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For electrons, phonons, etc., and regardless of symmetry, the Green's function in any mixed %'annier-
Bloch representation is 60+(z-z', knee) = —iaX, e'"J(z —z')/v(k&kn) sgn (z —z') + G~c, where
k = (k„,k„), n is the branch index, and the values of z correspond to lattice points. The k& are those values
of k, for which the eigenvalue e{k,kn) is equal to the parameter ce, and for which v(k~kn)sgn(z —z') & 0,
if k,. is real, or Imk, . sgn(z —z') ~ 0, if k& is complex. Gi,c represents integrals around branch cuts, a is the
height of a unit cell, and v(k, kn)=f)c(k, kn)/ak, , The above expression can be regarded as a
generalization of the usual one-dimensional Green's function of quantum mechanics. 60+(co) diverges
whenever co is such that some u(k, kn) goes to zero, and as a result the generalized phase shift q(eok) has
discontinuities of —m/2 at these values of co. These discontinuities are present regardless of the strength of.
V, the perturbation associated with creating a pair of surfaces or interfaces. There is an exception: If dett+
M = 0, where M is a matrix defined in terms of the matrix elements of V, then the discontinuity -is

eliminated. This condition is analogous to that for a "zero-energy resonance". in s-wave potential scattering,
and it will ordinarily occur only at particular transitional strengths of V. The condition is always satisfied
for acoustic phonons at co = k = 0, however, because of a restriction on the force constants, The
significance of q(cok) is that the surface or interface density of states 5p(cok) is given by m' '8q(cok)/ace.
Each discontinuity of —m/2 in q(cok) at an extremum coo thus produces a contribution —8(co-eo(})/2 in
b,p{cok).

I. INTRODUCTION

The purposes of this paper are (i) to obtain a
form for the Green's function G, which should be
useful in treating surface and interface problems,
and (ii} to prove that there are discontinuities of
——,

'
w in the generalized phase shift" q(&u) at certain

values of &o. The significance of q(&o) is that it
gives the change in the density of states when a
pair of surfaces or interfaces is created, hp(&u),
through the relation'

h() n()

Thus a discontinuity of --,'v in q(&u) at some &u, leads
to a contribution -25(&o —&oo) in hp(&u).

The present treatment does not assume any
symmetries (such as the existence of a reflec-
tion plane perpendicular to the z axis, or time-re-
versal symmetry) other than translational invari-
ance, and it is valid for any eigenvalue equation
involving an Hermitian operator or matrix, such
as the Schrodinger equation for electrons and the
matrix eigenvalue equation for phonons.

In the following it is assumed that the eigerivalue
&(k,kn} of Sec. II is an analytic function of the com-
plex variable k, for all k, except branch points off
the real axis. Kohn has shown that this is true for
electrons' and phonons~ in one dimension, and
Blount' and Krieger' have extended the proof to
three dimensions. There are some restrictions.
For exaxnple, as Kohn points out, ' the behavior of
the force constants in a metal implies that the

phonon frequencies are not analytic for some real
values of A,.

It is also assumed that the matrix elements of
the perturbation V associated with creating a pair
of surfaces or interfaces, the V(k, k,'nn'k) of Sec.
7, are not i.rifinite. This is analogouS to the as-
sumption in potential scattering theory that cer-
tain integrals involvigg the potential are not infi-.
nite. (See Sec. VI.) The potential must fall off
sufficiently fast as r-~ and must not diverge too
fast as r-0 in order for, e.g. , Levinson's theorem
to hold. ~

%e evaluate the Qreen's function in a mixed %an-
nier-Bloch representation. ' " Such a representa-
tion is appropriate for surface and interface
problems because the basis functioris are localimed
in the z direction, perpendicular. r to the surface or
interface.

II. UNPERTURBED CRYSTAL

Consider a crystal with translational invariance
in the x, y, and z directions, for which some ei-
genvalue equation

a, ~l n)=e(kn) kn) (2.1)

holds. The ~kn) are (generalized) Bloch functions,
with k„and k„ taken to be real but I,, possibly com-
plex, and n is a branch index whi, ch distinguishes
solutions with the same wave vector k. It is as-
sumed that the matrix or (possibly nonlocal) opera-
tor Ho is Hermitian when the vectors or functions
~kn) are restricted to those with real k,. This
implies that &(kn} is real when k, is real.
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z(k, +2m/a, kn) =z(k, kn),

ik, +2~/a, Rn& =ik.Rn&,

where

(2.2)

(2.3)

(2.4)

so all the distinct solutions to (2.1) are given by

Let a be the repeat distance for H, in the z direc-
tion (i.e., the height of a "surface-adapted unit
cell"). Because of the translational invariance of
H„one can choose

%e evaluate this integral by using the rectangular
contour of Fig. 1, which is closed in the upper
half-plane for sgn(z —z') =+1 and in the lower half-
plane for sgn(z —z') = —1. The existence of branch
points, and a possible choice of branch cuts, are
indicated schematically in Fig. 1. In general, let
C' represent curves around all the branch cuts
(with each curve traversed in a positive direction,
as illustrated in the figure), and let

Gzc(z —z', kn~) -=—sgn(z —z')—
7r——(Rek, ( —.7T

a ' a' (2.5)

Two representations will be used in the follow-
ing: In the "Bloch representation" (or "crystal
momentum representation" }, the basis functions
are the ik, kn& for real k, which satisfy (2.5) and
periodic boundary conditions, with I. being the
periodicity length in the z direction. In the "Wan-
nier-Bloch representation, " the basis functions
are

izkn&=-N-"2 g e-'""ik, kn&, (2.6)

where

N= L/a (2. 'l }

G, (zz', kk', nn', &u)—= (zkni(&u —H, ) 'iz'R'n'& (2.8)

and the summation includes all the real k, which
satisfy (2.5) and the periodic boundary conditions.
The values of z are discrete and correspond to the
positions of (surface-adapted) lattice points:
z =z(l, ), with I = (l„ l„ l, ) labeling a lattice point.

The Green's function for the unperturbed crystal
is, in the Wannier-Bloch representation,

(3.2)

In the following, we assume that G~~ does not
diverge as ~- ~„where ~, is an extremal point
defined by (4.1) and (4.7).

The contributions from ihe vertical-line seg-
ments of C cancel because of (2.2) and the fact that
z —z'= a ~ integer. The contribution at infinity
clearly vanishes for z w z'. It also vanishes for
z = z' if we now assume that

i e(k, kn) i-™as
iImk, i'-~ with Rek, fixed I "almost everywhere"
in the interval of (2.5)]. Then G;= Gzc
+ 2wi sgn(z —z') x (sum of residues at poles), with
the sgn(z —z') factor coming from the fact that C
follows the real axis in a negative direction for
sgn(z —z') = —1, in Fig. 1(b). Whenever

"Irn k,
)i lI

/c):
)i

ki+5k,

Re k,

= 5„-„-.5„„.G,(z z', Rnu), (2.9)

e kk~(g-a')

G( -z'z, Rn~)=N'P- (2.10)

For ~ real, the "retarded" Green's function is

G;(z —z', kne)=-G, (z —z', kn, &u+i5), (2.11)

with 5 positive and 5-0.
~kj+&k.

)i/~

III. EVALUATION OF GREEN'S FUNCTION

After the recipe Z„,- (L/2m) J dk, is used, (2.10)
becomes

I/a e ikz(e-e')
Go(z —z', kn(u) = — dk,

2w .,i, ' &u- &( ,kR)n+i '5

(3.1)

FIG. 1. (a) Contour Q used in evaluating (3.1) when
sgn(e -z') =+1. The vertical lines extend to infinity.
The existence of branch points is indicated schematically.
A representative pole k&+ Bk& is shown. (b) Contour |."
for sgn(z -z') =-1.
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z(k&+ 5k~, kn) = ur+i5 (3.3

with 5k, -0 as 6-0, there is a pole with residue

lim [k, —(k&+ 5k&) ]2v y y yy z(k + 6kg Ks) g(k Xs)

e &(Ay+6k) ) (e-g')

2w v(k~+5k, ,Xn) '

where

v(k, kn) -=By(k, kn)
Bk,

(3.5}

We have assumed that v 0 at the poles. The be-
avior of 6, as v -0 will be cons d d

'i ere ln Sec. IV.
As shown in Fig. 1, Im(k&+ 5k&) sgn(z —z') &0. If

k. is corn lex np, o problems arise from just setting
5 and 5k, equal to zero in (3.3), so the require-
ment is just Imk, sgn(z —z') &0. If k,. is real, the
expansion

la&-')
Go(z —z', kn&o)= -ia g sgn(z —z')

v(k~ Kn}

+ Gzc(z —z', kno&),

where the k, are those values of k, satisfying

z(k, kn) = (o,

(3.7)

(3.8)

4

z(k~+ 5k)) =z(k~)+ v(kq)5k~+ ' ~ ~,

in conjunction with (3.3), implies that v(k&) Im5k&
&0. [Notice that v(k~) is real for k~ real, since

the one ln the first sentence of this paragraph, then
implies that v(k J) sgn(z —z') &0.

Combining the above results, we get

and for which

v(k, kn) sgn(z —z') &0, k~ real,

Imk~ sgn(z —z') &0, k~ complex.

Exactly half the solutions to (3.8) also satisfy
(3.9), regardless of symmetry: If k, is complex
then Schwarz's s
q(k*kn = * k

ref lectl. on principle" requires th ts ae, n}=z (,kn). For every k correspond'
to a real eigenvalue z(k,), therefore, there is a
k,* corresponding to the same eigenvalue. I.e. ,
for every evanescent wave decaying toward the
right and satisfying (3.8), there is another decay-
ing toward the left. If k, is real, (2.2) implies

I
hat there is some k,' such that q(k'}= k,g

= g g and

,) is opposite in sign to v(k, ), as illustrated in
Fig. 2. I.e. , for every wave propagating to the
right, and satisfying (3.8), there is another pro-
pagating to the left.

(3.9a)

(3.9b)

IV. BEHAVIOR OF GREEN'S FUNCTION AT EXTREMA

Let k, represent an extremum in q(k, kn, ) for
some branch n, at a fixed k,

v(kokno) =0, g(kokno} real.

For nearby k„
(4.1)

(4.5)

where

g(k, kn, ) —q(k, kno) = (k, - k,)""/2m*, (4.2)

v(k, k no) = (k, —ko)/m*,

1 s'z(k, k no}
m. * ek2 (4.4)

We assume that k, must be real, since, according to
cine,"it is "vanishingly probable" for (4.1) to

hold if k is, is not real. We also assume that m* is
finite —i.e—i.e., that the second derivative S'q/Bk', is
nonzero at those points where the first derivative
vanishes.

Smce k, is real, we can choose k„and thus

&(,), to be real in evaluating m* acc d' t
~4 4~

ccor l.ng to
( . ~, so m* is real. As &o-e(k, kn, ), the domi-
nant k& in (3.7) is

k =k, + 6k sgn(z —z'),

kz
(b k)' = 2m ~(&o —(oo),

(o,
-=g(k, kn, },

(4.6}

(4.7}
FIG. 2. Representative graph of eigenvalue e(k En

vs real wave vector k for a fixed planar wave vector
8

and a given branch labeled by m. The four numbered

f
points are extrema where v (k ) = 0 A s ~ increases
rom just below an extremum t ' tum (do o just above, g(co)

usually changes discontinuously by -2x. The four lettered
points illustrate that at fixed th
solutions with v (k~) negative (A and C) as with v k
positive (B and D).

e an C) as with v(k~)

according to (3.8) and (4.2). The sign of n,k is de-
termined by (3.9) and (4.3): At a minimum (along
the real axis}, m* is positive and

(4.8a)

[2m~(ur —(oo}]'~', (o & (oo. (4.8b}

a maximum, m* is negative andta
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—[2m ((d —030)], (d & (do

i [2m*(&u, —(u)]'~', (o & (u, .
(4.9a)

(4.9b)

The positive root is to be taken in (4.8) and (4.9).
Thus,

disc Arg&k = —&&, (4.10)

v(k kno) = b,k sgn(z —z')/m*,

so (3.7) implies that

e lao I 8-~'
I

Go(z —z', knots} = -iam*e'~0'* ' '
~k

(4.11)

e 1k'(z-8')
ia g -k sgn(z —z')

v(k~Rn,

(4.12)+ Gz e(z —z ', k no(u),
!

where the primed summation excludes the value
k~=k.

Eq. (4.12) [or, more generally, (3.7}]is a gen-
eralization of the usual one-dimensional Green'8

regardless of whether this point is a minimum or
a maximum along the real axis, where discA(v)
is defined to be the discontinuous change in a quan-
tity A(&o) as ~ increases through &u, .

There is a point worth mentioning: From (4.8)
and (4.9) alone, it is not clear whether we should
take the change inArg~ktobe ——,'m or ——,'m+2m
&& integer. This ambiguity is resolved by recalling
that a+i' should really be added to (d to obtain
Go(&o), which implies, according to the first sen-
tence of the paragraph containing (3.6), that a
+i

~

6k
~

should really be added to hk. We should
really let 6 and 5k -0 only after determining the
phase shift. This point is made by de Witt' for the
case ofbound states on his p. 1567: As ~ increases
from -~, the addition of a +i' to co requires that
we pass around the bound state energy co, in the
upper half-plane, so that a —p is addedtothephase
of det[l —G;(&o) p], and a+a to q(&u). In the pres-
ent case, suppose first that m*&0, so that (4.9)
applies. Then, as &u increases to &u„6k+i

~

6k
~

moves along just above the negative real axis until
it reaches the ima. ginary axis, and Arg(4 ki+~ 6k ~ )
changes continuously by --,' n. If m*&0, (4.8) ap-
plies, and as ~ increases past &u„& k+i~ 5k~moves
away from the imaginary axis just above the posi-
tive real axis, sothatArg(&k+i~ 6k ~) again changes
continuously by ——,

' v. In the limit 6 -0, q((o) changes
discontinuously by +m when ~ increases through
some ~,. In the limit 5k-0, Arg&k changes dis-
continuously by --,'w when (d increases through
some &o,. But for 5m 0, the phase of det[1-G, (&u

+i5) V] changes continuously in the first case,
and for 6k e 0, the phase of 4k+i

~

6k
~

changes con-
tinuously in the second case.

According to (4.3) and (4.5),

function for particles of mass m in quantum
mechanics, which can be obtained as a special
case by suppressing the branch index n„ the pla-
nar wave vector k, the primed summation over j,
the contribution G~~ from branch cuts, and a, and
letting m*-m, k, -0, and 4k-k.

V. DISCONTINUITIES IN THE GENERALIZED PHASE SHIFT

Starting with the unperturbed crystal of the pre-
ceeding sections, we break the translational in-
variance in the z direction by creating a pair of
surfaces or interfaces, and we represent the new
matrix or operator in the perturbed crystal by

H=HO+ V.

The new eigenvalue equation is

(5.1)

(5.2)

where i distinguishes solutions with %he same k.
We assume that V can be represented in terms

of the Bloch functions which satisfy the periodic
boundary conditions of Sec. II. This requires (as
a mathematical device) that V satisfy these same
boundary conditions, i.e. , that

V(z+I„r)= V(z r)
if Vis local, or

V(z+L, r;z'+L, r')= V(z r;z'r')
if V is nonlocal, where

r-=(x, y}.

(5.3)

(5.4)

(5.5)

V corresponds to creating interfaces between
two materials A and B at two planes z = 0 and z =z„
starting with only material A. The perturbed
crystal has material A between z = 0 and z =z„
material B between z = zo and z = L, material A
between z =L and z =I.+z„etc. If free surfaces
are created, then material B is vacuum. It is, of
course, impossible to create a single interface,
and V always corresponds to complementary in-
terfaces at z =0 and z =z,. If we do not want the
interfaces to interfere, we choose z, -~ and L —z,-~, as well as L-~.

The generalized phase shift resulting from the
perturbation V is' '

g(uk) —= -Argdet[1 —Go(ke) V(k)]. (5.6)

In the Wannier-Bloch representation, the elements
of G,

' and P are labeled by z, n and z', n'. In the
Bloch representation, the elements are labeled
by k„n and k,',n'.

As v-,co„all the elements G;(z —z', kn, u&) in the
Wannier-Bloch representation diverge as 1/hk, ac-
cording to (4.12). Since there are N values of z it
may then appear that a (1/b, k)" can be factored out
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of the determinant of (5.6). However, cancellations
within a determinant can cause it to diverge more
slowly than may first seem the case. For exam-
ple,

As nk-0, e'»»' ' '-1 and (5.13) gives

G'(k kn(o) = — e'~'o-»»i'6iam~
p g tl tip

——11
x x

(5.7)

+g e ~G (zkn(d) (5.15)

I
x x

diverges as 1/x, instead of 1/x', as x-0. By
switching to the Bloch representation, we now
show that the determinant of (5.6) diverges as
1/bk, instead of (1/Lk}".

In the Bloch representation,
I

Go(k, k,', kk', nn', &o) = Go(k, k,', kn+)

(5.8}

G;(k, k,', kn&u) =N 'pe '»~'G;(z —z', kn~)e'"~'
gg

6»» 6„„+G'(k, kn~), (5.16)

in view of (5.10}. Thus, in the Bloch representa-
tion, 0, is diagonal and only the one element
labeled by k, and np diverges.

Consider the expression (5.6) for q(&uk): Since
Qp is diagonal,

[I G;(k&o) ~ V(k)], „„,„,

= 6»» 6„„,—G;(k, k n&u) V(k, k,'nn' k) . (5.17)

Then, according to (5.16),

det[1- G;(k&u) V(k)]- „det M(&ok)

(5.9}
as (d (5.18)

ei(pg Qg)g
Agkg & (5.10)

so

G;(k, k,', kn&o)=N ' g e""~ '8'
Z'

x g G;(z-z', kn~)e '"'-"
(5.11)

= 5»», Go(k, kn(o), (5.12)

after (2.6} and (2.9}are used. The periodic boun-
dary conditions require that

We are temporarily assuming that at least one of
the V(k,k,'n, n'k) is nonzero. Then

17(yak }=-Arg (I/ak) detM(~k)] (5.20)

where

M(k,nk,'n', &uk) —= 6„z6„„, G,'(k, kn&o}V(k, k,'nn'k),

k, Wko or nano (5.19a)

=—im*L V(kok,
' non' k ),

and n=n . (5.19b)

Go(k, knu&) —=g e '»*" ' 'Go(z —z', kn&u). (5.13)
g Z

= Arghk —Arg detM(&uk ) (5.21)

Let G'(z -z', knoo) represent that part of G;(z —z',
kn&o) that remains finite as &o- aro. According to
(4.12),

eidola g'I
G'(z —z' km') = iamb e"-o""0 & gk nnp

+ G'(z —z', k n(o) . (5.14)
Beyond this point the argument becomes awkward

unless kp ls one of the values of k, allowed by the
periodic boundary conditions. Since this has zero
probability for a given dispersion relation, we
resort to the artifice of perturbing Ho (once k, no,
and L have been specified) in such a way that the
extremum in the dispersion relation is shifted
from k, to kp', the value of k, that is close.st to k,
of the N values allowed by the periodic boundary
conditions. Since

i k,' —ko
i
& 2 v/L, the new H„G;,

and q(&ok) are indistinguishable from the old as
L, -~. In the following, we rename kp' and call it
kp

in the limit u&- aro. lf detM(&uok)x0, (4.10) then
implies that

discs)(COk ) = -27K (5.22)

aS &u increases through any ohio
defined by (4.7) and

(4 1).

v(k„kn«)=0, i =1,2, . . . , No,

z (ko, k n„)= e„~o real,

82g(k, k.no,
mf Sk2 s= o' ~

(6.la)

(6.lb)

(6.1c)

UI. GENERALIZATIONS: MORE THAN ONE EXTREMUM

AT mo OR detM (~0)=0

In the foregoing, it was tacitly assumed that at
(op the re is an ext re mum for only one band np at
only one wave vector k, . We now generalize to the
case that there are N, extrema at &u„so that (4.1),
(4.7), and (4.4) become
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After generalization of the various steps, (5.16)
becomes

N

Go(k, knv) = iL-' 5»,6„„,+ G'(k, kn&u),

as (d (do (6.3)

M(k, nk,'n', ark) =imfLV(ko;k, 'n, &n'k),

n=n„and kg=ko, (6.4a)

= 6», 6„„,—G,'(k, k n&u)

x V(k, k,'nn'k) otherwise.

(6.4b)

I.e. , N0 rows of M are different from those of
1 —6; V. Finally, (5.21}becomes

N

q(&uk)= Arg&k, —ArgdetM(vk) (6.5)

in the limit &u
- ~„and (4.10) implies that

discq(&u k ) = N, ,n-—. (6.6)

as e increases through co0.

It was also assumed that detM(w, k) a 0. Suppose
that

detM((uk) ~(&k)~o as (u-(uo, (6.7}

where Ak is any one of the 4k,. in the general case
discussed just above. [According to (4.8) and (4.9},
the bk,. differ only by multiplicative constants. ]
Then (6.5} implies that

disc@(ek ) = (M, —N, ) (6.8)

as + increases through u0. For example, if there
were a simple pole in detM, M0= -1, we would
have a discontinuous change in q of -w (for N, = 1),
i.e. , the usual ——,

'
m plus an extra --,' n from the

pole in detM. However, our assumption that the
matrix elements of V are not infinite implies tha, t
the same is true of detM. There is an analogy in
s-wave potential scattering: For potentials V(r)
satisfying'

chal Vx &~, l
dry' V x

0 ~0
(6.9)

the Jost function f(k) is well behaved at k =0; but
for model potentials violating these restrictions,
f(k) can have a pole at k = 0, and a simple pole
leads to a discontinuity of --, m in the phase shift
at A=O l3

(6.2}

where hk,. is defined by (4.8) or (4.9) with m*-mf.
Then (5.18) and (5.19) are changed to

det [1—6;(k~) V(k)]- ] [ detM(&ok)

Instead of detM(~k) -0 as ~- ~„we can have
detM(&uk) = 0 for all &u if M, of the rows defined
in (6.4a) are identically zero, with M, ~ N, . Then,
as can be seen from (5.17), M, factors of 1/&k,
are removed from (6.3), and only N, —M, factors
remain. It follows that (6.8) also holds in this
case, although for a different reason. In either
case, if M, =N„ then (6.8) implies that

disc q(&o k ) = 0 (6.10)

i.e. , the discontinuity is eliminated. This excep-
tional case (or any case when Moo 0) is analogous
to a "zero-energy resonance" in s-wave potential
scattering, for which the Jost function f(0) equals
zero and an exceptional version of Levinson's
theorem holds. '4 ln s-wave potential scattering, .

a discontinuity of + —,
'

m is added to the usual dis-
continuity of 0 when f(0) =0. In the present case
(for M, =No= 1), a discontinuity of +—,

'
w is added to

the usual discontinuity of ——,'w when detM(w, ) = 0.
A trivial example of (6.10) holds when the per-

turbation V is identically zero, so that all of the
N, rows defined in (6.4a) contain zeros. In this
case, of course, the phase shift can be taken to be
identically zero, according to (5.6), and a discon-
tinuity is impossible.

Wheneve) V produces a discrete "bound" state
at an energy ~b, there is a discontinuity of +m in
q(~k) at &u= ~„according to (1.1). When (6.10)
holds (for N, =1}, therefore, it is as if V is just
strong enough to produce "half a bound state" at
~= co„which gives a discontinuity of +-, m and thus
cancels the usual discontinuity crf --,'n; The usual
discontinuity, on the other hand, implies that a
general perturbation V, no matter how weak, or-
dinarily "destroys half a state" at every eigen-
value co0 where there is an extremum in the dis-
persion relation q(k, kn) versus k,.

VII. ABSENCE OF DISCONTINUITY FOR

ACOUSTIC PHONONS AT w = k = 0

We expect that (6.10) will ordinarily have "zero
probability, " and will hold only when the perturba-
tion has exactly the right transitional strength.
This is the case for a zero-energy- resonance in s-
wave potential scattering, which occurs only when
the parameters in a model potential have exactly
the right values. However, as we show below,
(6.10) always holds for acoustic phonons at or =

k=0, because of a condition on the force constants.
This corresponds to the fact that the three "uni-
form translation modes, " at zero frequency, are
present in both the perturbed and unperturbed
crystals. If there were a discontinuity of -3w/2
in q(~k) at &v=k=0, then (1.1) implies that each
of the uniform translation modes would be "half
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destroyed" by the creation of a pair of surfaces
or interfaces.

For phonons, we introduce a third set of basis
functions

l
r z), each of which is localized entirely

on an atom labeled by z in a unit cell whose lattice
point is at r = (r, z). We remark that

l
r z), lk, kn),

and lz kn) are all three-dimensional vectors (with
x, y, and z components). In thelr z) representa-
tion, (2.1) becomes

(r&lHolr &)(r & l" kn)
I

=&(k,kn)(rzlu. kn). (7.1)

Comparison with the usual eigenvalue equation for
the normal modes of vibration" shows that

s(k, kn) = uP(k, kn), (7.2a)

( rely, kn) =M'„"u( rz, k, kn), (7.2b)

(rK lao l

r'K') =M „'~'@,(rK, r'K')M „!". (7.2c)

Here ~(k, kn) is the frequency for the mode labeled
by k, kn, u(rz, k, kn) is the properly normalized
amplitude of displacement for the atom labeled by
r& when the crystal is vibrating in this mode, I„
is the mass of this atom, and @0(rz, r'z') is a

3 x 3 matrix whose elements are the force con-
stants coupling the two atoms labeled by rz and
r'I(.' in the unperturbed crystal. %'e label the three
acoustic modes by n= 1, 2, and 3. Since all the
atoms in the crystal have the same displacement
as k-0 for the acoustic modes, as indicated in
(2.1.63) of Ref. f5,

u(rz, 00n)=A(n), n=l, 2, or 3, (V.3)

64(rK r K) —= @(rK r K ) —4o(rK r K ) (V.5)

where 4' represents the force constants for the
perturbed crystal. According to (7.2c),

(rzl V'lr'z') =M„'~'44(rz, r'z')M, ' ' (7.6)

where A(n) is independent of r and z. Also,
"(k,kn) ~ lkl for the acoustic modes as k-0 along
a fixed direction, so for small k,

s(&,0n) =0', /2m„*, n=1, 2, or 3, (7.4)

"here m„* is a constant. This is of the form (4.2)
%'e thus have three extrema of the kind indicated
in (6.1)—N, =3—with &o, =k=0«=0.

Let

v(k, k,'nn'k) =(k, knl ~~lrz) (rzl'lr'~'&&r'z
rK r'K'

(V.V)

u* rv, k, kn &C rz, r'I(„' u r'K', k,'kn' .
PIC 1'k

(V.S)

For n=1, 2, or 3, (V.3) implies that

V(0",nn'0)

=A*(n) gu(r'z', k,'kn')+~4(rz, r'z'). (7.9)
1K re

According to (2.1.10) and (2.1.15) of Ref. 15,

This restriction on the change in the force con-
stants makes (7.9) vanish, so

V(0k,'nn'0) =0 for n=1, 2, or 3. (7' 12)

Thus three rows of' V(0) are equal to zero, or M,
=3. Then (6.8) implies that

40 rv, r'tc' =0, (7.10)
discq((uk) =(3 —3)-,'@=0 (V.13)

1'k

bC) rg, r'I(„' =0.

1'k

and the same is true of 4, so

(7.11)

at k=0, as ~ increases through ~,=0. I.e. , there
is no discont! nuity in the phase shift at &v =K=0 for
the acoustic modes, even though they have extrema
there.
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