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Recently, experiments on the properties of electrons in semiconductor inversion layers
have been carried out at very high electric fields. These fields correspond to electronic occupa-
tion of more than one of the discrete electric subbands created for motion perpendicular to the sur-
face. Previous theoretical investigation on the problem was limited to the case when one sub-
band is populated. In this paper we examine the more general case of having many subbands
occupied, studying in detail two particular properties of the system. The first is the electron
screening of an external potential described very conveniently by a matrix dielectric function.
The second is the scattering of electrons by screened charged impurities and its contribution
to the surface conductivity.

I. INTRODUCTION

%hen a sufficiently strong electric field is ap-
plied across the interface of an insulator and a p-
type semiconductor, an n-type inversion layer is
formed in the semiconductor localized near the
surface, This occurs when the conduction-band
edge is bent near or below the Fermi level in the
bulk. The shape of the bending is determined by
the self-consistent electrostatic potential arising
mainly from the electrons in the inversion layer.
The self-consistent potential produces discrete
levels for motion in the direction perpendicular to

the surface. These levels are known as electric
subbands. The motions of the electrons in the
direction parallel to the surface remain essentially
Bloch-like. As the field increases, the energies
of the discrete levels are lowered and at the same
time their separations become larger. Eventually
these subbands drop below the bulk Fermi surface
in succession. In this paper we shall be concerned
entirely with the properties of the inversion layers
at high enough field such that several of the dis-
crete subbands are occupied and the population in
the continuum levels is negligible. '

Stern and Howard represented the first system-
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atic quantum- mechanical investigation of various
properties of the electrons in the inversion layer.
They calculated the electric subband wave functions
in the effective-mass approximation for arbitrary
orientation of the constant-energy surfaces of the
conduction band. They also studied the effects of
charged impurities on the inversion-layer elec-
trons. These effects can be conveniently classified
in the following ways. First of all, the charged
centers will induce screening electron clouds
around them. Secondly, these screened impurities
give rise to scattering of the electrons and repre-
sent an important contribution to limiting the sur-
face mobility. Finally, at low enough tempera-
ture the individual charged centers can trap elec-
trons into bound states so that their motions in the
parallel directions (on the surface) are also quan-
tized. In contra, st to the situation in three dimen-
sions, the condition for the existence of such surface
bound states is much less stringent. ' However,
the work of Stern and Howard is restricted to the
case of only one (the lowest) electric subband being
occupied. Thus their surface dielectric function
is essentially one intraband element of a matrix
dielectric function required in the general case
when more than one subband is included in the cal-
culation. In calculating the surface mobility due
to impurity scattering, only intraband transitions
are included. Furthermore, the scattering am-
plitude is calculated without considering the pos-
sibility of interference and multiple scattering ef-
fects, which can be appreciable because of the
rather high concentration of impurities usually
encountered. Recently, experimental data on the
various properties of inversion layers at higher
field or equivalently higher concentration of elec-
trons in the inversion layer have become available.
They correspond to the situation in which more than

one subband is occupied. Therefore, in order to
understand these new results from a theoretical
viewpoint one must extend the work of Stern and

Howard to include multiband effects. It is in this
spirit of providing a broader theoretical basis for
future compa, rison with experiments that the pres-
ent paper is prepared.

In Sec. II A, a review of the calculation of the
electric subbands in the effective-mass approxima-
tion is presented. Screening of charged impurities
by electrons occupying discrete electric subbands
is considered in Sec. II B. A matrix dielectric
function is calculated both in the Hartree approxi-
mation and in the random-phase approximation
(RPA). In Sec. II C, the dielectric function is
evaluated approximately for some limiting cases.
Section III is devoted to the calculation of electron
surface mobility due to impurity scattering. In

Sec. III A, the problem of scattering by a single

We begin by summarizing the calculation of elec-
tric subbands in the effective-mass approximation.
This will also serve to define the various quantities
referred to later. The wave function of an electron
in the inversion layer belonging to a particular
valley v is described by the product function e' " '

u„(r)g"(r),where K„is the wave vector and N„(r)
is the periodic part of the Bloch function at the bot-
tom of the valley. The envelope function P"(r) sat-
isfies the Schrodinger equation

(I'"+ V- E)g"= 0 .
The derivation of such an equation may be found in
the review article by Kohn. s It depends on the as-
sumption that interband and intervalley matrix ele-
ments of the external potential are small and can
be neglected. This is a, valid assumption if V

varies negligibly over a distance of the order of the
size of a unit cell. In the present case, the above
criterion is not quite satisfied because our poten-
tial, taken simply to be infinite in the insulator
(z & 0) and equal to the self-consistent electrostatic
potential —eQ(z) in the semiconductor (z& 0), is
rapidly varying near the surface. It is beyond the

scope of this paper to elaborate on this question,
and we shall proceed with the equation

(T" eP(z)-E)g"=0-, z &0

tP=0, z=0

The operator T" is the kinetic energy operator

I ala

where sv";,. is the inverse effective-mass tensor de-
fined in our particular coordination system P(z), .
as mentioned above, is the electrostatic potential
and is determined from the Poisson equation

8 4m, P(z) = — [p(z)+ p, (z)] z&0

impurity of the electrons in the discrete electric
subbands is formulated. Expressions for the scat-
tering cross sections which include intersubband
scattering are derived. In Sec. III B, the study is
extended to the actual case of many scattering cen-
ters. Interference and multiple scattering effects
which give rise to corrections to the simple result
that the total cross section is equal to the sum of
the individual ones are examined, In Sec. III C,
the surface conductivity is derived by solving ap-
proximately a set of coupled Boltzmann's equations
describing the distribution functions of the elec-
trons in different electric subbands. Finally a. few
concluding remarks are made in Sec. IV.

II. SURFACE DIELECTRiC FUNCTION

A. Review of Electric Subband Calculation
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The quantities ~„and~„,represent the dielectric
constant of the host semiconductor and the insu-
lator, respectively. The charge density in (3)
consists of two parts. One part which may be
considered as known is the fixed negatively charged
acceptor centers in the depletion layer. This part
has been approximated by the smooth function
pd(z). The other part is the charge density p(z)
of the electrons in the inversion layer, given self-
consistently by'

p(z) = &Z„Z„I q."(xyz) I'f (E."), (5)

where g and E„"are the eigenfunctions and eigen-
values of the Schrodinger equation [Eqs. (1)]
and f is the Fermi distribution function. In (5),
the total electron wave function e' ~'"(r)tlt„"(r)is
simply replaced by the envelope function. This
approximation is reasonable because the inverse
Laplace operator [(V ) '] has a smoothing-out
effect. The quantity I g I' will be shown to be in
dependent of x and y.

The eigenfunctions and eigenvalues of Eq. (1)
are readily found to be

~v (P) (I/~g)zfk $e f(w" k')a~-w (z)

E$33 [(Wfg Wf$ /W33) k„
+ (W(3 —Wy3W33 /W33) kgb

+ (w„—u„/u„)k,],
(8)

where the following abbreviations have been used:

k=k„x+k,g,
p= xx+y P

w = (w1$ /u 33)x+ (w33 /w3$8

(7)

A is the area of the surface and will be taken to be
unity from now on, and f, ( )zis the eigenfunction
with eigenvalue & of the one-dimensional Hamil-
tonian

r—,.d
3-ze(z)IC".( )=z".ei( )z,

3v33 dz j
m"=(u" )

' (8)

with the boundary condition

=tc„,lim P.(z) = 0 . (4)
8$
Z g p Z gp+ g+y~

The problem now reduces to the self-consistent
determination of the wave functions go and energies
e" using Eqs. (3), (4), (8), and (9). For final
comment, we calculate the total number of elec-
trons in the inversion layer N„„.Since N„„
= —(1/e)fd dz p(z), one can immediately obtain
the desired result by integrating Eq. (3) and mak-
ing use of Eq. (4) as

sy(z)
4me '"' 8Z g=p

—Ndepi

(-)
& &ns + Ndep),4'tl'8

(lo)

where E ' is the electric field in the insulator and

Nd, » = —(I/e)f3 pd(z) dz=N„'d, the number of ac-
ceptor centers in the depletion layer of thickness
d,

B. Screening of Charged Impurities and

Matrix Dielectric Function

V nn'

x ([f(E„")-f(E„")]/(E„"-E„"+ 3z))

x f d'3'g„"*(r')g„",(r')V,„,(r') (z &0)

(z&O), (11)=0

where the total wave functions are again replaced
by the envelope functions and the terms correspond-
ing to the intervalley contributions are omitted.
The latter parts are proportional to factors like
exp[i(K„-K„.).r]. This approximation is consis-
tent with the approximation we have made so far.
Substituting (8) into (11), one obtains after a sim-
ple change of variable

Pi d(r) = 383Z Z pter (Z) gu 3'
(Z)

-k{w ~ $)e g $

V fg Of»" (v, q) V,„;(v, q) (z»)

We are now in a position to determine the effects
on the electron system by the introduction of a
charged impurity. In this section, we shall cal-
culate the screening charge, using the familiar
RPA. The result is expressed in terms of a
matrix dielectric function relating the matrix
elements between subband wave functions (g",) of
the total effective impurity potential to those of
the bare or external impurity potential.

From linear-response theory the charge induced
by an external potential V,„,(r) is given by'

p„,(r) = 3e'Z Z 0„"(r)II„",*(r)

We see immediately that lrgl = Ig",$l = I 0"„(z)I
is independent of x and y (or p). In fact, the
charge density p(z) which enters into the Poisson
equation for P(z) is simply

=0 (z &0),

Pf E ) f(E ~" 3)

3 En$ —EN~3-m+3'
(13)

p(z)=»~ Ii.".(z)I'f(E"..-) . (9) V:. (v q) = J d'p'dz'&". *(z'}V„(z'}
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x el(w" ~ t)g'e-gf ~ jv V (Pt)ext (14)

The potential due to the induced charge is deter-

mined by the Poisson equation with the same
boundary conditions as in Eqs. (4). Explicitly,
one finds

V&„(p,z) = 2
— 2

Ksy+ KiM

ptnd(p jz )
i (p —p')'+ (z —z')'i'" («0)

r d r PindP )

i (p -p')'+ ( — ')' I"' &sc &~m d2 r d r PggdiP p ~ &

(» +» ) l(p-p')'+(z+z')'i' '

(z&0) .

For convenience, Eq. (15) will be summarized as V",."', (., q) = Z (.„')"„"„:,.„.(q) V::,'(",q), (»)
Ve, No

V&.&(p, z) =fd'p'fo «'g(p p' -z z') pi.dp'. z'»
(15)

where the Green's function g is defined as

that is,

(&»')"„",, (q) = &..&„5„~+)t"":„,(q) . (22)

g(p —p'; z, z')

= [2/(»„+»„,)] I (p —p')'+ (z —z')'I '~' (z &0)

=(1/»..) I(p- p')'+(z-z')'I "'
+(»„—», )/[»„(»„+»,)]
I(---')"(. ")'I-"' (

In this approximation, the induced charge is cal-
culated to first order in the external potential [see
Eq. (11)or (12)]. A better approximation is the
RPA, in which one calculates the induced charge
as resulting from a linear response to the total
potential instead of the external potential. In other
words, p"„~"is given by (11) or (12) with V, re-
placed by V„~. Then one obtains, instead of (20),

Now we may define matrix elements of the in-
duced potential similar to these of V,„,defined in
Eq. (14). One then finds, making use of (12), the
relation

VP.", (~, q)= ~ x",",:...(q) V:„(",q)
Vet ee

)t"„~& .(q) =2e f d pe '~ t'
[& 5, &„~- X"„",:, (q)) V„,'(e', q)

V'tee'

= V~«(v, q)

and the dielectric function in the RPA

(~ass)yy', ae'(q) = 5ou'5vo5y'u' 4' ee'(q)

(22)

(24)

x [f «f «&pg(z) to (z) eI'tw ~ 'if)s

x L" (z') 1'".*(z') e " "' ' ~" 'g(p; z, z ')]

x I (v', q).

The total potential V«~ is the sum of the external
and the induced potential. In the present approxi-
mation its matrix element is therefore given by

V~.~(»q) = Z [~., ~~ 5y ~ +)("„"„~ (q)]
V PCS

C. Approximate Expressions for Dielectric Function

In this subsection we shall evaluate several ap-
proximate expressions for the matrix dielectric
function. First of all, the dominant matrix ele-
ments of E or y„in the long-wavelength or zero-q
limit will be calculated. Secondly, one diagonal
matrix element of e, valid for all q, will be eval-
uated for a particularly simple choice of wave func-
tion t'(z). To begin, we put the susceptibility func-
tion Z, given by (19), into a more useful form by
Fourier analyzing the Green's function g according
to

xV,";, (v', q) . (20)

Equation (20) defines the two-dimensional q-de-
pendent matrix dielectric function in the Hartree
approximation

I (p p')' + (z+ z')—' I'" (2z)' (2»)

4n
x exp[iq (p p')+i. q, (z-+z')] g 2 (25)
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The result for g is

( )
4)Te t I

dg 1

q oo

&& id", (q, () m."'.0 (q, ~)+
KSC KSC KCC+ Kine

xM' ~ (2 )22;2(4", —
2))

L"" (v', 4), (22)

where

~". (. ~)=f. d ~",*()f", ()-p[*(- q..«).] .

(27 )
In the limit of g 0, one obtains from (2V)

We calculate the screening of an external po-
tential for this dielectric function when only the
lowest subband in each of the degenerate valleys
is occupied. From (23) and (32), we obtain

&„,(v, q)+ (4wea/(4q)Z„.N(v') V',0„(v',q) = Vooi(v, q),
(33)

where the lowest subband is denoted by 0 and the
sum is over the valleys degenerate with v. If we
assume that the matrix elements of the screened
potential and the density of state N(v') are the
same for all the valleys, the above equation can
be solved to yield the simple result

»m~". (q, ~)=6„„.,
(«0

(26)
V 2'.2(v, q) = [(1+s/g)] ' V,"„2(v, q),

s = 2' [e'(m, m, )"'/(iii '],
(34)

and from (13)

lim L (v, q)=Z s~ f(E'„t).
q«Q k ek (29)

lim L "(vq) = N(v) = —(I/—2ii((I ) (m", m")
q «0

PE
y

=
gggg —gg A@33

'm? = nl22 —ge23 ge33

(30)

An interesting feature of the limitng value of I.
is that it is independent of the Fermi energy or,
equivalently, of the number of electrons in the in-
version layer. This is the result of the constant
density of states in two dimensions. Putting (28)
'and (30) into (26) we obtain

lim X~.. .(q) = (4ve'/gZ) 5~.5 .N(v'),
q «0

=0,

I(: = 2 (K(2C + KiCC)

Therefore, from (24)

(v'o. ) occupied
(31)

otherwise;

At zero temperature the right-hand side of (29) is
simply the density of states at the Fermi level for
electrons occupying the u subband. It is of course
zero for an unoccupied subband. Using the expres-
sion in Eqs. (6) for E"„,we get

where n„is the number of degenerate valleys.
This result agrees with that obtained by Stern' and
shows that screening in two dimensions in the
long-wavelength limit is independent of electron
concentration. The situation is different in three
dimensions where screening increases with elec-
tron concentration. "

Next we evaluate a diagonal matrix element of g
or e for an arbitrary value of g, namely, too"o() (g).
Our goal is to obtain an analytic expression that
is capable of illustrating the essential feature of
the exact result. This can be done by making the
following simplifications. We take the energy sur-
face of our valley v to be isotropic, characterized
by an "average" mass M=(mi ma) ~; and the wave
function fo(z) to be of the simple form'

g,(z) = [z/(2d,')'~']e '~0,
and the temperature to be zero. Then we can per-
form all the integrals in L (v, q) [Eq. (13)] and in

)(00"oo (q) [Eq. (26)] and obtain

L"(v, q) = (m/2vk') 2e(g)/v,
4vv' M 2e(q))

00, 00 ~
~q 2

1+dOQ 4 1+dOQ

3

4 1 + dQQ' 2Ksc 1 + d0g

»m( apd)c"' N. (q) =-6- t). 6.
a"0

+ (4we'/qÃ)5~. 6„.N(v'),

e (g) = -,'- v, q &2k~

= sin '
(2k~/g), q & 2kr, . (36)

(v 'o) occupied
= 5„„.5 5„.„., otherwise .

The quantity k~ is the Fermi wave number and is
determined as usual by the electron number. In
the simple case where only the lowest subbands of
the n„edenger teavalleys are occupied (with the
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same isotropic mass M) we have

k, =(2'(„,/n, )"' . (36)

tern introduced in (Sl), i. e. , w(3 =w",Sw23/w93)
that

III. SURFACE MOBILITY DUE TO IMPURITY

SCATTERING

A. Formulation of Impurity Scattering

In the previous sections the total or effective
potential due to an impurity introduced into the
vicinity of the inversion layer was calculated. In
the following sections we study the electrons by
the screened impurities and their contribution to
the surface mobility. The Schrodinger equation
for the envelope function in the presence of an
impurity becomes

E -„=(k'/2m()k„'+ (k'/Smg)k, ' .

The off-diagonal elements m» and se23 are, in
general, not zero unless the z axis coincides with
a principal axis of the constant-energy surface.
The above transformation cannot affect the values
of the surface-transport coefficients, which are
calcuj, ated as a sum of independent contributions
from the different valleys.

The calculation of the scattering amplitudes is
carried out by first obtaining the asymptotic ex-
pression for 6", i.e. , as Ipl-~ along a certain
direction. The k integration is best performed
by changing to the new variable k:

[ff,"+V(r)]y" (r) =E y" (r), (SV)

where the H p is the unperturbed Hamiltonian &"
—eQ(a) and V(x) = V„((r) In a. rriving at the ef-
fective-mass equation (SV), terms describing in-
tervalley scattering have been neglected. This
approximation is valid if the screened potential is
slowly varying compared to factors like e'"~ ".
Following standard procedure, ' we solve for the
outgoing wave solution to Eq. (SV), obtaining

g"(r) = Po(r) -J d~('G "(r, r') V(r')(t)" (r'), (38)

where (t)0(r) is an incident wave function,

y (~p) g (g) e (()7( ~ ((0) ls e(rco ~ i(

The valley index v has been dropped for conve-
nience. The outgoing Green's function 6" satis-
fies the source equation

k„=(m,/m, )"'k„,k, = (m,/m, )"'k„,
so that

E~g=(N/2M)k +«, M=(m(ma) ~

Now, integrating over the angle, we obtain

(,&(,) p 2M ( kdk

, ~KJ (2(()

Z,(k ft)
&&ka (2 /@a)(E, )

. I.(e)C.(a ),

where Jp is the zero-order cylindrical Bessel
function' and R is the two-dimensional vector

[Ho —(E+(i«)]G"(r, r') = 5'(r —r') . (4o)
R(= Z d(g(p( —p( —w((z-e ))) (=x, y

The prime on the 5 function denotes that it is de-
fined only in the half-space z, z' &0. In terms of
the eigenfunctions of Ho[Eqs. (6)], G "(r, (") can
be written explicitly as

G"(r, r')=G" (p-p';e, e')

((m, /m, )(«
0 (mmmm

)(~'l

As lpga-~, the magnitude of 8 goes to infinity,
too, and making use of the asymtotic expansion
for Jo(KR)" we find that (45) may be approximated

z zz)tf)(w iz)(z-z')I
(@ @ . ),

where the completeness condition for the g func-
tions~

lim G"(r, r')
p~(o

M 2i

o(all owed) 2@ ~+1+

e' t', (e)t „(e'),

SC.= [2M(E —«.)/a']"'
(4V)

Z. t.(e) L.(e') = ~(a —e'),

has been used. We shall pick the coordinate sys-

The sum over 0. is restricted to those subbands
for which E —& or E ~

—& is positive. Thefzpkp N

other subbands yield exponentially decaying out-
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going waves and are omitted. One can further ex-
pand R and finally obtain

G('&(r, r') =Q (M/28 ) (2i/((K p„)

x e(za((g e-((~. &(o& ~ g (z)

x([e ifn P-e((w &((((&g~
g ( ()]

p„=[(m/m )'~'x'+( z/m )'~'y']'~', (48)

k, =K [(m, /m, )"'(x/p, ) x

+ (m, /m, )'~'(y/p, ) j&] .

Hy substituting k into E
&, given by (6) it is easily

verifie. d that

In deriving (53), the fact that w&z=w(3w23/w33
has been used. It is more convenient to work with
the surface flux j„,(p) defined as

j„„(p)= g dz J„„(p,z) (54)

Thus, for the eigenstate (nk), the surface flux is
simply

j„'=ifk„/m, , j„'=5k, /mz (55)

independent of a. It is noted that the flow of par-
ticles, described by the vector j, is different from
the direction k because of the anisotropy of the
kinetic energy. The incident flux jo is given by

j(&
= ri(koz„/m(z+ koz, /mz')"' . (56)

Next, we examine the flux of particles carried by
the wave scattered into the o. subband:

E f = z, +If K„/2M=E=E, &", (49)
x J ekai

Hence, the square-bracketed function in (48) is an
eigenfunction of the unperturbed Hamiltonian be-
longing to n subband wave vector k having the
same energy as the incident wave. Inserting (48)
into (38) we find

It also has no s component, and the leading terms
of its x and y components are given by

j„'"= (1/p, ) (I'k „/m,)
~ f,.„,

(58)

g" (r)= &0(r) +Z (e' ~'~/gp, ) 0 (z)

~t
-$(w ~ kfM) c gJ ega() (50)

j„"=(1/p ) (kk„/m ) j f, g

From the definition of k, in Eqs. (48), we see that
the scattered flux j is parallel to the radius
vector p:

where j „=p/p = cos8x+ sin8 y, (59)

f.;.= —(M/21') (2f/K. )"'
&& f d3& -i&(~ ~ (('&(( ~ i(~&(('

g (Z )

x V(r') &j("(r') . (51)
We now calculate from Eq. (50) the transition

probability and scattering cross section from the
state noko to nk . They can be determined by
comparing the flux of scattered and incident waves.
According to the Hamiltonian (1), the flux or par-
ticle current density for any wave function (j((x) is

which is again different from the direction of k
%e have introduced the angle 8 as that between the
radial vector p and the x axis.

The relations between the various vectors in-
troduced are illustrated in detail in Fig. 1. The
relevant quantity to calculate is the particle flux
passing through the line segment pd8 at the angle

k~
p. J~

J,(r) =QJ —.w, i g*(r) &j((r)

-(,„i'()) i( & . (52) ko

/
/

/
/

/
/

/ 8
In particular, for the eigenfunctions g„&,(r) of the
unperturbed Hamiltonian [Eq. (6)], J only has x
and y components. Explicitly,

Z„(r)=(kk„/2m, ) ~g.(z) ~',
J,( r) = (ff k, /2m )

~
0 (z)

~

(53

Z,(r)=0 .

lo

SCATTERING
REGION

FIG. 1. Incident particle is in state ko with velocity
along jo. Scattered particle is detected at p(p = p/p), and

is in state k~ with velocity j ~ which coincides with p.
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8. This is simply equal to

y2 p2 1/2

or

d8
[(m~/ma)~ icos 8+(ma/m~) sin 8]

is what is known as the f-matrix element [evaluated
on the energy shell, i. e. , Z ~=Z(=Z 0~0) or n
=n, ]." A quick way of deriving (63) is to make
use of the result of formal scattering theory. '3

The transition probability from the state (o.ono) to
any k state in the a subband is given by

W.,1, .=(2v/@) f(d'n/(»)')

X@' (60)

upon using the expression for p~ [Eqs. (46)]. The
above expression represents the transition prob-
ability per unit time of finding the incident particle
scattered into the n subband with surface velocity
directed between 8 and 8+48. To obtain the de-
sired transition rate dW from the state (nono) to
(an, ), where n„lies between 8' and 8'+d8', we

must express all functions of the angle 8 in (60) in
terms of functions of 8'. According to (46) and

(59), the angles 8 and 8' are related by

k, / Ik, l
=cose'x+sine'y,

(61)
tane' = (m, /m, ) tane

Then after some algebra we obtain the result

d~'eoao - et~

=(1/2~) f«'ndn
I
&~kltl~ k &

I'

One immediately obtains the papal rate (63) by
holding the angle of k to lie between 8' and 8'+d8'

The differential cross section for scattering
from o. ()ko to nk is obtained by dividing the tran-
sition rate per unit angle, dW/de', by the magni-
tude of the incident flux, jo. Therefore, according
to (56) we have

do (ma/m, )~~acos280+ (m, /mm)
~~ sin 80

de' (mz/m~) cos 80+ (m~/m2) sin 80

(an. /M)
[(m~/m~)~~acos 8'+(m, /ma) ~ sin 8']

=de (anm /Mz. ) If.„
-I, (62)

(66)

where 80 is the angle for ko and Ko is defined sim-
ilar to K, i.e. ,

ko/ Ikol =coseox+sin8oy ~

I
Kfif

[(m, /m, )' 'cos'e'+ (m, /ma)" '»n'8']"'

where

M=d8' —
3 o'.ko t 0,'Oko

(63)

f d d g (s )sf wean s' -Pkn n'

(64)

This formula can be expressed in a different way

by substituting Eq. (51) for f, as

I/2vif'
[(m~/m, ) cos 8'+ (m, /m~) sin 8']

A, = [ws(z —~,)/a']"' .
The transition probability or scattering cross sec-
tion is known once the scattering amplitude f,"„
or the t-matrix element t, (k, ) is determined. A
perturbation series in the potential V for t, (k, ) is
obtained by iterating the exact outgoing wave P"(r)
according to Eq. (36). The first Born approxima-
tion corresponds to the first step in the iteration,
that is, g"(r) is replaced by the incident wave

Q~(r), yielding the following familiar result

« Iflnoko&-&ok~ Ivlnok
= V""0(k —ko) . (66)

Putting this expression into (63) we obtain

2

V ok —k . 69

B. Scattering of Many Impurities

In Sec. IIIA we considered only the scattering
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by one impurity center. In the sample there are
many such centers, consisting of the almost uni-
formly distributed negatively charged acceptor
centers in the depletion layer and the charged im-
purities in the oxide localized near the interface.
%'e denote their positions by r, = p&+z&. The total
t-matrix element for scattering from the state
Qpkp to pk is

&nk. Itin, k, &=&nk. IZ, V'Iq", nok, &, (70)

where V' represents the screened potential of ith
impurity and lg", o.'oko& is the outgoing wave
function arising from the incident state(noko) in the
presence of the total potential V=/, V'. To pro-
ceed, we make the usual systematic expansion of
(70) in terms of the f matrices for the individual
scattering centers. ' Retaining only the first two
terms, we obtain

Z&
i

—P Z & nk.
I
f'I o.'k'&

x G.',&(k')
&
n'k'

I
f'I ri, k, &,

G.',&(k') = I/[E. ,(k') -Z. (k,) —fs]. (71)

& nk„lf'I ~,k, &=e-'".-'o '&~k. It" I ~oko&, (»)

where t'~ represents the t matrix for the potential
resulting from a translation of V' to the origin in
the (x, y) plane (p =0). This is the quantity we
have calculated in Sec. III C.

The quantity we wish to obtain is the transition
probability, or equivalently

(73)

where &) denotes an averaging over the positions
of the impurity sites according to some distribu-

The quantity &nk, If'
I noko& is the f matrix due to

the single potential V'. By translational symmetry
in the (x, y) direction, it is readily shown that

p'(r)= ~(p P~ ~~-),

tion law. If the impurities are randomly placed or
uncorrelated and multiple scattering is neglected,
the total transition probability will be simply
given by a sum of the individual transition prob-
abilities, i.e. ,

=N„J','ds
f

&nk. If'lo. ,k, &
I'

+N„,l &nk. lf'-'laoko&l',

(74)

where d is thickness of the depletion layer, N& is
the concentration of acceptors(N„-10 o cm ), and

N„,is the number of charged impurities per unit
area in the oxide at the interface (N«&-10" cm ).
In arriving at (V3), we have assumed that the sur-
face scattering centers are identical and that the
variation of their positions in the z direction is
small. Thus t' ' represents the scattering ampli-
tude for one surface impurity at the origin (p = 0,
s=o).

We now consider two effects which lead to cor-
rections to the simple result given in (V4). The
first is the interference of the scattered waves
from different impurities when their positions are
correlated. For the consideration of this effect,
one need only keep the first term in(Vl) of the total
t matrix. The second term in (71) describes mul-
tiple scattering and will be dealt with later. In
order to perform the averaging indicated by (73),
a very simple model of correlation among the im-
purities will be used. We assume that the positions
of the surface impurities (N„,) and the impurities
in the bulk, i.e. , the acceptor centers in the de-
pletion layer, are not correlated. Second, we
assume that there is still no correlation between
the bulk impurities when their s coordinates are
separated by a distance greater than a certain
length 4. Finally, the correlation between the sur-
face impurities and the correlation between the bulk
impurities which are located inside a slab of thick-
ness 4 are taken to be of the hard-core type, i.e. ,
the only restriction is that no two impurities can
be found within a distance pp of each other. Under
these assumptions we readily obtain the result

& I&ok~ltl~oko&I &a = N& [1 N»("~o)~] f"ds I&ok~If Io'oko&I +N&nt[1 —N& tv(u„o)] I
&o'k It In

~(&No) = (»Pol&~o) &~(&~opo), k, o= lk~ —ko
I

(75)
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The quantity v(k, o) is just the Fourier transform of
the excluded area p & po. In the present case k 0
is of the order of kz-2x10 cm ' for (N„„-
10's cm s), N„1-0'6cm, andN, „,- 10"cm . Tak-
ing ~ and po to be roughly equal to 20A, one finds
that the reduction of the transition probability due
to interference is negligible for the bulk impurities
and is about a few percent for the surface
impurities.

The other effect which leads to corrections to
the simple result (74) is multiple scattering. It
describes processes in which the electron scatters
from the initial to the final state via intermediate
states involving at least two different impurities.
The terms in the t matrix responsible for these
events are the second- (and higher-order terms)
in the expansion in (71). We will now insert (71)

into (73) and perform the indicated average. The
contribution by the first term in (71) alone was
calculated yielding the result shown in Eqs. (75).
The leading correction due to multiple scattering
comes from the averaging of the product of the
first and second terms of (71):

-Q Q Q &nk,
l
t'la ak, &

~A j 0.'P

x&.k„ltl~ k &G':,~(k)

x &o. 'k'l tt
l
o.yc, & (78)

We shall ignore the correlation of three different
impurity centers and therefore only retain the
terms l =i or j. Using the same model to describe
the correlation as before one arrives at the ex-
pression

N'~ J", «&~k. lt'l~oko&*~ (&~k. lt'l~'k'&G."'(k') &~'k'lt'I~go& [~(k'-k)+~(k'-k)])

+N( &ok lt lnoko&+ Z (&nk lt ln'k'&G„;(k') &o."k'lt lnoko&
(M sg

x [p(k' —ko)+ p(k' —k, )])+(c.c. ). (77)

The indicated summation and integration will be
carried out in an approximate way to obtain a
qualitatively meaningful result. The important
fact to realize is that the Green's function is large
when a = no and I

k'
~

near ko [E„.(k')-E, (ko)] and

accordingly one replaces the slowly varying func-
tions inside the integral by some appropriately
chosen average values.

The final result is

&N. f, «-I &«.It'l~. ko&l') N»(ko)

x~[ lt l(2M/. k')»(k. /k, )]

+(N„,l& k. lt'-'l, k, &l')

xN„,v(ko) [ lt ' 'l(2M/vS ) ln(k, /k )], (78)

where / t ( and I t ' '
/ are some typical values of the

t-matrix elements; M is a mass which may be tak-
en as (m, ms)'t, and k, (& ko) is the high-momen-
tum cutoff of the k' integration due to either the
t-matrix element or the correlation function v. It
is observed that the correction factor on the tran-
sition probability due to multiple scattering in-
volves an extra ratio

r= ltl(2M/vk') ln(k, /k, )

so compared to that due to interference [see Eqs.
(75)]. For charged impurity scattering ~tl -4ve /
xs, where s is the screening length given by (34).
Then putting ko-1/po- —,'10~, ko-kz-2x 106 r is
found to be of order unity. Thus the leading cor-
rection due to multiple scattering has the same
magnitude as the correction due to interference.
The next-order contribution to the transition prob-
ability due to multiple scattering is readily esti-
mated to be similar to (78) with r instead of r
This leads to an interesting observation. If x is
larger than unity because ko (k~) is much smaller
than k„the successive terms in the perturbation
expansion in multiple scattering will diverge. In
this case, we must go beyond perturbation calcula-
tion, for example, and sum selectively an infinite
number of terms to obtain any meaningful result. '

C. Surface Conductivity

Our next task is the calculation of the surface
conductivity of the electrons in the inversion layer
due to impurity scattering. The quantity to deter-
mine first is the electronic current in a static
electric field parallel to the surface. Since inter-
valley scattering has been neglected, the current is
equal to the sum of the contribution from each val-
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'ley. Thus, it suffices to consider one valley at a
time. To first order in the electric field E, we
have

f 0 (k) I/(e(&&e~(f)-L'& + 1) (83)

In thermal equilibrium (E = 0) the distribution func-
tion is the Fermi function,

J",=Q,o"„E„(f,j)= (x, y)

tot ~ o
(so) g = Fermi energy .

The conductivity tensor o&& for any valley v is, in
general, not diagonal because of the particular ori-
entation of its constant-energy ellipsoid. But for
our purpose me shall again choose the coordinate
system such that sUg2=zvgst023/83' &&111which o&g 1S
therefore diagonal. However, the diagonal matrix
elements o„„anda (we shall drop the valley in-
dex v) are still not equal because the effective
masses m, and mm defined in Eq. (42) are different.

The conductivity is calculated in the usual man-
ner by making use of the electron Blotzmann equa-
tion. Denoting the distribution function of the
electron in the a subband and vrave vector k by

f, (k) (for electrons in the valley v under consider-
ation), we have

8
——E. f~(k)= —Z P .ge f~(k)I ek

+ Z P.-„.,-„,f.,(k ), (Sl)
e'R'

where E is the electric field and Pe."„..-„is the
transition probability per unit time from the state
(n, k) to the state (o&'k'). According to the dis-
cussions in the Sec. IIIB, it is given by

P"' -' = (2v/@& I(». If I»& I'&-

For a small field, me are interested in calculating
the correction to f that is linear in the field
strength. Accordingly, we put

f,(k) =f,(k)+g (k) (84)

and deduce the following equation for g, the devia-
tion from equilibrium:

g, (k).= —e r,(E,(k) ) [E (0/m)k] S (E,(k) ) . (s7)

The relaxation time r introduced in (87) is only a
function of the energy E (k) and is determined by

e[E j(k)]S'(k) =-&p P, ,;,[g (k) g,(k~)]
(88)

where S,(k) = Pf, (k) [l -f,(k) ]= S (E,(k) )

1 e - I a (88)
I (k) =-

—, E.(k) = I „x+
mg

"
m2

It is mell known that only for very special cases
can we solve the integral equation (85) analytical-
ly. One such simple situation occurs when m&
= mz = m so that I (k) = (5/m)k and the transition
probability P t, .),. depends only on the angle be-
tween k and k ' [and of course on the energy E (k)
=E,.(k')]. Then we readily find the solution

x 8(E.,(k') —E.(k) ), r(&(Pe Z P&»a ro( = 1
e'0e

(88)

+e'k', ek +ep, e'k' where

d k'
(k) P (E (k) ) 8 J 2 ~ & I&» lf I» & I'&- (' —cos&t&) '(E-(k) -E.(k'))

'„'f2,"a &I&"—&'&~I»&l'&-'&~. &"&-~"&&'» ~-&~&=~-(~.(~&&

" . &I&~ k Ifl~k&l'&.,cosy s(E.(k)-E.,(k )), cosy =k. k '/Ik
I
lk'

I
.

The electronic current is immediately obtained
from (87) (we put back the valley index v to avoid
confusion ):

Z"=- 2e Z(a/m")kgb) .
e$

(so)

Upon ~sing the fact that the electron energy E (k)
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At zero temperature,

S'(E".(k) ) = 6(E".(k) —k'),

where f is the Fermi energy. Then, the conduc-
tivity tensor, which is just a constant matrix, is
simply

o"= (e'/mt') ~
2 ~",(l') (0'- &");

o(6~~ & C )
(92)

is isotropic, we finally find

J"=a "E

o' =
~ g

2 2 7~(E",(k) [E",(k) —e"„]-S'(E",(k)).
(91)

x(k) a.nd j"(k').
cos@"= j"(k) ' j"(k')/I j"(k)

I I
j"(k) I

. (9V)

The electronic current for the distribution (94) is

J",= —2ep j",(k)g" (k)
ek

=Z (2e2Z 7'" (E"(k))j,"(k)j&(k) S 2(E" (R)) E& .
(98)

From (98) one immediately obtains the conductiv-
ity tensor

o",
&

= 2e Z r"„(E"„(k))j", (k) j~ (k) S (E" (k)) . (99)

the parameter ( is determined by the total number
of electrons in the inversion layer,

X„„=2K Z 2 (C'-~".) . (98)
v fM (6$& C'0)

In our present case the electron energy E"(k) is not
isotropic, so j"(%) is not parallel to k. Further-
more P" j, .g. has much more complicated angular
dependence than the example considered above.
However it is beyond the scope of this paper to ex-
amine the various approximation schemes one can
use to calculate g,"(k).' We shall simply assert
that the following expression for g," (k), correspond-
ing to a reasonable generalization of the previous
result for the isotropic case, is an adequate ap-
proximation to the exact solution

g" ( k) = —er" (E„"(k))[I~ j"(k)]S (E„"(k)), (94)

where 7'" is determined by an equation similar to
(88), namely,

(96)

The rates P" and P" ~ are essentially averages of
P" and P" ~ over the constant-energy surface in
k space defined by

ff2y2/2mv+ @2122/2mv Ev (k) qv E ev

Explicitly, we have

2f)

cos 8 sin'8 -&

k„=k"cos&, k~ = k"sin&,

I 2(E —e ) 1&2
k"=— (96)cos 8/m", + sin'8/mz

and similarly for P„" ~ . The prime on P" (k) inside
the integral in (96) is to denote that the cosine of
the angle P between k and k ' [see Eq. (86)] must be
replaced by the cosine of the angle Q" between j"

The observed conductivity is of course given by the
sum of the above expressions over all the valleys.

IV. CONCLUDING REMARKS

We have considered two aspects of the problem
of n-type inversion layers in which the electrons
occupy several discrete electric subbands. The
first is the screening of external potentials, which
is found to be conveniently described by a matrix
dielectric function. It is found that the extent of
screening depends only weakly on the electron
concentration, unlike the situation in the bulk. The
second topic studied was the problem of scattering
by charged impurities and their contribution to the
surface conductivity. Explicit formulas for the
scattering cross sections with intersubband tran-
sitions in the general case of nonisotropic constant
energy surfaces were calculated. The magnitudes
of the effects of interference and multiple scattering
which are present when there are many scattering
centers were estimated. For the concentrations
of impurities usually encountered these correc-
tions amount to a few percent. Finally a system
of coupled Boltzmann's equations for the distri-
bution functions of the electrons in different sub-
bands was solved exactly for the isotropic case and
approximately for the nonisotropic case to obtain
the surface conductivity (tensor).

There are several important aspects of the pro-
blem which have not been treated here. First of
all, there is the interesting question of the elec-
trons in the electric subband entering into bound
states of the screened charge impurities. If this
happens, motions along the surface wil' also be
quantized. The condition for the formation of such
a bound state is much easier to satisfy than in the
bulk. If these bound states exist, then at low

enough temperatures many electrons will be trap-
ped and this freezing-out phenomenon may lead to
drastic changes in the surface mobility. These
questions are currently being investigated by the
authors. Second, in regard to surface transport



I . D. 8 IGG IA A ND P. C . K%'OK

propex ties, there are other scattering mechanisms
which need to be considered. It is clear that pho-
non scattering will become important at high tem-
perature. Several authors have studied scattering
by surface phonons. ' A preliminary calculation
shows that the bulk-phonon scattering is at least
as important as the surface-phonon scattex'ing.
Recent experimental data at high electron concen-
tration and low temperature show a mobility that
is independent of impurity concentl'ation but ls
rapidly decreasing with gate voltage or electron
concentration. This suggests surface-roughness
scattering as a possible candidate for the dominat-
ing mechansim, because the subband wave func-
tions ot the electrons t;(s) are being squeezed

closer to the interface. A calculation based on a
simple model for the surface roughness yields a
result which agrees well with the experimental
data. The bulk-phonon scattering calculation and
the surface-roughness scattering calculation will
be reported in a subsequent paper.
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