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The Josephson effect in a superconducting ring, interrupted by a barrier, is shown to be
the direct consequence of fundamental principles and, hence, to exactly obey the voltage-fre-
quency relation used for a precise determination of e/h. Supplementary considerations deal
with the role of electron pairing and with additional features such as those found in the pres-
ence of two parallel junctions. The special case of a thin ring is used to illustrate the treat-
ment of dynamical properties, including the possible occurrence of hysteresis. A more de-
tailed discussion of the effects due to a potential barrier is presented, followed by a rederi-
vation of Josephson’s differential equation which is seen to govern the time dependence of the

penetrating flux.

I. INTRODUCTION

It was pointed out in a preceding letter! that the
Josephson effect?® can be interpreted as the direct
consequence of general principles if one considers
the geometry of a superconducting ring interrupted
by a barrier. In close analogy to the earlier ex-
planation® of quantized flux trapping, the periodic
dependence of the current upon the flux through the
ring was found sufficient to account for the essen-
tial features of the effect. The considerations
were restricted to the simplest case where the flux
through the ring has a single well-defined value.
This situation is encountered if the ring is suffi-
ciently thin to neglect the variation of the flux
caused by penetration of the magnetic field into the
material or, equivalently, if the shielding by the
supercurrent is sufficient to prevent any appreci-
able penetration. It was shown in particular that
one obtains in this case the Josephson relation be-
tween voltage and frequency of the current.

A rigorous and general derivation of this relation
will be presented in Sec. II, including the previous-
ly omitted proof of the periodic flux dependence.
Instead of demanding a single value of the total
flux, it merely demands this property be satisfied
for the part which arises from external sources.
Irrespective of any specific assumptions concern-
ing the ring, the Josephson relation will be seen
to strictly apply to a reversible process and to re-
fer to the voltage which is induced by a time-depen-
dent external flux throughthe opening surrounded
by the material. Section II deals with additional
considerations concerning the effects of pairing,
the presence of a barrier, branching, and devia-
tions from reversibility.

A more detailed discussion for the case of a thin
ring will be presented in Sec. IV. It shows that
the presence of a barrier is essential for the pos-
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sibility of reversible alternations of the current
and includes the criteria for the occurrence of ir-
reversible processes, accompanied by hysteresis,
as well as the consideration of dynamic effects.
The effects of a barrier are further discussed in
Sec. V and extended to take field penetration into
account,

While the considerations presented here do not
lead to results other than those originally obtained
by Josephson, they differ in regard to their deriva-
tion and interpretation. Instead of using the specif-
ic theories of Ginzburg and Landau, or of Bardeen,
Cooper, and Schreiffer, the treatment is based upon
some fundamental facts of electrodynamics and
quantum mechanics which bear upon the character-
istic properties of the superconductive state. It is
not possible without specific reference to the mi-
croscopic explanation of these properties to eval-
uate the coefficients which determine the magnitude
of the supercurrent. While their change upon the
introduction of a barrier will be investigated, there
remains a factor of proportionality for which no
more than qualitative arguments can be offered
within the framework of the present treatment.
Since the consideration of a closed ring is essen-
tial, the method, furthermore, is not directly ap-
plicable to the effects of a voltage across the bar-
rier in an open-ended geometry. The inclusion of
this case requires as a separate assumption that
the conditions at some distance from the barrier
are immaterial to the manifestation of the Josephon
effect.

On the other hand, the conclusions reached here
are not affected by the unavoidable approximations
inherent to the phenomenological or microscopic
approach in the theory of superconductivity. They
are particularly suited, therefore, to clarify the
reasons for the exact validity of the Josephson re-
lation.
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II. GENERAL PROOF OF JOSPEHSON RELATION

The application of a dc voltage V results accord-
ing to Josephson in an alternating current of fre-
quency

v=2eV/h (1)

across the partitioning barrier of a superconduc-
tor. Whereas an open-ended geometry permits the
use of a battery as voltage source, it is necessary
in the case of a superconducting ring to deal with
the voltage induced by a time-dependent flux of the
magnetic field through the ring. In order to inves-
tigate the effect of this voltage, one has to consider
that the electromagnetic field arises from the su-
perposition of two parts. One of them is the field
contributed by the charged particles in the ring.

In addition to the particles themselves, this field
is to be regarded as a constituent of the system
formed by the ring and is to be described by a sep-
arate set of dynamical variables. The other part
consists of the field due to external sources which
can be arbitrarily controlled so that it enters into
the description of the system through a set of ad-
justable parameters rather than of dynamical vari-
ables.

Accordingly, the Hamiltonian representing the
total energy of the system in a given external field
is to be considered as a function of the dynamical
variables which pertain to the particles as well as
of those which characterize the field contributed by
their charges. While a partial elimination of field
variables permits one to express electromagnetic
interactions in terms of particle variables, it is
neither necessary nor convenient to assume that
such an elimination has been carried out, Similar-
ly, it is possible to partly eliminate the variables
pertaining to the ions with the result of an effective
additional interaction between the conduction elec-
trons. This interaction is essential for the pair-
ing process which leads to the superconductivity of
electron systems, and will later be taken into ac-
count to obtain the Josephson relation in the form
of Eq. (1). The deeper roots of this relation are
more evident, however, if the ions are treated as
constituent particles of the system on the same
basis as the electrons and without explicit refer-
ence to their role in the pairing process. It is
sufficient at this stage to assign to each of the N
particles a definite charge according to its indivd-
ual characterization as an ion or an electron.’

Retaining complete generality, the Hamiltonian
of the system shall be denoted by

30=30[B,-e,;A;)/c, T,;] (2)

in its dependence on all the momenta P, and coor-
dinate vectors F, of the particles with charges

e;(j=1,2-+-N) in the presence of the vector poten-
tial A(T). Although the notation only emphasizes
this particular dependence, a further dependence
on spin variables of the particles and on field vari-
ables shall be understood without being explicitly
indicated. The total magnetic field = curlA de-
rived from the vector potential includes the contri-
bution due to external sources. Writing

K = Ko +K1, ( 3)
this contribution shall be given by
H, =curld,, (4)

and it is essential that it only enters into the
Hamiltonian through the combination of A and P,
which appears in Eq. (2).

It will be assumed for the purpose of this section
that _ﬁl is a variable field which vanishes in the
whole region R occupied by the ring but contributes
the amount @ to the flux through the opening O
(Fig. 1). Such a field is obtained, for example,
from the variable current of a long solenoid pass-
ing through O; any other field _I-il is equivalent,
however, provided that its penetration into the re-
gion R is of negligible significance. As the line
integral of the external electric field, the applied
induced voltage

_1dg

V= c dt

(5)
has under this condition the same value for any
closed path in R which surrounds the opening O.
The same condition will be seen to lead to an other-
wise entirely general periodicity of the free ener-
gy and of the current circulating through the ring
in their dependence upon ®. The following proof
is based upon the method used earlier* to explain
flux quantization with the difference that it refers
to the externaliflux &, rather than to the total flux
® through the opening.

Inserting A from Eq. (3) into the Hamiltonian
given by Eq. (2), one obtains the energy levels of
the system by solving the equation

KY=Ep (6)

with the condition that the eigenfunction (1) is

FIG. 1. Superconduct-
ing ring R with opening
O, barrier B, and cir-
culating current I.
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single valued in all particle coordinates T, irre-
spective of its implicit dependence on other vari-
ables. Whereas the magnetic field H; due to ex-
ternal sources can be arbitrary everywhere else,
it was assumed that ﬁ,: 0 in the region R which
contains the particles of the ring, so that in view
of Eq. (4) one can write A, =grady, in R. Consid-
ering that y(T,) has to vanish if the location T, of
any particle is not inside that region, and noting
further that P,=(r/2m ) grad,, the gauge transfor-
mation

P(T;)=9(T,;) exp[2m ;e, x1(T;)/he] (7

leads from Eqs. (3) and (6) to
Kodo=Ed,, (8)

where 3C, is the Hamiltonian obtained by letting
Kl =0. Since 9 is single valued and since the line
integral of A; around O increases x; by the amount

9“ K1 'd-é’: (I)l s

Py is multiplied by the factor exp(- 2mi e; ®/hc)
when the particle j is brought around the ring.
With all the charges e; of the particles given as
positive or negative integer multiples of the ele-
mentary charge e, this factor repeats itself when-
ever & changes by the amount

Ad =hc/e. ()

The same repetition occurs in the solutions i, and,
hence, in the set of energy levels obtained from
Eq. (8). Since the latter uniquely determinethe par-
tition function @, it follows that the free energy
F=-kT In@Q is a periodic function of ® with period
he/e. Granting the system under consideration to
be invariant against time reversal, it is further
seen that F remains unchanged if the sense of ro-
tation around O and, thereby, the sign of & is re-
versed so that F must be an even function of &,.
The combination of these two properties permits
the free energy of the system to be written as a
Fourier series of the general form

F= 2, F,cos 2mna,, (10)
n=0
where a,=%/(hc/e). (11)

One should observe that the preceding proof of
this important conclusion is entirely based upon
some of the most fundamental principles. In fact,
its validity requires no more than to accept invari-
ance under a gauge transformation and under time
reversal, together with the requirement of single-
valued wave functions and the elementary nature
of the charge e. In particular, the effect of elec-
tromagnetic interactions is fully taken into account
so that renormalization cannot alter the result.

Furthermore, the conclusion holds irrespective of
any specific properties of the ring and thus re-
mains valid in the presence of a barrier as a spe-
cial feature concerning the potential energy of the
electrons. Such properties will later have to be
taken into account, however, to discussthe hitherto
arbitrary magnitude of the coefficients F,.

The free energy refers to the thermal equilib-
rium of the system at a fixed value of the flux &,
but retains its significance for variable values
provided that the variation is sufficiently slow to
permit at any instant the establishment of equilib-
rium. One deals in this case with a reversible
process and can use the thermodynamic relation
for constant temperature that the rate of change
of the free energy represents the work per unit
time delivered to the system. Under application
of the external voltage V and with a total current
I circulating around the ring, one has dF/dt=IV.
With F given as a function of &, and in view of
Eq. (5), it follows that the current is obtained from
the free energy by means of the relation

dF

I=- Cd*cﬁl , (12)
which leads through Egs. (10) and (11) to the result
I=2,1,sin2mna, , (13)
n=1
with I,=2mneF,/h . (14)

This result has the same general validity as that
derived for the free energy and likewise refers
not only to constant equilibrium of the system but
also to reversible changes under the influence of
a time-dependent flux &,.

In particular, the application of a dc voltage cor-
responds to the linear time dependence

B=-c Vi (15)

as the result of Eq. (5) for constant V with & =0
chosen at the time #=0. By inserting the corre-
sponding value of @, from Eq. (11) into Eq. (13),
the current

I==23 1, sin(rne V/h)¢ (16)
n=1

is seen to exhibit a periodic variation with a spec-
trum of frequencies

v=neV/h a7

which confirms Josephson’s result in a general-
ized form. Indeed, the preceding proof did not
specify the coefficients I, in Eq. (16) or the integer
n in Eq. (17). It requires further considerations,
presented in Sec. III, to arrive at the particular
choice n =2 for the Josephson relation in the form
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of Eq. (1). Only the general form of Eq. (17) is
needed, on the other hand, to allow the highly pre-
cise determination of e/k from a measurement of
frequency and voltage.® In fact, the fundamental
character of this relation demands » to be an exact
integer and the knowledge of e and % is sufficiently
accurate beforehand to recognize the one and only
integer which is compatible with the measurement.
The dc current caused by the simultaneous ap-
plication of a dc voltage V and an ac voltage
[V cos(2mv t +¢)] represents another manifestation
of the Josephson effect which can be confirmed
with equal generality. In analogy to Eq. (16),
one obtains from Eq. (13)

© ’
I==-21, sin[%e <211Vt +% sin(211v't+<p)>]‘i. (18)
n=1 '

A finite time average, and hence, a dc component
of the current demands that the relation

n'v' =neV/n, (19)

with exact integers » and n’, is satisfied’ so that
this effect provides an equally fundamental method
for the precise determination of e/h.

III. SUPPLEMENTARY CONSIDERATIONS

A. Off-Diagonal Long-Range Order and Pairing

In order to emphasize their fundamental charac-
ter, the results of Sec. II were derived in such
generality as to require no assumption whatever
about the nature of conduction so that it seems ir-
relevant whether or not one deals with a supercon-
ductive ring. The basic equations (10) and (13),
however, already anticipate the characteristic
property of a superconductor to maintain a finite
current in the absence of an applied voltage. In-
deed, according to Eq. (13), any set of finite coef-
ficients I, allows the existence of a circulating dc
current for constant @, or ¢, and hence, in view
of Eq. (5), for a vanishing voltage V.

The fact that the coefficients F, for »n+# 0 in Eq.
(10), and therefore the coefficients I, in Eq. (13),
can have finite values has been recognized earlier
to rest upon a special condition. The resulting
flux dependence of free energy and current in the
thermal equilibrium of a macroscopic ring re-
quires, in fact, that a superconductor exhibits off-
diagonal long-range order (ODLRO)® or, equiva-
lently, a singular velocity distribution® of the par-
ticles responsible for conductivity. Applied to the
conduction electrons it was recognized, further-
more, that the exclusion principle prevents this
requirement from being met if each electron is
considered to move as anindividualunit and that the

supercurrent has to be attributed to the common
motion of electron pairs. This circumstance is
taken into account through the replacement of the
charge e by 2e or, in view of Eq. (11) for a,,
through the specification that only coefficients F,
and I, with even index #» can be different from zero
since they always appear in combination with na;.

The preceding conclusion was reached without
particular reference to the microscopic origin of
the pairing process. Bardeen, Cooper, and
Schrieffer!® have shown that it can be explained by
an effective attraction between the electrons which
arise from their interaction with the ions. Their
theory can, in fact, be used to obtain definite val-
ues for the coefficients F, and I,. While it would
be prohibitively difficult to calculate these values
from a rigorous treatment of microscopic proces-
ses, it must be remembered that any effect of the
ions was included in the developments of Sec. II.
The restriction to even indices is thus fully con-
sistent with these developments and imposes no
further specifications upon the coefficients as long
as the ring is considered under quite general con-
ditions.

B. Current Reduced by Interruption

Among such further specifications, those arising
from the interruption by a barrier B (Fig. 1) are
of particular importance. An uninterrupted ring
has been understood in connection with flux quanti-
zation® to exhibit a pronounced dependence of the
free energy on the flux or, correspondingly, to
permit a sizable circulating supercurrent. Any
such current is prohibited, on the other hand, in
the limit in which the barrier acts as a complete
interruption. A continuous variation of the coef-
ficients I, from relatively large to vanishing val-
ues must be expected in the gradual transition from
the first of these two extreme cases to the second.
In particular, the case of complete interruption
can be asymptotically approached by a progressive
widening of the barrier, since the transmission co-
efficient 6 of an electron decreases exponentially
with increasing width. It will be shown in Sec. V
that I, is proportional to 6" if 6 <1 so that for a
wide barrier the dominant contribution to the cur-
rent arises from the term with the smallest even
index n=2. Neglecting higher terms, one thus ob-
tains from Eq. (13)

I=I,sindm oy, (20)

and from Eqs. (16) and (17), the Josephson relation
in the form of Eq. (1). It is of interest to note that
the corresponding expression for the current den-
sity, derived by Josephson [J. Eq. (3.11)] from
the theory of Ginzburg and Landau, is obtained by
replacing 47, in Eq. (20) by the phase difference
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of the order parameter on both sides of the bar-
rier.!!

It is further to be remarked that an increasingly
effective potential barrier does not offer the only
possibility to cause a gradual reduction of the cur-
rent. Such a reduction can also be achieved by a
progressively narrowing constriction at some loca-
tion of an otherwise uniform superconducting ring
since such a weak link likewise leads to the ulti-
mate prevention of a circulating current. Another
practical method consists of the replacement of
the barrier by an interrupting layer of normally
conducting material. The transition from vanish-
ing to large thickness of this layer similarly re-
sults in a gradual reduction of the supercurrent so
that in the end merely an Ohmic current is per-
mitted to pass.

C. Branching

The results of Sec. II can be extended to include
the novel fedtures which appear if the ring divides
into several branches. For simplicity, it will be
assumed that there are only two branches s and ¢,
joined by the portion 7 of the ring (Fig. 2). The
external magnetic field will again be considered to
vanish in the whole region R, composed of the sec-
tions #, s, and {, with the difference that besides
the flux &, through the opening O, it may have a
finite flux &, through the opening O, surrounded by
the two branches.

In order to be single valued, the wave function
Y must remain unchanged whether a particle is
brought around the ring passing through the branch
s or the branch ¢. Upon elimination of the external

FIG. 2. Superconducting ring with opening O; which
contains two branches s and ¢ with barriers B; and B;,
joined by the portion ». The total circulating current I
divides into the currents I; and I; in the branches, sur-
rounding the opening O,.

vector potential by a gauge transformation and con-
sidering that its line integral is equal to & or &
+®,, depending upon whether one chooses a path

of integration through » and s or » and #, respec-
tively, the further arguments of Sec. II remain un-
changed. It follows that the free energy is a peri-
odic function of & as well as of & +®, (or &,) with
period zc/e. Taking time invariance into account,
one thus obtains in analogy to Eq. (10)

F=), F,,cos2n[ma, +na, +a,)], (21)
myn
where a,=%,/(hc/e). (22)

The current I and I, through the two branches are
obtained from Eq. (12) for the total current

I=I,+1; (23)
and from the analogous relation
dF
Ii=-c dsz' , (24)

which results from considering the work per unit
time in a reversible change of ®,. With F given
by Eq. (21) one finds that

I,=Q2ne/n) 2o mF,,sin2a(ma, +nla,+a,)], (25)

myn
1,=2ne/n) 2 n F,, sin2a[may +n(a;+ )], (26)
myn

As discussed before, the pairing of conduction
electrons demands the summations to be extended
only over even indices m and ». In the presence of
wide barriers Bg, B, with small transmission co-
efficients 6, 6, in the branches s and ¢, respec-
tively, F,, is proportional to 676}. Retaining only
the lowest powers with m=2, n=0and m=0, n=2,
Egs. (25) and (26) reduce to

I = I, sindna, , (27)
I, = I,;8indn(a; + ) (28)

as an extension of Eq. (20), obtained for a,=0 with
I,=I4+I,. For a given time dependence of a,
and, hence, for a given applied voltage according
to Egs. (5) and (11), the maximum of the total cur-
rent I = I + I, through the circuit is given by

‘Ig\=(1§2+ltzz+ 2IsZ Itg COS477012)1 2 (29)

as a special case of the interference phenomena
discussed by Josephson (J. Sec. 3.2.2). The peri-
odic dependence of the maximum current on a
static flux ®,, provided by a solenoid through the
opening O,;, has been experimentally established.!?

D. Deviations from Reversibility

One is led to an additional consideration by re-
calling that Eq. (20), as well as the more general
equation (13), refers to the ideal limit in which any
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change within the system is completely reversible.
For a given rate of variation of the external param-
eters, this limit represents the better approxi-
mation the more rapidly the system is able to ad-
just itself to the instantaneous equilibrium. In or-
der to estimate the effect of small deviations, it
will be assumed that the adjustment takes a certain
relaxation time 7 such that the state of the system
at the time ¢ is that of the equilibrium at the
slightly earlier time t— 7. Accordingly, Eq. (20)
will be modified in the sense that a;,=e®(t)/hc is
replaced by a, +Aa;=e®(t - 7)/hc. To first order
in 7, one thus obtains from Eq. (5) Aay=eV7/h
and to the same order from Eq. (20)

I=1I,[sindra, + (dreVr /k)cosdra,]. (30)

Application of a dc voltage V still leads to an alter-
nating current with the frequency » given by Eq.

(1) but with a small phase shift for »7<< 1., The
presence of an Ohmic resistance R, causes another
deviation from reversibility and calls for an addi-
tional correction proportional to V. Combined
with Eq. (30) and using the notation

(4metL)/h=1/R, (31)
one has then
I=1I,sindna, +(V cosdr a,)/R, + V/Ry, (32)

in agreement with the corresponding expression for
the current density given by Josephson [J. Eq.
(3.10)]. A more pronounced manifestation of ir-
reversibility is associated with the appearance of
hysteresis and will be discussed in Sec. IV.

IV. THIN RING

The rigorous conclusions of Sec. II were reached
under the condition that the external magnetic field
ﬁ1 vanishes in the region R occupied by the ring so
that its flux through any closed curve around the
ring has the same value ®,. Irrespective of the
magnetic field, this greatly simplifying property
of the flux can be used for a sufficiently thin ring
and applies in this case not only to the part ¢ con-
tributed by external sources but also to the total
flux @ It can likewise be used for a ring of siz-
able thickness provided that the penetration of the
magnetic field into the region R is of negligible
significance. A major exception, to be considered
in Sec. V, can arise through the presence of a
barrier in such a ring since the magnetic field in
the barrier may significantly contribute to the flux
through a closed curve and lead to differences of
® depending upon where the curve traverses the re-
gion of the field. For the purpose of this section,
it will be assumed that no such differences are en-
countered and the abbreviating nomenclature of a

“thin” ring is meant to characterize this assump-
tion.

Since the field contributed by the particles has to
be taken into account in order to obtain the total
flux, it is indicated to separate the energy stored
in this field from the total energy of the system.
Denoting the corresponding term by 5¢’’, one has
for the total Hamiltonian 3 of Eq. (2)

se=30" +50"" . (33)

3¢’" depends only upon the field variables and the
dependence of the term 3¢’ upon the particle vari-
ables can again be expressed in the form

3¢’ =5¢'[, - e, A(F,)/c, T,], (34)

used to indicate this dependence in Eq. (2).
Whereas the consideration of quantum effects and
a statistical treatment are essential in dealing with
the particles, it is permissible with entirely negli-
gible errors to describle the field in classical
terms and to ignore its statistical fluctuations. In

'particular, this allows to regard the total vector

potential A(T) as being uniquely determined and to
obtain from the eigenvalues of 3¢’ the free energy
F' of the particles under the influence of the total
magnetic field fi=curlA. Under the conditions of
a thin ring, the arguments, used in Sec. II to de-
rive Eq. (10), again apply if one replaces A, by

A&, or &, by &= $A +ds so that

Fl=% F) cos2mna (35)
n=0
with o= ®/(hc/e). (36)

Upon the further replacement of F by F', the de-
rivation of Eq. (12) for the total circulating cur-
rent I likewise remains valid, thus leading to

4
1=-cfid—1;— , (37)

or from Eq. (35) to

I(@)=231! sin2mn a (38)
n=1
with I, =27neF,/h (39)

in analogy to Egs. (13) and (14).

While 3¢’ leads to the free energy F’ of the par-
ticles, the other term 3¢” in Eq. (33) is responsi-
ble for the free energy F'’ which is stored in their
accompanying field. Since thermal properties of
the field can be ignored, no distinction between
free energy and energy is here required so that the
latter can likewise be denoted by F'/ . It is further
sufficient for the present purpose to consider only
the magnetic field ﬁo caused by the circulating cur-
rent I through the ring. The energy stored in this
field is given by LI%/2 where L is the self-induc-
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tance of the ring. Using the relation ®;=LcI be-
tween the current and the flux ®, of the field H,
one thus obtains

F''=8%/2Lc% - (40)

Considering that F' appears through Eqs. (35) and
(36) as a function of the total flux

d=9,+®,, (41)

it is more convient by means of this relation to ex~
press F''likewise in terms of ® and to write in
analogy to Eq. (33)

F(®=F'(®)+F'"(2) , (42)
where F''(®)=(®- &,)2/2Lc? (43)

in view of Egs. (40) and (41).

Although F(®) can in some sense be interpreted
as the total free energy of the system, it is im-
portant to distinguish this quantity from the actual
free energy F, given by Eqs. (10) and (11).
Whereas F is uniquely determined by the external
flux ®,, it is seen that, given this part, the total
flux & and, hence, F(®) depend upon the variable
value of the part ®,. The distinction arises from
the fact that F refers to thermal equilibrium of the
system where @, has the definite value demanded
by the equilibrium current. This value has to be
inserted into Eq. (41) for ®in order to obtain the
argument of the function F(®) at which it is equal
to F. Equivalently, F is to be characterized as the
absolute minimum of this function. In fact, &
plays the role of a coordinate and F(®) that of a
potential energy for the dynamics of the system
so that it will be in equilibrium at the absolute
minimum of F(®),® It will be necessary, how-
ever, to also consider the conditions of stable
equilibrium which correspond to other minima of
F(®).

With the flux measured in units of kc/e by means
of the dimensionless quantities of Eqs. (11) and
(36), one obtains from Eqgs. (35), (42), and (43)

F(a)=2J F; cos2mna +h*(a - a,)%/2Le%,  (44)
n=0
and an extremum of this function requires in view
of Eqs. (38) and (39) that
I(a)=qla-a,), (45)

where g=h/Le . (48)
In addition, one must have

ar

da ~ 1
in order to deal with a minimum of F(a) and,

hence, with a stable equilibrium. The significance
of Eq. (45) for the comparison of flux quantization

(47)

with the Josephson effect was previously discussed
by means of a graphic representation.! It was
shown, in particular, that the Josephson effect is
to be understood as a consequence of a sufficiently
reduced current I(a). Indeed, Egs. (45) and
(47) permit in this case only a single solution for
a in the vicinity of @;, corresponding to the exis-
tence of a single minimum of F(a) and, hence, to
a definite equilibrium of the system for every val-
ue of a;. The maintenance of this equilibrium re-
presents the condition for a reversible change
which was seen in Sec. II to lead from Eq. (13) for
the current to the Josephson effect as the result of
a linear variation of a,.

A different situation arises, however, if I(a)
is large enough to allow several solutions of Egs.
(45) and (47), thus indicating besides the absolute
minimum the existence of other minima of F(®).
In order to study the transition to this case, it
will be assumed that the reduction of the current
is caused by a sufficiently wide barrier to result
in a transmission coefficient § < 1. In analogy to
Eq. (20), only the term with »=2 in the sum of
Eq. (38) is then required so that

I1=1, sindra, (48)
and from Eqgs. (45) and (47)

I, sindra =q(a - a,), (49)

471 jcosdna<gq . (50)

Since the absence of an external flux & obviously
permits a stable equilibrium with vanishing total
flux ¢, the solution a =0, obtained from Eq. (49)
for @, =0, must satisfy Eq. (50) for any value of
g. By going to the limit g- 0, it follows therefore
that I, <0. Given a finite (negative) value of I; and
a finite (positive) value of g, it now depends upon
the ratio I; /g whether Eqs. (49) and (50) permit
one or several solutions. The transition between
these two cases can be seen to occur when |1, /q|
=1/4n so that one obtains the Josephson effect for
II;/q)< 1/4n.

It will now be assumed, instead, that |I;/g!
>1/4n. Starting with the solution @ =0 for a,;=0,
Eqs. (49) and (50) permit a continuous reversible
increase of @ with increasing a, until @ has
reached a value @, such that 471, cos4ra, =q. At
that point, the system is in a state of indifferent
equilibrium but the same value of @, permits one
or several solutions of stable equilibrium, depend-
ing upon the magnitude of |I;/g|. The transition to
such a new equilibrium with « at a new value q,
will take place in an irreversible process where-
upon @ again increases reversibly with a further
increase of ;. This alternation between revers-
ible processes repeats itself periodically upon a
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FIG. 3. Circulating current Iin a thin ring versus
flux @, measured in units sc/e. The straight sections
(a,d), (c,d), (I,m) and (e,f), (g,h), (i, k) with slope q in-
dicate irreversible transitions at the values of the exter-
nal flux @4 in units of zc/e, given by their intercept with
the o axis, for slowly increasing and decreasing values
of a4, respectively.

monotonic increase of o; and an analogous alterna-
tion with the accompanying hysteresis takes place
upon the reversed change of @;,. Both are illus-
trated in Fig. 3 with |1I,//¢| chosen such that for
each irreversible transition only a single final
equilibrium is available and Fig. 4 represents the
corresponding variation of a with a,. It is to be
noticed that successive irreversible transitions
occur upon an increment or decrement of «; by the
amount 3 or according to Eq. (11) upon a change
of the external flux & by the amount of the flux
quantum

% =nc/2 . (51)

The observation of these transitions thus serves
their well-known use for the measurement of small
changes of a magnetic field.

Considering ever larger values of |I,/ql, ir-
reversible transitions can end up in an increasing
number of stable equilibria and it then depends
upon the dynamics of the system which of them will
actually be reached. Accordingly, the change of
the flux through the ring, undergone in such a tran-
sition, can assume an increasing number of values
and it can be seen that these values amount the
more closely to integer multiples of the flux quan-
tum the larger |I;/q!. The experiments of Silver
and Zimmerman®® clearly demonstrate such ir-
reversible transitions under different conditions
which are essentially equivalent to different mag-
nitudes of I although the reduction of the current
is achieved by a variable weak link instead of a
barrier.

In order to investigate dynamic effects, it is
necessary to add to the magnetic part of the field
energy the contribution stored in the electric field.
With the voltage due to the flux @, given by

1d®
V[):_ -C_ dto ’ (52)

this contribution can be written in the form

%CV?,, where C is the effective capacity of the
circuit. 18

Equation (40) for the energy stored in the field
of the ring is thus replaced by

.\ 2 S
F''=C (Z—t(]) /202+<I>(2,/2Lc”‘. (53)
The rate of change of this energy is given by - VI,
the work per unit time performed by the current
against the voltage V,. Therefore,

dF"_ 1 4%,
dt c dt ’
and with F'’ from Eq. (53)
(1/c)C ®y+®/L)=1T. (54)

In order to account for damping effects, an Ohmic
term will be added to the expression for the cur-
rent of Eq. (48) so that one has for the right side
of Eq. (54)

I=1; sindna + V/R,. (55)

With V=~ (1/c)(d®dt) and using Eqs. (11), (36),
(41), and (46), one thus obtains from Egs. (54)
and (55)

¢(LCa+La/Ry+a—-LCE&,~ a,)=I} sindra (56)

as a differential equation for the total flux a(t) at
arbitrarily varying external flux a,(¢), both mea-
sured in units of xc/e.

If a, varies sufficiently slow to neglect its de-
rivatives, Eq. (56) reduces to Eq. (49) provided
that the derivative of @ can be assumed to be like-

-0.5 0 0.5 1.0

FIG. 4. Total flux o versus external flux &, both
measured in units kc/e. The plot is obtained from Fig.
3 by the following construction: A straight line with
slope ¢ through a point with the abscissa a on the curve
in Fig. 3 intercepts the o axis at the corresponding value
of Qq.
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wise negligible. The single solution obtained for
I3 /q1<1/4m is compatible with this assumption
since it can be shown to be stable against small
perturbations. In view of the preceding considera-
tions, Eq. (56) thus correctly describes the
Josephson effect under the appropriate conditions.
For \I;/q\> 1/4w, the derivates of « are no longer
negligible, however, when the solution of Eq. (49)
has reached the value, previously discussed, at
which equilibrium ceases to exist. Indeed, a small
deviation from this value can be seen to first build
up exponentially with the subsequent time depen-
dence to be obtained by integration of Eq. (56).
Because of the damping term, proportional to 1/R,,
o will finally reach a new value corresponding to
stable equilibrium and the magnitude of the damp-
ing coefficient determines which among several
such equilibria will actually be established.

The application of an external dc voltage corres-
ponds to a linear variation of @, and, hence, to the
absence of the term with &, in Eq. (56). The sol-

utions can in this case be demonstrated by the
mechanical analog of a pendulum with viscous

friction, connected by an elastic spiral spring to a
coaxial shaft which rotates with constant angular
velocity w.!” Denoting the angular deviation of the
pendulum from the vertical by 8 and the angle of
rotation of the shaft by B8; with the spring unloaded
for B,=8, 47a and 47, are in the analog to be re-
placed by 8 and B;, respectively, so that a full
turn of these anglesrepresents in view of Eqs. (11)
and (36) an increase of the corresponding flux by
the flux quantum 3* of Eq. (51). It can further be
seen that the correspondence of the applied dc
voltage V to the frequency v= w/27 with which the
shaft rotates is that of the Josephson relation given
in Eq. (1). The conditions for the Josephson effect
and for the irreversible processes, considered
above, are reproduced by choosing for the pendulum
a relatively small and large mass, respectively,
with the damping term adjusted by means of the
coefficient of friction.!®

|

V. EFFECTS OF A POTENTIAL BARRIER

It was remarked in Sec. IIl B that continuity de-
mands a gradual reduction of the circulating cur-
rent with increasing width of a barrier. In order
to investigate this effect in greater detail, it is
sufficient to represent the barrier by the constant
potential energy U of an electron between two par-
allel planes, separated by the width w. In the
vicinity of the barrier, a coordinate system will
be used with the z axis perpendicular to the two
boundary planes, located at z=0 and z =w (Fig. 5).

Starting with the case of a thin ring, discussed
in Sec. IV, the magnetic field in the region R, in-
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FIG. 5. Vicinity of a barrier with width w. In the
absence of field penetration, the flux can be obtained
from the line integral of the vector potential around the
ring starting from a point with coordinates x, y on the
positive side of the plane z=0 and ending at the same
point on the negative side.

cluding the barrier, will be assumed to be negligi-
bly small. The total vector potential in this region
can thus be written as A =grady and is eliminated
from the particle Hamiltonian 3¢’ of Eq. (34) by
means of the gauge transformation

W(F;)=(T,) exp[2mi 20 e, x(T;)/hc] . (57)
]

Analogous to Eq. (8), one has then
3o %o=E" ¢y, (58)

where 3¢ is obtained from 3¢’ by letting A=0. The
notation E' instead of E is used to distinguish the
eigenvalues of 3¢’ from those of the total Hamil-
tonian 3€. Considering a particular electron and
demanding 3 to be single valued, it follows with «
given by Eq. (36) that ¢ is to be multiplied by
e™"* when the electron is brought around the
ring. This can be done by starting from a point

x, 3 on the plane z =0 in the direction of positive

z so that after going around the ring one returns to
the same point from the side of negative z. The
two sides of the plane shall be indicated by z =0,
and z=0_.. Omitting the dependence of J, on all
variables except the z coordinate of the electron in
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the vicinity of the barrier, one can write 1= o(2)
so that one has to demand

(0. ) =e 2" (0, ). (59)

Since instead of the plane 2z =0, any neighboring
plane could equally well have been chosen, the
same relation has to hold for the z derivative with
the result

o | _ -zria O (60)
9z | 0a 9z | o0+

to be noted for the following purposes.

The potential energy U in the barrier will be
considered sufficiently large to cause the domi-
nant z dependence of i, for 0<z<w so that in this
range

bo(z) =ae* + be™**

with @ and b independent of z and with
k=(2m U/mAV?2 (61)

o and 93,/8z at the two boundaries of the barrier
are thus connected by the relations

9
<sz0 ¥ aizo> 0+

<’<lpo" 8z> o <K¢o Y 0+e ,
or in view of Egs. (59) and (60) by
9 9 —R10=2T
(Kz,b0+—épﬁ> N = <K¢O+3z%(>we w-2v o , (62)

QC%—Z_?> » = (K?Po‘i;p—z‘o)

Considering that the side z=0_ of the plane z=0
is reached from the plane z =w by going around the
ring, the relation of Eqs. (62) and (63) represents
boundary conditions for the solutions of Eq. (58)
in the open-ended part of the region R which re-
mains upon exclusion of the part occupied by the
barrier. These conditions must be satisfied for
each electron at all points x,y on the two boundary
planes and determine the complete set of eigen-
values E’ to be admitted in Eq. (58). In the limit
k- of an infinitely high barrier, they reduce

to the familiar condition that the wave function has
to vanish at the boundaries.

Generally, the barrier width as well as the to-
tal flux ®through the ring enter only through the
exponentials on the right sides of Egs. (62) and
(63). Under otherwise given conditions, the
eigenvalues E’ therefore only depend upon these
expontials and result in the free energy F' of the
particles as a function of 6 ¢*** and 6 ¢2"**, where

1]
/;\
<=

S
+
(o)
L I%
~—c
g
[\
1
=
S
-

e-xw+21ria . (63)

0-

f=e™* (64)

is the transmission coefficient. Expanding in pow-
ers of 6, one has

®©

FI(GeZwia, 06-2”&) - Z} Cim ezu(l-m)aehm

1,m=0

40O

or FI - E 621rina Ednu 9|nl+2u (65)
n== ®=0

with fixed coefficients ¢;,, or d,,. Considering

finally that F' must be a real even function of a,

one obtains Eq. (35) with

Fl=25d,, 6% (66)
u=0
and F/=20" 2, d,, 6% (67)
u=0

for n> 0. For a sufficiently wide barrier with cor-
respondingly small transmission coefficient 6, only
the terms with 4 =0 need to be retained so that
F,~6" and from Eq. (39) I, ~9". With pairing
taken into account, the dominant contribution to the
sum in Eq. (38) arises in this case from the term
with # =2 so that one obtains Eq. (48) for the cur-
rent with I; ~6%, Considering that 6 represents the
transmission coefficient for a single electron, it

is plausible that the current will be proportional

to 6% since it is maintained by the simultaneous
tunneling of electron pairs through the barrier.
Neglecting higher terms in 6, it can further be
shown that!® I,=1, so that the results obtained
above lead at the same time to the properties of

the coefficients I, used in Sec. III B.

The preceding discussion was based upon the as-
sumption that the penetration of the magnetic field
into the ring is negligible. Because of the Meis-
sner effect, this assumption can be safely made,
except in the vicinity of the barrier since the cur-
rent across the barrier may be too small to pro-
vide sufficient shielding. One deals in this case
with a magnetic field not only inside the barrier
but also in the region extending beyond its boundary
planes to a distance comparable to the London pen-
etration depth. It will be assumed that this region
lies between the planes z=-5 and z =w + 6 (Fig. 6),
such that the magnetic field at greater distances
can be considered to be vanishingly small. In
accordance with the corresponding treatment by
Josephson (J. Sec. 3.1) it will be further assumed
that the sideways dimensions of the barrier are
sufficiently large compared to w and 6 to neglect
edge effects and that the penetrating field has a
vanishing z component.

Denoting the part of the vector potential respon-
sible for the flux through the opening O again by
grady and the part due to the penetrating field by
a, one has thus inside the region R
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FIG. 6. Vicinity of a barrier. The field is assumed
to penetrate into the region between the planes z=-6
and z=w+6. In this region, the curve C, , around the
ring is chosen to run parallel to the z axis and to pass
the plane z=0 at a point with coordinates x, y. One has
to consider line integrals of the vector potential along
this curve, starting at a fixed point P* outside the region
of penetration and ending on the variable point P. Two
alternative positions of P are chosen to indicate how they
are to be reached without passing through the plane z=0.
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K:gradx +a, (68)

where a, =a,=0 and where a, #0 only for —6<z<w
+6. In contrast to the case of negligible penetra-
tion, it is not possible to rigorously eliminate the
vector potential by a gauge transformation. An
approximate elimination is achieved, however, by
replacing ¥ in Eq. (57) by x + x,, where

Xa = fp’; a-ds (69)

is defined as a suitably chosen line integral within
R from a fixed point P* in the region of vanishing
magnetic field to a variable point P. The path of
integration is chosen to pass through the plane
z=w+0 or z=- 208 if P is a point between these
planes with z>0 or z<0, respectively, and to
traverse the intermediate space in both cases par-
allel to the z axis. y, thus becomes a uniquely
defined function of the coordinates of P which sat-
isties the relation 8y,/82=a,. Whereas a,=a,=0,
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one finds, however, that

gx_a_ 8Xa_.
o ——nydz and By H.dz,

where H, and H, are the components of the pene-
trating field H=curld. Consequently, the vector
condition @ = grady,,_required for elimination of
the vector potential A, is satisfied only in regard
to its z component.

It is permissible, nevertheless, to maintain the
validity of Eq. (58), based upon complete elimina-
tion of K, by assuming that the x and y derivatives
of x, are sufficiently small to neglect their appear-
ance in the expression for the transformed Hamil-
tonian. Considering that they are obtained by in-
tegrating the components of H over intervals of z
no larger than w+ §, this assumption imposes no
severe limitation upon the magnitude of the pene-
trating field. It can be shown to merely imply a
negligible effect of the Lorentz force caused by
field penetration and corresponds to the assump-
tion, made in Josephson’s treatment, that the mag-
netic field does not appreciably affect the magni-
tude of the order parameter. Although the x and
y derivatives of y, are thus assumed to be suffi-
ciently small, it should be noted that this does not
exclude an appreciable variation of y, over the
relatively large sideways dimensions of the bar-
rier.

By extending the integral in Eq. (69) to the point
P with coordinates x, y, 0, from the side z>0
and x, vy, O_ from the side z<0, it is seen that the
corresponding values of y, differ by the contribu-
tion

é3.43
of the penetrating field to the flux through a closed
curve C, , around the ring. This contribution
arises only from the vicinity of the barrier which
is to be traversed on a straight line parallel to the

z axis with coordinates x and y. In view of Eq.
(68), the total flux

$K.a3%
through C, , is therefore given by
‘I’(x,y)=A><+f_;°° a,(x,v,2)dz, (70)

where Ay represents the contribution of the field
through O and is independent of x and y. The fact
that the wave function ) must be single valued,
combined with the effect of the barrier, thus leads
again to Eqs. (62) and (63) as boundary conditions
for . As an important difference from the pre
ceding case, however, « is no longer a constant
but a function of x and y, given by

®(x, y)

a(x,y):W . (71)



120 F. BLOCH 2

Instead of a function of the variables 6e*%®, F’
becomes a functional of 8 ¢*2¢**'¥) or  consider-
ing pairing, of g %*"1®*»¥)  The coefficients of
an expansion in powers of 6% are here multiple in-
tegrals of the form

fK(xﬂ)b Xypr + +) exp(d4mi[+ aleyyy) £ alegyy) £ -+ ])
X dxdy,dx,dy,e « -

so that it is not possible, in general, to express
F' as the surface integral of a definite free energy
per unit area of the barrier. This is possible,
however, if the transmission coefficient is suffi-
ciently small so that all higher terms in 6% can be
neglected. As a real quantity which must be even
in @, one has in this case

F'=F)+f, | cosdmalx,y)dxdy, (72)
where fj=K0°2

and where, because of the omission of edge effects,
the more general kernel K(x, y) is replaced by the
constant K.

The fact that a, differs from zero only in the
vicinity of the barrier shall be formulated by
writing

a, =g, y)n), (73)

where h(z) is essentially constant for 0<z <w and
proportional to ¢='%!/% for z>w and z< 0.

2o stands here for the London penetration depth so
that 5, while small compared to the sideways di-
mensions of the barrier, has to be chosen several
times larger than 3, It follows then from Eq.
(70) that

d(x,y)=Ax+gl,9) [ 7 nz)dz. (74)

In analogy to the derivation of Eq. (13), one obtains
relations for the current density 5 in the vicinity

of the barrier by letting A and thereby Ay and

glx, ) depend upon the time. The isothermal work
per unit time done upon the system is given by

dF’ s o>
sz(]'E)dT’ (75)

where E = — [grade +(1/c) (8K/6t )] represents the
electric field and ¢ the scalar potential. With

divj =0 and using Egs. (68), (71)-(74), comparison
of the terms with 8Ay/8¢ and [6g(x, y)] /dt on both
sides of Eq. (75) can be shown to yield the relations

[jedxdy=j; [ sindnadxdy (76)
and

[fh(z)j,dz]/[fh(z)dz]:jg' sindna, @7)

respectively,” where
ja=4nfaze/h .

These relations are not independent since multipli-
cation with %(z) and integration over z on both
sides of Eq. (76) gives the same result as integra-
tion over x and y on both sides of Eq. (77). The
left side of Eq. (76) represents the total circulating
current I and includes Eq. (48) as the special case
of constant o with I3 obtained by multiplying j,

with the area of the barrier. Since I; was found

to be negative it follows that 7, < 0.

In order to arrive at a differential equation for
a, one has to take the line integral over the closed
curve C,,, on both sides of the Maxwell equation
curlH — (1/c) (8E/6¢) =4n]j/c. Noting that

- 109
§ (EdS) = - Py
H=curld, and that j as well as 2 differ from zero
only in the vicinity of the barrier where C, , is
parallel to the z axis, one finds that

1 8%® 4r [,
—szazdz+;g3;-2-=zﬂ-szdz, (78)
2 32 32
where V ey +@2‘-

In view of Eq. (77), the right side of Eq. (78) can
be expressed in terms of « if one defines an ef-
fective width d of the barrier by

d=[[n@)az][ [, dz]/[[ n(z)j, dz]. (79)

It reduces to d =w if Ay < w and if k(z) is constant
for 0< z<w, but otherwise depends upon how far
a, and j, extend beyond the barrier. Since Ay

is independent of x,y, one obtains from Egs. (70),
(71), (77), (78), and (79)

1 82 1 .
Vza__c_z_é% =TIt sindra, (80)

where M=(=nhc?/167%j5 ed)*/?

in agreement with the corresponding result derived
by Josephson?! [J. Egs. (3.12), (3.14)].
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