenomena ox' pRrRmetx'lc pl'o-
cesses arise from the pola»sation &P(&d, ) related
to the electric fields E(&d)) and E(&uz) by

&P (~& = &d)+ ~2) = 2d(&d3, &d)& ~2):i E(~I) E(&01), (2)

where d is a third-rank tensor, and where E(~I)
E (&,) is the direct product of E(&I) and E(«)I).

%6 yresent in this paper the decomposition of
a third-rank tensor in irreducible tensors based
on the three-dimensional rotation group which
leads to the definition of scalar invariants of d.
%6 then apply the results to find specific relations
among the second-harmonic generation (SHG) co-
efficients d, »(2&v, &u, &0) and among the linear elec-
trooptic effect (LEO) coefficients d) i, (0, &, ~).

The decomyosition can be ayylied as well to
other yhysical processes like piezoelectricity or
extended to higher -order phenomena. Irreducible
spherical tensors have been also successfully in-
troduced for interpreting second-harmonic light
scattering i.n liquids.

II. IRREDUCIBLE PARTS OF THIRD-RANK TENSOR

The decomposition of a Cartesian rank-g ten-
sor as the sum of parts of weight J' (J =0, l, 2, ... ,
)I} lrreduclble lllldel' tile till'ee dillle11sioIlal 1ota'
tion group has been considered by several au-
thors. '6 It has been shown that an irreducible rep-
resentation of rank n and weight J has 2J'+ 1 in-
dependent comyonents and ca,n be expressed in
terms of an irreducible tensor of rank J. Ac-
cording to Schouten's notation, the irreducible
tensors of rank 0, 1, 2, 3 cox responding to d are,
xesyectively, called yseudoscalar, vector, yseudo-
d6viRtor, and septor. A pseudodeviator ls R

symmetric and tx'Rceless second-x'Rnk tensor'
.a seytor is a fully symmetric and traceless third-
rank tensor. The traces or the contractions of
a third-rank tensor are the vectors

~ldii J& ~)id)&l)» ~idiii&

In a general way, it is yossible to consider 4
Rs the suID

I& being the number of independent weight J ten-
sors involved in the decomposition.

For a crystal of lowest symmetry (point group
l}there are no symmetry re&luirements on the
d~~~ when the three fx'equeQcles QPI& QP3~ Rnd (d3

are different (asymmetric case); but for SHG and
I.EQ two frequencies are the same and the coef-
ficients of d are symmetric in the two last indices
(symmetric ease). Further simplification occurs
when the crystal ls Dondlspel slve; Rs shown by
Kleinman d;» doe»ot depend on the per mutations
of the three indices i,j, k (fully symmetric case).
The numbers m~ corresponding to the three dif-
fex'ent cases are indicated in Table I.

%6 now express the tensors d ' in terms of
the coxnponents d,» using the technique of Coope
et aE. '

To the irreducible tensor of weight 0 corresponds
a pseudoscalar A accox'dlQg to

d'" = -'Ae6

where e is the completely antisymmetric third-
rank tensor and A the quantity defined by

The term A is responsible for frequency mixing
1D liquids RII obviously vRnishes fol the symmetric
and fully symmetric eases.

lt Is weLL known' that any contraction (or trace)
of a tensor is irreducible under the rotation group.
For d there ax'e three contractions, which are the
following vectors:

(s)

The contx'actions are the only independent vectors.
The three weight-1 third-rank tensors of the

TABLE I, Decomposition of a third-rank tensor in
irreducible parts according to the symmetries in the
indices. The number N of independent coefficients d'~~&

can be deduced from K= Z& (2J+1)m&

d&0) + d&I)+d&a) yd&8) P d&g)

where d'~' =d'~ "+ ~ ~ ~ + d'~
(3)

(4)

Asymmetric
Symmetric
Fully symmetric
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decomposition (4) are, using the second-rank unit
tensor u& j, given by

d, j» =i8 (4V;u,„—ui»V, —u;j V„), (10}

(1 2) 1 I 2 2 2%~ '+jy +4+ty~ '

(183) 1 r 3 3 ~ SSd fjk 10 & ~f +jk +i% ~ j +4+5j ~k &

In the symmetric case it is easy to see from
Eels. (e) and (9) that V8= V'; when Kleinman's re-
lations hold (fully symmetric case) there is only
one vector V (V=V =V =V ) and

d jj» 8 (Viu'»+u j»Vj uij(1) 3

C. Pseudodeviators

Two pseudodeviators D ' and D ' (each of them
having five independent components) are involved
ln the decoInposltlon of R thlld-I'RDk tensor ln lx'-

reducible parts; they Rre
1 j.

Djj 8 + ( emijdm jje+jjmdmjj) 8 ~u jj&
$ »Pt,

2 j.
Djj 8 Zi (dijweml j +d jjwtem ji ) 8 ~ui j '

g 8m

{i4)

(2 1) & 1 1d ij» 8 Zj(2eijlDi» ++iieij») &

d ij» =8 Zi {eijPj» +2Djiejj»)

(iv)

(ie)

%6 already mentioned thatA = 0 in the symmetric
case. Since e „=—e, j it follows from Eil. (15)
that D'=0 in that case. Both D' and D areequal
to zero in the fully symmetric case.

By making d fully symmetric and traceless one
obtRlns the vector pRx't, %hlch hRS seveQ lndepeD-
dent components. With the definitions

if j» = 8 (d j» +d j»i +d»i j +if»j +d j» +0j»j) (19)

v*, =-.' (v', +v', +v', ), (20)

it is found that

d'j» = de» -8 ~~fj»(3)

where tj~ equals 3 for j =j = k, t;~ = I when two of the
three indices jj k are the same, and t» =0 otherwise.

III. SCALAR INVARIANTS

The decomposition in irreducible parts leads im-
mediately to the definition of several scalar invari-
ants of d as, for instance, tA I, the magnitudes of

Since D is traceless, the 3~3 matrix associated
with each of the pseudodeviators has three eigen-
values D, D&, D„, such that

D +Dz +D„=0. (ie)

As a, function of D' and D the two weight-2 third-
r~ tensors can be expressed as

the vectors V', V8, and V' (inthe case of piezo-
electx'lclty ) V ) 18 knowQ Rs the hydl ostatlc
piezoelectric coefficient" }or the magnitudes of

the six eigenvalues such as D~. Inthe symmetxic
case {SHG and I EO) V' and V' vanish except
for the polar (pyroelectric) classes and are both

parallel to the polar axis in the case of the point

group 2 Rnd of all the point groups of higher sym-

metry. The specific magnitudes of V'and V corx'e-

spoDding to the different point gx"oups Rx'6 listed ln

Table II.
%6 now consider in more detail the fully sym-

metric case, for which the decomposition of d is
very simple:

d=d"' +d"'
Thex'ef 016 %'6 cRD sRy thRt the optlcRl DGDllneRrltles

are t e superposltlon of two parts: a so-caued
vector part d"' and a septor part d'".

To the vectol pRl t %6 Rssoc1Rte one scalRr in-
variant, the magnitude V of V. Agene»lformula
can be written for the orthorhombic, tetragonal,
trigonal, and hexagonal systems,

V= 1 d», +d»2+@», I . (23)

The septor part d' ' has seven independent com-
ponents in the case of the lowest symmetry (point

group 1}. Since the choice of V a,s an axis of the
coordinate system takes only two degrees of free-
dom, it is possible to define six independent scalar
invariants. For crystals of highex symmetry this
number is lowered. Nevertheless there is. always
at least one scalar invariant 8, and %e define it
as the square root of the sum of the squares of all
the coefficients of the septor (see Table II).

Direct and simple use can be made of the scalax'
invariants V Rnd 8 for interpreting previously re-
ported ' theoretical relations among the coef-
ficients d&». In a quantal treatment of optical
nonlinearities in solids, Robinson expands the
perturbation potential 'Din terms of harmonic
polynomials 8" y g (8~ ip)

~m 88+ V8 + ~81+ V» + + 11+F1 t

and considers the assumption
m

'U31 =0,
so thRt U 8Rtlsf les LRplRce 8 equation. As a con-
sequence, the Miller 5'8'~ Rre found to be related
by

(2e)

The Ca,rtesian third-rank tensor 5 can be,
like d, decomposed in irreducible parts. Our anal-
ysis shows that Eil. (2e) will be obtained every
tixne the vector part is assumed to be zero, as fox'

instance, by choosing 'U obeying I aplace's 6(Iua-
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TABLE II. Scalar invariants associated to the vector part (symmetric case) and to the septor part (fully symmetric
case) for the different classes.

Class

43m, 23
42m
222
6mm, 6
4mm, 4
6m2
6

32
3m
3
mm2

2ds«+ dsss
0
0
0
0

Ms«+ dsss
2ds11 +dsss

ds«+ds»+dsss

M13$ +dSS3
0
0
0
0

2d131+dsss
2d131+dsss

d131 +d232+@sss

(4 6) d 123

(g+g) (3d'3« -d, ss)

d2«
2~(d«1)'+ (A«)'~"'

4's)((dgss) +(&sn) 1

2

2
t5 (3ds«-dsss) +4«2«)'~'

&s( ds«-dsss) '4(d'2«) +4(d«1)'&1™
~3 (~3«)'+3 «»2)'+(dsss)'- 5

«*)'t'"

d 883 M 311 (2V )

mhich is the result given by Robinson' for the sole
perturbation in U being an internal field.

In another paper" and following a different ap-
proach, Robinson studied theoretically the optical
nonlinearities in RX compounds which crystallize
in one or both of the cubic (zinc-blende) and hexag-
onal (wurtzite) systems with nonlinear coefficients
d';» and d;», respectively. By ascribing the non-
lineax polarizability to the undistorted RX4 tetra-
hedral units, he obtained

tion. Expanding 'U in terms of harmonic polynomials
belongs to the same approach as considering the
rotational invariance of d: The 24+1 harmonic
polynomials F~ are a coordinate system for the
subspa, ce associated with the irreducible Cartesian
tensor of weight J .' Equation (25) is therefore
equivalent to V=O. If, on the other hand, one as-
sumes that there is no septor part involved in the
nonlinearities, the value of 8 for point groups 4m'
and 6mm(see Table li) indicates

IV. SPONTANEOUS POLARIZATION AND OPTICAL
NON LINEARITIES

The analysis which has just been developed empha-
sizes a basic difference in the optical nonlinearities
of nonpolax compared to polar crystals: Only the
latter have a vector contribution to SHG and LEO.
Since the polar crystals can also be defined by the
existence of a, spontaneous polarization j „parallel
to V1 and Vs, one is led to compare the magnitudes
of the three vectors. First demonstrated by Miller'
in barium titanate (BaTiOs), correlations between
spontaneous polarization and optical nonlineax prop-
erties have been studied experimentally and theo-
retically in several ferroelectric materials, '
but no simple and general relation has been estab-
lished. In order to find such a relation, the 5 for-
mulation' will be used and the cases of SHG and
LEO will be considered successively. As a conse-
quence of the relations between d;» (2~, &u, &o) [or d»;
(0, (0, (d )] and ()g~s [or p; ~s], the decomposition of the
tensors 5 and p in irxeducible parts is the same as
for d.

311 = —~ 113 =u383

dsss = (2/~2)diss ~

(28)

(29)
A. Second-Harmonic Generation

According to our analysis, Eq. (16) is just a.
statement of the fact that any vector part has been
omitted (V' = 0 = V ) a ps iosi by assuming the tetra-
hedron RX4 regular By cont. rast Eq. (29) cannot
be derived from rotational invariance considera-
tion; it gives the relation between the septor parts
of the hexagonal and cubic stxuctures built from
the same regular unit.

It is interesting to note that any vector part has
been implicitly neglected in Levine's calculations. '
The validity of this assumption for the wurtzite
structure will be discussed in Sec. IV.

For all the materials studied until nom Klein-
man's relations are satisfied. We therefore as-
sume the whole vectox part of 5 described by

s'= I&sii+&sss+&sss I

The evaluation of v depends on the relative signs
of the coefficients 6;». Such signs have been de-
termined in LiNb08, LiTa08, BaTiO3, ZnO,
LiGaOz, and LiIO3. By Maker fringe experi-
ments me found opposite signs for 53» and 5333
in CdS but the same sign for 5311 and '5333 in
BaaNaNb50» as theoretically predicted. '
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v = (0. 10 + 0. 03)x 10 6 s, esu, (31)

where 6', is in p, Ccm . A plot of the individual

Values of v and 6', corresponding to the materi-
als for which a reliable complete set of data has
been obtained are listed in Table III. As illustrated
by Fig. 1, comparison of v and , indicates the
vector part to be proportional to the spontaneous
polal"1z ation

coefficients 5 versus 6', leads to a considerably
greater dispersion. One can also note that the
ratios v/a, for K,Limb, O„and the ferroelectric
phase of KDP agree with Eq. (31), provided the
theoretically predicted relative signs are assumed
(see Fig. 1).

The wurtzite-type materials ZnO, CdS, and ZnS
are not ferroelectric; their spontaneous polariza-
tions cannot therefore be easily measured but have

TABI E IH. Values of v= I 63fg+f53$2+(5333 [ and of the spontaneous polarizations for polar materials. 6 and v are in
10 esu units, 6' in p, C cm . Values inside parentheses have been computed assuming theoretical results on the rela-
tive signs of the coefficients 4. The value of &32& for KDP in the paraelectric phase is 1.7&10 esu. Values of 6'8 in-
side brackets are estimated values.

Material

—o.54
(Ref. 15)

l.80
(Bef. 15)

0.7 +0.15

O. 02 +0.15

P8

[6j
{Bef. 27)

ZnS
0.4 +1.2

LiIO3

LiNbO3

LiTa03

K3Li PNb50( g

Ba2NaNb5O( 5

KDP

LiGaO2
NaNO2
TGS

2. 85
(Ref. 24)

0.61
(Ref. 2O)

Q. 51
0.16

(Ref. 20)

1.3
(Ref. 18)

+O. 8'
2h

+2.1
(Bef. 19)

o. o6'
—1.85

0
(Bef. 29)

4h

+1.4
(Ref. 19)

—O. 14~

O. 75'
+0.005
(Ref. 29)

5.9
(Ref. 20)

3.9'
2.7
(Ref. 20)

o.56
(Ref. 18)

Sf
8h

0
(Ref. 19)

0.013
{Ref. 29)

7.2 + 1.9

4.9+1.1
3.1+ .4

3.2+ ~ 2

(3.4~ .5)
4.4+0. 5
(0.7+ .4)

0.4+ .2

50c

6 41

2. 2
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o 5, ,

F
F

PSF

shows a linear dependence

At = (4. 5+ 1) x10 ' tP, esu,

where +~ ls ln p, C cm

V. DISCUSSION

(33)

Z j7~
F

2—

' Io,(IF

r?2
0 IO

oe

l I I 1 I

20 50 40 50 60
Ps IN P.C Cm

FIG. 1. Plot of the vector part v = t 63&&+$322+ &333 f

in 10 6 esu as a function of the spontaneous polarization
(P, in pCcm . Values of v and, correspond, for each
material, to the same temperature. Each material is
indicated by its number, according to Table III. For
Liwb03 (5) the average of the two values of v given on
Table III has been plotted. The dashed line corresponds
to the mean value of the ratio v jets.

C C C"c = IP stt+Psss+Psss I
(32)

are also indicated. The comparison of A, and ,

been estimated. ' As a result, values of v deduced
from Eq. (31) are in good agreement with experi-
mental data. The higher value of (P, in ZnO com-
pared to CdS and ZnS is consistent with the bigger
distortion of the tetrahedron unit (the crystallo-
graphic ratio c/a equals 1.602 while for an ideal
wurtzite structure c/a = 1.633).

The magnitude of the vector part for triglycine
sulfate (TGS) deduced from experimental data (in

any of the two alternatives for the relative sign of
d,ss and 5,s, ) is 10 to 20 times lower than the value
given by Eq. (31). Reasons for such a discrepancy
can be found in the special character of the TGS
structure, on the basis of a theoretical model ex-
plaining Eq. (31).'

B. Linear Electrooptic Effect

In an attempt. to correlate the vector part of the
LEO tensor p and the spontaneous polarization it is
necessary to make first a distinction between clamped
(or high-frequency or constant-strain) and unclamped
(or low-frequency or constant-stress) phenomena.
Since the latter depend greatly on piezoelectric and

photoelastic properties, we will consider only the
clamped quantities.

Despite that LEO has been known and studied for
a long time, there are few materials for which the
vector part and especially V can be evaluated; they
are listed on Table IV, where the values of the
quantity

TABLE IV. Values, for LEO, of the clamped vector
part Ac f p3f f + p322 +p333 I in 10 esu, at the wavelength
6327 A. For wurtzite materials calculated values of A,
using Eq. (33) and estimated 8'~ are indicated.

Material Class Ac (P~ A /~ Ac (calc)

ZnO 6mm 6 ~15' [6] 3,1] 26
(Ref. 27)

CdS 4 +15 I,3] [1.5]
(Ref. 27)

0 ~15' I;2] tO]

(Ref. 27)

LiIO3 6 660 + 100
LiNbo3 3m 320+40"' 71' 4. 5
Li TaO3 3m 235 +30 50 4.7
BaTio 4mm 103+15& 26" 4.0

I. P. Kaminov and E. H. Turner, Appl. Opt. 5, 1612
(1965).

"F. R. Nash, J. G. Bergman, G. D. Boyd, and E. H.
T rner, J. Appl. Phys. 40, 5201 (1969).

CE. H. Turner, Appl. Phys. Letters 8, 303 (1966).
~K. F. Hulme, P. H. Davies, and V. M. Cound, J.

Phys. C 2, 855 (1969).
'S. H. Wemple, M. DiDomenico, Jr. , and I. Comli-

bel, Appl. Phys. Letters 12, 209 (1968).
E. H. Turner, E. G. Spencer, and A. A. Ballman,

Appl. Phys. Letters 8, 81 (1966).
~I. P. Kaminov, Appl. Phys. Letters 7, 123 (1965);

8, 54 (1966); 8, 305 (1966).
"W. J. Merz, Phys. Rev. 91, 513 (1953).

The validity of phenomenological rules such as
those given by Eqs. (31) and (33) does not rely
only on the direct experimental confirmation, but
also on the self-consistency of the conclusions to
which they lead. In that respect it is worth noting
the agreement between the values of +, for LiIO&

deduced from Eqs. (31) and (33): 105+30 and

145+ 29 p, C cm, respectively.
It is indeed possible to predict, from Eq. (31)

or Eq. (33), values for nonlinear coefficients
(d sss

' =0. 5d ss )or for spontaneous polarizations
(tp,"' ' s = 4 p, C cm '). But among all the conse-
quences of a linear relation between the vector part of
the optical nonlinearities and the spontaneous polar-
ization, we would like to emphasize a particularly
simple and useful one. It has been demonstrated
by Abrahams eI; al. 3'that the spontaneous polariza-
tion is, in displacive ferroelectric crystals, pro-
portional to the atomic displacement &z. One can
therefore, for this particular group of crystals,
relate the SHG coefficients to the atomic positions
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in the crystallographic structure' by the linear
equation

v = (24+ 5) x 10 'nz esu. (24)

The optical nonlinearities of crystals have
been analyzed from a new and fundamental point
of view which differentiates polar from nonpolar
materials on the basis of a vector contribution
to the phenomena described by a third-rank
tensor. The decomposition into vector and sep-
tor parts allows a general explanation of pre-
viously reported theoretical results and strongly
suggests simple relations between different phys-

Little attention has been paid so far to the septor
part of 5 or e which is correlated to an "octupole"
moment. The physical interpretation is not as ob-
vious as for the vector part but use can be made of
8 for studying phase transformations. As an exam-
ple, let us consider the transition at low tempera-
ture, of KDP from a paraelectric phase (42m) to a
ferroelectric one (mm2). Above the Curie temper-
ature the SHG properties of the tetragonal struc-
ture are completely described by the septor scalar
invariant o, (in the 5 formulation). On the other
hand, both v, and o, are allowed by the ortho-
rhombic structure. The vector part e, has been
shown to be related to the spontaneous polarization
5, while the septor parts o, and 0, are experimen-
tally the same (see Tables II and III). All the changes
in SHG properties of KDP at the phase transforma-
tion can therefore be explained in terms of avector
contribution in the ferroelectric phase.

VI. CONCLUSION

ical properties. The so-called vector part has
been shown to be proportional to the spontaneous
polarization and new relations among optical non-
linear coefficients have been consequently estab-
lished.

Note added ~~ mannscxiPt. Discussions with Dr.
J. A. Gloldmalne, Dr. R. C. Miller, and Dr. D.
A. Kleinman drew our attention to the fact that in-
formation about the signs of the nonlinear coeffi-
cients can be deduced from the results reported
above. For both SHG and LEO, there is a propor-
tionality between the spontaneous polarization 6,
and the vector V . The sign of the scalar product

1V ~ (P, is therefore the same for all the mate-
rials. This has been demonstrated in the case
of SHG by Miller and Nordland, who found

~ 6', & 0, for LiNb03, LiTa03, BaTiO3, ZnO,
and also for Ba~NaNb5Q&5. %e deduce that
d3 f f and d333 are negative for LiIO3 while d3$$
is negative and d»~ positive in the ferroelectric
phase of KDP. The experiments performed in
LlNbO3 by Hulme et al. show that xsg ls posi-
tive. Since p», (0, ~, &) and r» (~) have oppo-
site signs, P' ~ 0', is negative for LEO.
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Ultrasonic Beam Mixing as a Measure of the Nonlinear

Parameters of Fused Silica and Single-Crystal NaCI~*
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The mixing action of two crossed ultrasonic beams has been studied. The theoretical
treatment of Taylor and Rollins is extended to include the all-pure-mode cases for the prosess

&~ —cd' ~ T (dp

in cubic single crystals. Five such cases exist in cubic crystals; two in the (001) mixing plane
and with I (~& ) propagated in either of two fixed directions [100] and [110j;and the other
three in the (110)mixing plane and with I- (co&) propagated in any of three fixed directions
[110], [ill j, and [001]. The transverse waves are polarized normal to the mixing plane in
all five cases and propagate in directions within the plane corresponding to the selection rules
on frequency and propagation vector. The conversion efficiency was measured over a range
of input frequency ratios, a= co2ju~ for the two independent transverse-polarization states
for the above process in fused silica and for the two pure-mode cases in the (001) plane in
NaC1. A comparison technique using the interchange equivalence of T(~2) and T(~~ —cu2) effec-
tively eliminated the transducer-bond efficiencies. These measurements were used to deter-
mine two of the three independent third-order elastic constants of fused silica. In the case
of NaCl, the two ratios of linear combinations of second- and third-order elastic constants
corresponding to the two (001)-plane pure-mode cases were determined. The above com-
parison technique was not applied to the other three pure-mode cases because the transverse
anisotropy in the (110) plane leads to refractive effects on the transverse beams that render
the technique inapplicable.

I. INTRODUCTION

In this investigation we explore the mixing action
in the crossing of ultrasonic beams and the mea-
surement of the conversion efficiency to determine
parameters characterizing the nonlinearity of ma-
terials. %hen two large-amplitude ultrasonic
waves intersect in a solid at an angle appropriate

to the particular ratio of their frequencies, a third
ultrasonic wave generally radiates from their com-
Moll volume of intersection. The third wave plop-
agates in still another direction so that there is a
conservation relation among the three propagation
vectors involved. The third wave has either the
sum or difference frequency of the two primary
waves depending on the particular mode combination.


