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Electron mobihty in semiconductors based on a dielectric-function
modification of the Dingle potential
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An alternative ionized-impurity potential, embodying a spatially variable dielectric function, has rc:cently

been proposed by Csavinszky. Unlike its predecessor, this potential incorporates the behavior of the dielectric

function at the origin, The electron conductivity mobilities, calculated for Si and Ge from these potentials,

have been compared numerically with the corresponding prediction of the Dingle theory. In a previous

Comment, it was shown that the mobility based on the first potential overestimated this prediction. Here, it
is found that the second potential is also questionable because it leads to a gross underestimation. A possible

reason for this behavior is suggested.

-A exp(-Pr) -Bexp(-yr) . (2)

Here, n, p, y, A, and B are constants character-
istic of the particular semiconductor. They have
been evaluated in Refs. 4 and 5 for Si and Qe, re-
spectively. By making use of an equivalent varia-
tional principle to solve the differential equation
resulting from the replacement of zo by z(r) in the
standard linearized Poisson' s equation, a poten-
tial,

g, = Po[C exp(er/RJ+ (1 —C) exp(-nr/RP], (3)

was developed. A term arising in the derivation
of the Poisson's equation, ' involving the derivative
of v(r), has been neglected in the calculation of
Ref. 2. The parameters n and C are determined
within the context of the variational calculation
and are dependent upon the medium and upon R,.
Recent papers have utilized Eq. (3) to determine

Calculations of the contribution to electron mo-
bility in semiconductors due to scattering from
ionized impurities are, of necessity, dependent
upon the impurity-ion potential chosen. The po-
tential traditionally used is one due to Dingle, '

$0= (eo/xy )exp(- rlR, ) .
Here R, allows for the screening of the ion by free
charge carriers in their respective bands, .and
K 0 is the static dielectri c constant of the material.
The electron mobility derived from Po will be re-
ferred to as p, o. It is known, however, that Ko is
only a constant at distances of the order of a lat-
tice spacing away from the impurity ion. A gener-
alization of Eq. (1) to include the spatial variation
of the dielectric constant has recently been pro-
posed. ' In that development, use was made of an
analytical approximation, based on the isotropic
Penn model, 3 having the form, 4'

[g (r)] ' = ~,'+ exp(- n r )

y (r- 0) = e, lr . (5)

In Ref. 9, Eq. (5) was incorporated in another po-
tential,

P, =$0[1+(&, - I) exp(- ar)] . (6)

Like Eq. (3), Eq. (6) was obtained with the neglect
of the z(r)-derivative term. Here there is only
one parameter, a, to be determinejl from the var-
iational calculation and this is again dependent up-
on R,. An extended table of a versus Ro for Si and
Ge is included in Table I.

It may be noted that p2, by construction, is $0
multiplied by a correction factor. This factor
approaches unity as the distance from the charged
impurity increases. Such asymptotic behavior is
physically reasonable since the variation of the
dielectric function only occurs at distances close
to the impurity center and, thus, the correction
factor should be less important at large values of
r. In addition, as can be Heen from the behavior
of the parameter a, the distance at which the cor-
rection factor will approximate unity increases
with Ro. This trend anticipates the result that p,

the electron mobility. "' It was found that p, ~, the
mobility derived from P„was larger than p, „.
For Si, the ratio p, ,/ p,, was found to range from
approximately 1.3 at an impurity concentration of
about 10"cm ' (see Fig. 1 of Ref. 8). As experi-
mental data generally indicate that theoretical p.,
values are already an overestimation of the actual
mobility, it was felt that results from use of Eq.
(3) might be suspect. In a later publication, 9 the
statement was made that the boundary condition,

y (r- 0) = eJ~,r,
might be open to criticism. Since z(r) tends to
unity as r approaches zero (the parameters A and
B obey the relation, A+ 8 = zo'), a more plausible
boundary condition would be
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TABLE I. Variational parameter a appearing in the
impurity-ion potential P2 vs the Dingle screening length
Rp for Si and Ge.
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a(Si) (10 a.u. ~)

2575.0
467.1
140.2
59.43
30.69
17.92
11.39

7,690
5.438
3.999
3.018
2.335
1.843
1.482
1.209
0.9989
0.8351
0.7053
0.6011
0.5165
0.4520
0.3933
0.3444
0.3033
0.2685
0.2388
0.2134
0.1915
0.1724
0.1559
0.1414
0.1286
0.1173
0.1073
0.0985
0.0905
0.0834
0.0771
0.0713
0.0661
0.0614
0.0572
0.0533
0.0498
0.0466
0.0436
0.0409
0.0384
0.0361
0.0340

a(Ge) (10 4 a.u. ~)

2076.0
251.8
70.19
28.99
14.72
8.484
5.340
3.572
2.506
1.826
1.372
1.057
0.8385
0.6702
0.5443
0.4480
0.3733
0.3143
0.2671
0.2290
0.1977
0.1719
0.1505
0.1324
0.1171
0.1041
0.0930
0.0834
0.0750
0.0678
0.0614
0.0558
0.0509
0.0466
0.0427
0.0392
0.0361
0.0333
0.0308
0.0286
0.0266
0.0247
0.0230
0.0215
0.0201
0.0188
0.0176
0.0165
0.0156
0.0146
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FIG. 1. Impurity-ion potentials tIbp, $~, and $2 as a
function of distance x from the origin. The curves are
for Si with the Dingle screening length Rp equal to 15
a.u.
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nearly identical. The inset reveals that P, re-
mains slightly less than P, throughout the region
considered. On the other hand, P, is a full order
of magnitude larger than either g, or P, . As men-
tioned before, P, does approach P, for large r.
However, g, decreases much more slowly than Po
with increasing r and, thus, does not limit to Po.

Using Q„ it is an easy calculation to show that
the corresponding electron mobility can be ex-
pressed as the proportionality

p
& cc in(1+ 4kmR2) 4k2R2/(1 + 4kmRy

y (g, —1)'[1n(1+4k'R', ) —4k'R3/(1+ 4k'R,')] (p)

+ (x, —1)[in[16k'RP,'+ 4k'(R,'+R') + 1]

—[(Ro+Rs)/(R o -Rs)l

x ln[(1+ 4k'R', )/(1+ 4k'R,')]]-=Q, .

will show more divergence from $0 for nondegen-
erate (high-R, ) doping than for degenerate doping.

A numerical comparison of p, p„and p, is
displayed in Fig. 1. The curves are for Si at
R,= 15 a.u. On the scale shown P, and P, are
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FIG. 2. Ratio of electron mobilities p2/pp as a func-
tion of electron concentration. The calculations for Si
and Ge are shown at room temperature.



ELECTRON MOBILITY IN SEMICONDUCTORS BASED ON A. . .

Here k is the electron wave number and 8, is an
abbreviation for Ro/(l+aRO). Similarly, the
Dingle potential yields

p, ~ccln(l+4jPgy 4@2/2/(i+4/2/ 2) =q . (S)

The proportionality constant being identical for
both p, , and p,„ it follows that

The ratio of mobilities in Eq. (9) is shown in Fig. 2
as a function of electron concentration for both Si
and Ge at room temperature.

As had been expected from the form of Q„ this
ratio is largest in the degenerate region and ap-
proaches a smaller value asymptotically as the
density decreases. That is, the effect of P, on the
mobility is more pronounced in the nondegenerate
region. The mobility calculated using Q„on the
other hand, showed greater departure from the
Dingle mobility in the degenerate region. In com-
parison to p, o, application of P, decreases the mo-
bility by more than two orders of magnitude.
Again, this is in contrast to the effect of Q„which
was to increase the calculated mobility. Finally,
it is noted that, at any given electron concentration,
the ratio p, ,/ p, , is further from unity for Ge than
for Si, whereas the ratio p, ,/p, showed greater
divergence from unity for Si than for Ge (see Fig. l
of Ref. 8).

In Fig. 3, the elet:tron mobility has been plotted
as a function of electron density for Si at room
temperature. The three curves represent the
theoretical mobilities p, „p,„and p, For ref-
erence, the triangular points are experimental
data taken from Granacher and Czaja. ' The differ-
ence between p, , and p.o is only evident for electron
concentrations greater than 10"cm"'. The curve
representing p, „however, lies significantly below
LLjto, p, „and the experimental points for all con-
centrations shown. These lower mobility values
are a direct consequence of the large increase in
the value of P, over that P,. Additionally, if other
scattering mechanisms, such as lattice scattering
or scattering by neutrals, were included in this
calculation. , the total mobility, including p,„would
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FIG. 3. Electron-conductivity mobility as a function
of electron concentration. The experimenta1, points 6
are taken from Bef. 10. The curves are for Si at room
temperature.
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drop to still lower values.
From these results, we conclude that recent im-

purity-ion potentials2' embodying the spatial vari-
ation of the dielectric function yield electron con-
ductivity mobilities which either overestimate or
grossly underestimate the mobility based on the
Dingle potential. It is not clear why the inclusion
of this effect has not improved thp mobility calcu-
lation. We think that this failure is due to the
behavior of the potential. It seems physically rea-
sonable that P, should closely resemble P, in the
region where ~(x) has become equal to a„yet p,
fails to do this. This point, among others, is
currently under investigation.
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