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Molecular&rbital Studies of Charge-Carrier Transport in Orthorhombic
Sulfur. I. Molecular Orbitals of Ss

Stimulated by the intereshng transport experiments on oxthoxhombic sulfux' by Spear and co-
workers, we have carxied out a semiempix'ical molecular-orbital calculation of the 83 mole-
cule, the building block of the molecular crystal. The molecular orbitals 8xe constructed
from linear combinations of atomic 3s, 3p orbitals according to the irreducible representa-
tions of &e molecular symmetry group. It is found that because of the nonplanar (puckered
ring) geometry of the molecule, the mixing of 0. and lone-paix hybrids in the molecular orbit-
als is not, negligible. The molecular energy-level scheme pxedicts a set of electronic transi-
'tions which can be compared, with certain reservations, to the absorption spectrum of sulfux
in hexane. It also predicts two forbidden transitions at 2-3 eV vrhich could be responsible
for the yellow color of the crystal. The sensitivities of the molecular orbitals and energies
with respect to the variation in the parameter of Se calculation are discussed. It i.s con-
cluded that the results are satisfactory for use as the starting point in the studies of the crys-
tal states~ which ls cal ried out 1n the following papel i

I. INTRODUCTION

The electric and optical properties of ortho-
rhombic sulfur have I'eceotly been studied in detail
by Spear snd co wo-rkers '.Of particular interest
is the different behavior of the electron and the
hole-txansport parameters in this molecular crys-
tR1. According to them, Rn exce88 electx'on px'opa-

gates by Rn intex'moleculax'-hopping px'oces8 while
a hole moves through the lattice in a narrow polar-
on band. This is qualitatively accounted for by
noting that the electron band is formed from the
0~ oI*bitals while the hoke band is generated by the
more overlapping m* (lone-pair) orbitals.

In contrast to the extensive theoretical studies
on the electron3, c stRtes of organic molecular crys-
tals, there is no such work on orthorhombic sul-
fux, noI' on the 88 molecule, which is the buiMing
block of the molecular crystal, except fox the un-
published work of Gibbons. Gibbons has analyzed
tbe molecnlar orbitals (MO) ln terms of tile & anl
~ orbitals. He has neglected the mixing between
these two types of orbitals which, as shown in
Sec. VII, is not negligible because the Inolecule
is not planar. No effect of xnoleculax symmetx'y

.was considered in his analysis. The lack of the-
oretical work on. the 88 Inolecule is px'obably due
to the difficulty in obtaining a molecular electron-
ic spectrum. ~ur dissolves considerably only
in C83 whose absorption masks those of the solute.
To the best of the author'8 knowledge, only a
broed, Qot very well-re8olved spectrum of sulfur
in hexane has been published.

In this paper we cax'I'y out a semiempirical cal-
culation of the MO of the Se molecule. Our major

purpose is not the identification. Of the molecular
spectx'um but the interpxetation of the different
behavior of electron- and hole-transport param-
eters in orthorhombic sulfux crystals.

z.owed
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FIG. l. Structure of S8 molecule. Top: viewed per-
pendiculax to the molecular planes. Bottom: viewed
parallel to the moleculax planes. The atomic coordi-
nates p», g», f») defined in Sec. II and the molecular
coordinates (x, y, s) defined in Sec. III axe also shown.
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The structure of the S, molecule is a puckered
ring (Fig. 1). Each atom has two nearest neigh-
bors at a distance of 2. 048 A and an average bond

angle of 107.9'. The odd-numbered atoms are
located at the corners of a square, 3.312 A on one
side. The even-numbered atoms are located at
the corners of another square of the same size
but rotated by 45' with respect to the former.
The two planes of the squares are parallel and are
separated by 0. 991 A.

II. HYBRIDIZATION OF ATOMIC ORBITALS

The valence-electron orbitals 38 and 3P are hy-
bridized into two directed-bond (c) hybrids a and
b Pointing toward the two nearest neighbors, re-
spectively, and two equivalent lone-pair hybrids
c andd:

a = ns+(1 —ns)'~ p,

b = ns+(1 — n)s" p2,

c = (0. 5 —n')"'s + (0. 5+ n')'"P, ,

d = (0. 5 —n')'"s+(0. 5+ n')"'p„,

(1)

(2)

(8)

(4)

where P, and P, are linear combinations of p„, p„
and P, pointing towards the two nearest neighbors,
respectively, and P, and P& are similar combina-
tions which can be determined by orthonormality
requirements. The hybridization constant a is
determined from the bond angle 8 and the orthog-
onality of a and b as

n = [- cose/(1 —cose)]'~3 (5)

(6)

(7)

(8)

(8)

Pa, b ~1 ~» + ~2~»+ J 3~»

with P, = —L(v 2 —1)/2B

p2=L/2B

Ps
———H/B

where B is the bond length.
Now if the P-orbital combinations for the lone

pairs, Eqs. (3) and (4), are written as

which has the value of 0. 4849 with the I9 value given
above.

We shall define a set of right-handed coordinate
systems ($;,g;, l;) at atom i such that the $; axis
lies on the direction connecting the center of the
square and the atom, pointing outward; and the g»

axis is perpendicular to the plane of the square and
pointing away from the other square (Fig. 1). In
this coordinate system (say, of atom 1), the two
nearest neighbors (2 and 8) are located at [- 2L
x (~2 1) + 2 L, —H], where I is the side length of
the square and H is the separation between the
two squares. Thus the combinations P, and P», in
Eqs. (1) and (2) can be written as

P =&i &»+r2n»+&3~», (10)

then, from the orthogonality relations, we have

n(0. 5- n')'"+ [(1-n') (o 5+ n')]'"

X (p) y& + pa ys + ps y3) = 0

which immediately gives

(12)

P, y, +P, y, =- n[(0. 5- n')/(1 —n') (0. 5+ n')] '.
(18)

Combining with the normalization requirement,

'Yi+Vs=l (14)

c,=0. 5147s»+0. 8574$»

d» =0. 5147s» —0. 305 5$»+0. 8011$»

(16)

(1V)

(18)

The MO's are formed from linear combinations of
these hybrids of each atom according to the molec-
ular symmetry.

III. MOLECULAR SYMMETRY AND LINEAR

COMBINATIONS OF HYBRID ORBITALS

The symmetry group of the ring molecule is
D«. The 16 symmetry operations are: twoeight-
fold rotation reflections (Sa), two fourfold rota-
tions (Sa)', two 185 rotation reflections (Sa)', one
twofold rotation (Ss)4, four twofold rotations (C,„)
perpendicular to the previous diad axis, four mir-
ror planes (o„), and the identity. There are four
one-dimensional and three two-dimensional irre-
ducible representations. The character table is
given in Herzberg's book.

We shall define molecular coordinates (x, y, z)
with the origin at the center of molecule (Fig. 1).
The z axis coincides with the rotation-reflection
axis, and the x axis coincides with one of the two-
fold axes (Cs„) bisecting the 1-8 bond. The other
three C2„axes bisect the 1-2, 2-3, and 3-4 bonds.
The mirror planes are those perpendicular to the
molecular plane (x-y plane), including the z axis,
and passing through the atoms 1, 2, 3, and 4, re-
spectively.

The hybrids a; and 5
& (i = 1-8) transform among

Equation (13) gives two sets of solutions for y, and

Using the geometrical data given above, and

Eqs. (5)-(14), the hybridization of S atoms in S8

molecules are found to be

a»—- 0. 4849s» —0. 2929(»+0. 7071'»- 0. 4232$»

(15)

b; =0.4849s» —0. 2929(»- 0. 707 1'» —0.4232(»
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themselves under the symmetryoperations, vrhere-
as the hybrids c~ and d& transform into the same
type of hybrids only. Linear combinations of hy-
brid orbitals (LCHO) which transform according
to the irreducible representations of the symmetry
group can be found by the well-known technique.
The results are given in Table I.

IV. OVERLAP AND GROUP OVERLAP

INTEGRAL S

For the normalization of the LCHO's of Table I
and the ultimate determination of the MO's, me need
to calculate the overlap integrals between two hy-
brid orbitals centered at different atoms, and the

TABLE I. Linear combinations of hybrid orbitals according to the irreducible representations of D&. The Z is
over the index i from 1 to 8. The normalization factor N, Eq. (21), is given in the last column.

Ir. Bep.

A2

E2(x'2- @23

LCHO

(t)(
-—Z (a(+ b])

f2= g Cg

(t)3= Z dg

(II)(=z (-1)~''(a)- bg)

P)-—g (a) —b])

y, =x (-1)"'(a,+b,)

P3= Z (-1)~'~d]

Q( =+2 (ag —a4 —as+ aa)
+ (bg + b2 -b3- b4- bg —be+ by+ bs)

(t)2=v'2 (a —a -a +av)
+(b~ —b2+b3- b4- br+bc- bv+be)

Q3 = (0'2 +1}(c( —c4- cg + c8) + (c2- 03- ca + c7)
&4= «2+i) {d~-« ds+@+ {d2 ds--ds+d~~-
(t)( ——g2 (a2+a3- ae- a7)

+ (bg + b2+ b3+ b4 —b5 —be —bv —bs)

f2=F2 (cg+ 84 —Qg —+8)
+ (- by+ b2+ b3 b4+ bg b6 b-v+ b8)--

(Ij)3 (c$ + c4 —c5 —cs) + 4"2 + 1) (c2 + c3 —ce —cy)
(It 4= (d(+d4- dq- ds) + +2+1) (d2+d3- de- dP)

(t) ~
= a~ —a2 —a3+ a4+ a5 —a6 —av+ a8

0'2= bi - b2- bs+ b4+ bs- be- bv+ be

3
= C~ —C2 —C3+ C4+ Cg —Ce —Cv CS

(It 4
= dg —d2 —d3+ d4+ d5 —de —dg+ ds

Pg = bg + b2- b3- b4+ b5+ be- bv —bs

$2 = a~ + a2 —a3 —a4+ as+ ae —av as
3= Cg +C2 —C3 —C4+Cg+Cs —Cy C8

f4 = d( +d2 —d3 —d4 +ds +de —dy —de

~S "~8)
+ (- b) —b2+b3+ b4+ by+ be —b7- ba)

y, =&2(a, -a, -a, +a,)
+{-bg+b2-b3+b4+bs —be+by ba)-

p g
= (v 2 —i) {cg—cg —c5

+ c8) + (- c2 +cg + &g —cy)

(f&4 (+2 —1) (d( ———dg —dg+ d8)'+ (- d2 + da+dg —dp)

Q) =+2 (—a2 —a3+ a6+ av)

+(b, +b, +b, +b, —b, —b, —b, —be)

(t)2
——g2 (- a& —a4+ a5+ ae)

+(- b(+b2+b3- b4+b5- be- b7+bs)
f3= (g2- I) (- C2- C3+C6+Cy)

+ (C( + C4 —Cg C8)

(t)4 ——(g2-1) (-d2- d3+d6+d&)
+ (di+d4- d5- ds)

0.186 6
0.3191
0.376 0

0.370 1

0.2247

0.3625
0.385 9
0.306 8

0.2520

0. 2277

0.1794
0.2084

0.2520

0.2277

0.1794
0.2084

0.5507
0.2791
0.359 6
0.3740

0.550 7
0.279 1
0.359 6
0.3740

0.257 2

0.268 8

0.497 3
0.429 5

0.257 2

0.268 8

0.497 3

0.429 5
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group overlay integrals between two LCHO's of the
same irreducible representations.

A I CHO is represented by

TABLE III. Overlap integral matrix S&& (32 &&32) ex-
pressed in terms of the six 4&4 matrices 0, I, S&&, Sf3,
R&2 and R&3. The matrix is symmetric with respect to
the diagonal.

4&=&a~ fa~h Atoms 1 2 3 4 5 6 7 8

S„.=&I, ~I,.&,
&a~ ~~f» fa~S ~I .

(2O)

(21)

Since the hybrid orbital h& is given in terms of
atomic orbitals U„by

where h; represents a hybrid orbital, f„is a con-
stant coefficient, and NI, is the normalization fac-
tor. The latter is related to the overlap integrals,

Sf2 S)3 0 0

I R(2 Rf3 0
I Sf) Sf3

I

0 Rf3 Rf2
0 0 Sf3
0 0 0

Rf3 0 0

Sf2 Sf3 0
I Rfg Rf3

I Sf2
I

h;=P, n;, U, (22)

the overlap integral S,, can be written as

S,, =g„g„n;,n, „S„„, (23)

where the coefficients n&„are those given in Eqs.
(15)-(18), and the overlap integrals S„„between
two atomic orbitals can be calculated by the meth-
od of Mulliken, Rieke, Orloff, and Orloff. We

2. 048
3.312

0. 1968
0.0262

0. 323 0
0. 0742

0.3147
0.1176

0.1897
0.035 0

Overlap integrals (S») between atomic orbitals centered on
atoms 1 and 2. The matrix is symmetric.

S2

Sf

gf

0.196 8 —0.108 2
0.1907

0.261 2
—0.0024

0. 195 5

—0.156 3
0.081 7

—0.1973
—0.071 6

Overlap integrals (S») between atomic orbitals centered on
atoms 1 and 3. The matrix is symmetric.

Sf

nf

0.026 2 —0.0525
0.076 3

—0.052 5
0.041 3
0.076 3

0.0
0.0
0.0
0.0350

Overlap integrals between hybrid orbitals centered on atoms
1 and 2, Sf~. The matrix is symmetric.

af
bf

Cf

0.560 9 0.067 2
—0.035 5

C2

0.071 3
—0.1169

0.096 9

d2

0.071 3
0.1037

—0.036 3
—0. 1109

Overlap integrals between hybrid orbitals centered on atoms
1 and 3, S,3.

af
bl

cf
df

Q3

—0.0043
0.018 9

—0.020 6
—0.010 8

0.125 2
—0.0043
—0.0324

0.045 2

—0.032 4
—0.020 6
—0.016 7
—0.0281

d3

0.045 2
—0.010 8
—0.028 1

0.053 1

TABLE II. Overlap integrals.

Basic overlap integrals

Distance (4) ( 3s [ 3s) ( 3sl'po') (3p(7l 3pfy ) ( 3pIt f 3p7( )

have calculated the overlap integrals using the
analytic Hartree-Fock wave functions of Watson
and Freeman. ' The four basic overlap integrals
for the nearest-neighbor and the next-nearest-
neighbor distances are given in Table II. The
overlay integral S,„is then obtained from these
basic integrals by decomposing each orbital U~
and U„ into the 0 and m components. The matrix
(S „) is, in fact, 32x32 in dimension. However,
because of the symmetry, it breaks down into
4 &&4 matrices of the following types, according to
the relations between the two atoms to which the
two atomic orbitals V and U„belong: (i) the same
atom —in this case, the 4 ~4 matrix is a unit ma-
trix I; (ii) nearest neighbors; (iii) next nearest
neighbors; (iv) different atoms separated by more
than the next-nearest-neighbor distance —in this
case, the overlap integrals are so small compared
to those of the former three cases that we approxi-
mate these matrices by 4&&4 zero matrices 0. A
matrix of type (ii) (between atoms 1 and 2) a.nd one
of type (iii) (between atoms 1 and 3) are given in
Table II.

The matrix (S;,) can similarly be decomposed
into 4 x4 matrices. The diagonal blocks of 4 ~4
are again unit matrices. Because of the molecu-
lar symmetry there are only four different non-
zero 4x4 matrices. Two of them, which we shall
denote by S&2 and S», are obtained from the two
matrices (S„„), given in Table II according to the
transformation Eq. (23). The other two, which
we shall denote by A&~ and B», are obtained from
S» and S» by interchanging the indexes 1 and 2
[which correspond to the hybrids a and h of Eqs.
(15) and (16), respectivelyj. The 32x32 matrix
(S„) can now be represented by the six 4 x4 ma-
trices I, Siz S» ~i2 ~is and 0 as shown in
Table III. Because of the symmetry of the ma-
trix (S;;) with respect to the diagonal, only the
upper half is shown.

Now the normalization factor N, can be calcu-
lated from Eg. (21). The results are given in the
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last column of Table I.
The group overlap 6» between two LCHO' s

and P, can be written in terms of S;& and N as

G»=( y, l y, & =H,H, y f»f„S,~ (24)

The group overlaps between LCHO's, belonging to
different irreducible representations, vanish by
group-theoretical arguments. In Table IV, we
present the group overlap matrices (G») for each
irreducible representation in which there are more
than one LCHO.

Ir. Rep. Hamiltonian matrix elements in eV

—17~ 29 2.48
—16.43

6 ~ 26
3 ~ 41

—12~ 51

A2 7.04

—130 23

7 ~ 47 0 ~ 68
—ll ~ 67

6 ~ 62
0 ~ 42

—17.20

TABLE V. Hamiltonian matrix elements between
LCHO's of Table I. The matrices are symmetric.

V. SECULAR EQUATION

A MO ( is represented as a linear combination
of LCHO's P„

(25)

The coefficients C, are determined by the solu-
tion of the secular equations

—13~ 64

4.69

—11~ 98
—15~ 92

4.61
—16~ 26

2. 64
3 ~ 19

—15~ 58

5 ~ 58
5 ~ 16

—13~ 57

4.15
2 ~ 99
1~ 45

—11~ 73

0 ~ 18
l.46
1.67

—12~ 47

g, (H» —G»E ) C, =O for each k, (26)

TABLE IV. Group overlap matrix elements between
the LCHO's of Table I. The matrices are symmetric.

Ir. Rep. Group overlap matrices

1 ~ 0

1.0

—0 ~ 093 9
1.0

—0 ~ 016 5
1 ~ 0

0.235 1
—0 ~ 123 5

1 ~ 0

—0 ~ 250 3
0 ~ 015 5
1 ~ 0

where E is the energy of the MO t)t, G» is the
group overlap matrix element (Table IV), and H»
is the Hamiltonian matrix element between ft) „and
4 r ~

Since there is no nonvanishing matrix elements
of G and H between two LCHO's Q, and P&, which
belong to different irreducible representations,
the secular equation [Eq. (26)j can be solved
separately for each irreducible representation.

The Hamiltonian matrix element H» can be ex-
panded in terms of matrix elements between two
hybrid orbitals,

—12~ 93 —10~ 18
—11.89

5 ~ 07
3 ~ 63

—12~ 04

0. 94
5.44
l.42

—15~ 75

Hei=&a&i~ ~,.f»fi,.H, (27)

H~) ——2E S(~ (H(, +H;)) (28)

Several different values (between 1 and 2) for the
multiplicative factor E have been suggested by
various authors. In this calculation we choose
the value suggested by Cusachs"

x=2- /S, , /
(28)

We shall discuss the dependence of the final results
on this factor in Sec. VII.

Ballhausen and Gray' have given the following
values for the VSIE of sulfur Ss and 3P orbitals:

In the semiempirical MO calculations, the di-
agonal elements 8;; are approximated by the va-
lence-state ionization energies (VSIE) of the or-
bital i, and the off-diagonal elements H„(i ej) are
approximated by

1 ~ 0

1.0

1,0

0.583 8
1 ~ 0

—0.177 2
1.0

0 ~ 537 3
1.0

—0 ~ 1018
0 ~ 120 4
1 ~ 0

—0 ~ 214 3
0 ~ 1936
1 ~ 0

—0 ~ 190 5
—0 ~ 1395

1~ 0

0 ~ 157 8
0.1094

—0 ~ 052 4
1.0

—0 ~ 003 2
—0 ~ 055 8

0 ~ 060 4
1~ 0

0 ~ 034 6
0 ~ 204 4
0 ~ 051 3
1.0

E3,= —16'7 && 10 cm ' = - 20. 70 eV

E3~= —94 x10 cm ' = —1l.65 eV

(30)

(31)

Thus, from Eqs. (1)-(4) and Eqs. (15)-(18), the
VSIE of the o hybrids a and b and the lone pairs
c and d are, respectively,

=H„,= a2Es, +(1—n')E,
&

——13.78 eV, (32)

H „=H~~ = (0. 5 —o. ) EB,+ (0. 5+ o ) Esp --—14. 05 eV .
(33)

The matrix (H») calculated from Eqs. (2&)-(33)
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TABLE VI. MO energies (in eV) and MO coefficients of S8. The MO's are indexed in order of increasing energy.

Ir. Rep. MO energy MO coefficients MO index

E

—18.53
—15.78
—10.11

7.04

—13.23

—17.68
—11.68

5.08

—17.45
—16.26
—10.64

3.98

—17.52
—13.45
—10.69

2. 02

—16.81
—15.29

9., 22
3.21

—0.728
+0.544

0.487

0.201
—0.049

1.012

0.352
-0.325
—0.129

1.167

—0.151
—0.084
—0.116

l.013

0.233
-0.504

0.476
0.953

0.423
0.891

—0.220

-0.036
0.997
0.068

0.680
0.130

-0.283
—1.019

0.779
-0.365
—0.543

0.173

0.384
—0. 155

0.257
—1.116

—0.310
0.026

—0.987

—0. 929
—0.076

0.445

0.179
0.878
0.243
0.450

0.417
0.537
0.688
0.383

—0.109
0.510
0.879
0.028

0.198
—0.194

0.967
—0.123

-0.021
0.748

—0.670
-0.018

0.741
0.531

—0.312
0.360

1
11
22

2
17
26

5, 6
9, 10
20, 21
27, 28

3, 4
14, 15
18, 19
31 32

7, 8
12, 13
23, 24
29, 30

are given in Table V. The solutions of the secular
equation [Eq. (26)], i. e. , the MO energies E and
the MO coefficients C, , are given in Table VI.
The MO's are indexed in order of increasing ener-
gy. Since there are 6 &8=48 valence electrons in
a Se molecule, the lower 24 MO's are occupied.
The energy-level diagram is shown in Fig. 2.

VI. ELECTRONIC TRANSITIONS

A) AP el eg El EP E$

3I,32

29,30

The three-dimensional vector representation
reduces into the irreducible representations Ba (z)
and Z, (x, y) in the point group D4, . The selection
rule for electric dipole transitions derived from
the character table is shown in Table VII. The
II and l signs indicate that the transitions between
the two levels are allowed for the polarization,
parallel and perpendicular, respectively, to the

TABLE VII. Selection rule for electronic dipole tran-
sitions in Ss. The II and l signs denote allowed transi-
tions with polarization parallel and perpendicular, re-
spectively, to the molecular z axis (Fig. 1); 0 denotes
forbidden transitions.

Al A2 B(

l0 22

- l2—

-l4—

ll- I6

-IB—

l4, l5

9,l0

5,6 3 4

3,24

l2, l3

7,8

A) 0 0 0
A., 0 0 II

B, 0 II 0
B2 II 0
Ei J. J. 0
E2 0 0 0
E3 0 0 l

J.
J.
0
0
0
J
II

0
0
J.
l
II

0

FIG. 2. MO energy levels of S8. Levels of the same
irreducible representation (which is given in the top line)
are shown in the same column. MO indexes are given
with the levels. Doubly degenerate levels carry two in-
dexes. Several allowed electronic transitions with their
polarizations are shown by arrows.
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molecular z axis (which is perpendicular to the
molecular planes). Several lower-energy transi-
tions with their polarizations are also shown in
Fig. 2.

As mentioned in the Introduction, there are no
detailed spectroscopic data to compare with this
prediction. From the spectrum published by Baer
and Carmack, it is possible to resolve three peaks
at 4. 4, 4. 8, and 5. 4 eV. These three peaks could
be assigned to the following transitions, respec-
tively:

E, (MO20, 21)-Az(25), nE(calc) = 3. 6 eV

Es (MO23, 24) -B,(26), AE(calc) = 4. 1 eV

A, (MO 22) -Bz (26), d, E(calc) = 5. 0 eV

There are no polarization data to support the as-
signment. The differences between the observed
transition energies and EE(calc) could be attrib-
uted to the electron correlation in the final states.
We shall not pursue this matter further here.

A more important result in this analysis is that
the two lowest-energy transitions

Es (MO23, 24)-Az (25), AE(calc) =2. 2 eV

A, (MO22) -Az (25), ~E(calc) = 3. 1 eV

are symmetry forbidden. These transitions, how-
ever, become allowed when Ssmolecules areyacked
into orthorhombic crystals or when changes in mo-
lecular vibrational states accompany the transi-
tions. This could be the origin of the yellow color
of sulfur crystals and the long tail extending below
3 eV in the solution spectra of sulfur.

In the following paper' we also present an argu-
ment that one of these transitions A&-A2 may be
responsible for the nonyhotoconducting absorption.

VII. DISCUSSION

First, we like to point out that there is consid-
erable overlap between the 0 hybrids and the lone-
pair hybrids, as can be seen from Table II (S» and
S»). In fact the overlap between the hybrids 5 and
c (or d) on nearest-neighbor atoms is as large as
the overlap between two c (or d) hybrids. Conse-
quently, in most MO's, all four kinds of hybrids
coexist. For example, in the highest occuyied
MO (23 and 24), the fraction of o hybrids is about
30% (see Table VI), whereas in Gibbons and Spear's
model, "this MO consists of only lone-pair hy-
brids. The only exceptions are MO16 (B,) and
MO25 (Az). Since the lone-pair hybrids do not
form combinations transforming as Bj or A&, these
two MO's consist only of a hybrids. The MO25
(Az) is the lowest empty orbital which is expected
to form the excess electron band in orthorhombic
sulfur crystals. Since the o hybrids are more

concentrated within the molecule, the intermo-
lecular overlap between two such orbitals is ex-
pected to be small. This argument has been used
by Spear and co-workers' to explain the experimen-
tal findings that an excess electron moves by a
hopping process, while an excess hole yropagates
in a polaron band in orthorhombic sulfur.

An examination of the energy-level diagram
(Fig. 2) shows that the two lowest empty orbitals,
MO25 and MO26, are separated by about 2 eV,
whereas in the upper occuyied orbitals, there are
seven MO's (MO18-MO 24) within the range of
2 eV. The close lying of these levels may allow
the energy bands generated from these MO's to
overlap, resulting in a wider band for the hole
transport.

Perhaps the largest uncertainty in this calcula-
tion is the choice of the multiplication factor F in

Eq. (28). The choice of Eq. (29) corresponds to

using a smaller value of E for orbitals with larger
overlaps. This is consistent with the practice5 of
using a smaller value (l. 6) for@bonds and alarger
value (1.87) for v bonds.

Calculations using a constantvalueforE (vary-
ing from 1.25 to 2. 0) show that the resulting MO

energies vary quite drastically. For example, the
separation between the highest occupied and the
lowest empty MO levels varies from 3. 2 to 12. 3
eV. It seems that the energy levels obtained with

Eq. (29) are in the best accord with the optical
data, although there could be uncertainties as
large as + 0. 5 eV.

On the other hand, the above-mentioned fact
(that there are seven occupied MO levels within
the energy range equal to the separation between
the two lowest empty levels) always holds true,
although the energy range varies from 0. 4 to 1.7

eV.
It is also found from these calculations that the

MO coefficients, C; are very weakly dependent
on the value of E. All coefficients vary less than
10% (many of them vary less than 3%%up) in the range
1.25 &E & 2. 0. The differences between the coef-
ficients obtained by using Eq. (29), and those ob-
tained by using a constant J", are slightly larger,
but very seldom exceed 0. 1 in absolute value.
Since in the calculations of intermolecular inte-
grals (see following paper") the larger coeffi-
cients dominate the results, an absolute error of
0. 1 in quantities of the order of 1 is tolerable in
comparison to other approximations made in the
calculation.

Thus we conclude that the MO's we obtained in
this calculation (Table VI) are sufficiently good to
use as a basis for describing the electronic states
of orthorhombic sulfur crystals (see the following
paper).
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In order to interpret the difference of four orders of magnitude in the electron and the hole
drift mobilities in orthorhombic sulfur, the intermolecular electronic-interaction energies for
an excess electron and an excess hole are computed with the molecular orbitals obtained in
the preceding paper. The excess-carrier energy bands are obtained by summing these ener-
gy integrals according to the symmetry characteristics of the crystal structure. Contrary
to what Spear and co-workers have expected, the electronic contributions to the widths of an
excess electron band and an excess hole band are found to be of the same order of magnitude
and hence do not account for the large difference in the mobilities. The changes in the elec-
tronic charge distributions when an electron is added to or removed from a neutral molecule
are used to estimate the relative values of molecular deformations and the polaron binding
energies E&. It is found that E& associated with an excess electron is almost an order of
magnitude larger than that associated with an excess hole. Holstein and Siebrand's theory is
then used to show that this difference in electron-molecular vibration couplings is the major
effect leading to the large difference in the electron and the hole mobilities. The same argu-
ment is used to explain the large difference in the charge-carrier mobilities of metal-free
phthalocyanine and copper phthalocyanine. The excitation-transfer matrix elements are for..
mulated in terms of molecular-orbital coefficients. The matrix elements for one of the ex-
cited states are found to be always almost zero due to the molecular symmetry. This is in-
terpreted as the "localized excited state" which is responsible for the nonphotoconducting
absorption observed in orthorhombic sulfur and vitreous selenium.

I. INTRODUCTION

In the preceding paper, ' we have already men-
tioned the experimental works of Spear and co-
workers on the electric and optical properties of
orthorhombic sulfur. The crystal of orthorhombic
sulfur consists of Ss molecules held together by
van der Waals forces. It is therefore possible to
study the electronic states of the crystal from

those of an isolated Ss molecule by treating the
intermolecular interaction as a perturbation. '

With 16 molecules in a unit cell, the crystal
structure of orthorhombic sulfur is considerably
more complicated than those of well-studied or-
ganic molecular crystals such as naphthalene or
anthracene. The crystal structure and the space
group are analyzed in detail, and the symmetry-
adapted-crystal wave functions are derived in Sec.


