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Ground-state instability to bond alternation in long linear chains is considered from the point of view of
valence-bond (VB) theory. This instability is viewed as the consequence of a long-range order (LRO) which is
expected if the ground state is reasonably described in terms of the Kekulé states (with nearest-neighbor
singlet pairing). It is argued that the bond alternation and associated LRO predicted by this simple VB
picture is retained for certain linear Heisenberg models; many-body VB calculations on spin s = 1/2 and

s = 1 chains are carried out in a test of this argument.

I. INTRODUCTION

There is much interest concerning dimerization
in linear- chain systems. In fact, generally® in an
infinite-chain system, for which a simple half-
filled-band picture applies, bond alternation is
favored; at high temperatures such a chain might?
be uniform, in which case a “Peierls” transition
to a dimerized (or alternating) structure occurs at
lower temperatures. Related transitions have been
proposed,® studied,*® and observed® for linear ar-
rays of doublet transition- metal ions described by
the nearest-neighbor s =3 Heisenberg model.
Peierls transitions have been observed’ and stud-
ied® for a variety of tetracyanoquinodimethane and
Krogman salts. Bond-alternation studies®° for
linear polyenes have also been popular. A common
feature of almost all of this work is that Hartree-
Fock solutions are employed.

Here the dimerization problem for linear chains
is approached in another way, which is not pre-
dicated upon an independent- electron picture. Al-
though this new valence-bond (VB) cluster ap-
proach should be applicable to many of the above-
mentioned cases, here we shall study just Hei-
senberg models, typically of the form

2; 2,
H=JX:§‘- Sia+ 5Ji (-1)'5,-8,,,, (1.1)
=1 i=1

where the exchange parameters are antiferromag-
netically signed J(1+5)>0, the (even) chain length
will be taken to infinity, and 6 measures the extent
of dimerization. Clearly, if the ground-state en-
ergyto(1.1)islinearind and the other (Coulombic)
restoring forces are harmonic, then dimeriza-
tion should occur, at least at absolute zero.

The general qualitative VB argument which can
indicate dimerization in a very long even cyclic
chain (of equivalent sites) is rather simple.! In-
deed, the two singlet Kekulé structures, which one
expects to describe the ground state, are essen- .
tially not only orthogonal but also noninteracting
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(each to order ~27"), Thus, when the sites are
equally spaced there is an essential degeneracy,
with each Kekulé structure responding essentially
independently to dimerizing perturbations. But a
single Kekulé structure responds linearly to di-
merizing perturbations, because of the alternating
structure inherent in a single Kekulé structure,
and one expects bond alternation.

Of course this is only a qualitative picture (much

‘as the Neél state provides only a qualitative pic-

ture of antiferromagnetic instabilities for lattices
of paramagnetic ions). Whether in fact this simple
picture actually suggests the correct behavior de-
pends upon the nature of the particular linear mod-
el under consideration and upon the effect of other
relevant VB structures. Indeed, under certain
conditions we show that this dimerization conclu-
sion is not spoiled by inclusion of other VB struc-
tures; moreover, we argue that these conditions
are valid for Heisenberg models as in (1.1) when
the site spin s is such that 2s is an odd integer.

In Sec. II Kekulé structures are further consid-
ered, and it is pointed out that they exhibit long-
range order (LRO), as measured by the LRO
parameter p,

p*= lim (-1)?1im{(5,-5,,, - €,-5,,.)

q—-b@ n—> o
- -
X (siw. Siwn - <§I+q' gioqo,l>)) ’

(1.2)

with the expectétion values in general being over
a state (or ensemble) of interest. Sections III and
IV present general arguments that this LRO per-
sists in the ground state of certain Heisenberg
models. Section V points out that the existence
of this type of LRO indicates bond alternation.
For the s=% and s=1 chains Secs. VI and VII
give numerical results, as obtained by the VB
cluster approach of the preceeding paper.? Fin-
ally our s =% results are argued to be more reli-
able than earlier results,* %1314
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II. KEKULE STATES AND LRO

First we consider the linear spin s Heisenberg
model of (1.1), for which the ground state is known
to be'® anoverall singlet. A singlet pairing of two
nearest-neighbor sites is energetically favored
over the triplet pairing, so we consider the sim-
plest (overall singlet symmetry adapted) VB de-
scription of the ground state for a cyclic uniform
(6=0) chain to be

)= —}2— (la)+|oY), | @.1)

where |a) and |b) represent the two Kekulé struc-
tures

]a)EZ‘"’er[Zi- 1,2i],
=1

(2.2)

n

|b)y=2"/2 H[2i+ 1,2i],

and [7,j] represents the singlet pairing function
for sites 7 and j,

+3 _
Cfii]= S ()Tt (2.3)
m=-s 3
with ¢ the spin function for site ¢ having z com-
ponent of spin m. Here not only are |a) and |b)
normalized but also jzp) is, at least asymptotically,
since (using Pauling’s island counting technique'?)

@|b)=(2s+1)"2s+1)~ (2s+1)™ (2.4)
Similarly we see that

(a

1

.
Hsi'sj
i

b> ~(2s+1)™", (2.5)

since the finite number of spin operators in the 7-
fold product I} 8, 8, could introduce no more than
a finite number of islands. Then,

- = 1 .
<zp 5;°S; ¢>%§<a ||s,- S; a>
Y] 1,7
1 N
* 5(1" 0. o

Further,

(a

1 ) .1'
o|(1s5)( 11 505
%5 iy
L - > ' v -> -
2<b, 8;°8; b> <b‘ II Sie* S;. b>,
[ Yk

for two separate sets of site indices (involved in

! ;and II7 ;,) with all the sites in one set distant
from those in the other.

Of key significance in our discussion is the value
of the LRO parameter p of (1.2), so that it is of in-
terest to evaluate p for the simple superposition
| ¥ of the two Kekulé structures. Thus, noting the
translational symmetry of [¢> and the result of
(2.6), we have .

p?=lim$(=1)"" lim [@] (8,2 8,-G,5,) B, 8,01 - By S [0+ 0] (B 8- B 80 B 8,0 - B 5,0 |B)]. (2.8)

> n—>o

Now, using (2.7) and then (2.6) again, we obtain

21 (=1)t -+ - -
p*=lim -—— lim (@]|8,-8,|a)-®|5,-5,|b))
g n—swo
X (|8, 8, ]a)- (|8, 8,.]|0).
2.9)

Finally, noting that the translation of |a> one step
yields just - |»), we have

1 > - -
o= 7 lim (@]3,:8,|a)- 0|8, 5 |b))?, (2.10)
n-»>w
so that
p=3|(@|8,-8,- 8,-8,|a)|. 2.11)

.

e

For the Kekulé states numerical evaluation is very
simple at this stageand gives p=3s(s+1).

III. LRO FOR s = AND s = 1 CHAINS

We wish to argue that LRO, of the type in (1.2),
will persist for s=3% and s=1 linear Heisenberg
models even when more accurate (singlet VB)
ground-state wave functions are constructed. In
these cases we can'? apply spin-pairing schemes,
wherein any singlet ket is a linear combination of
VB structure kets with each site involved in a
singlet coupled pair, as in (2.3). The main as-
sumption of our development here will be that in
the ground- state spin pairing between a pair of
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sites should only be important when the two sites
are not very distant from one another. This main
assumption can be argued for s=3 to be reasonable
in a chemist’s language because it is generally
conceived that bonds between distant sites are un-
important. In a physicist’s language this main as-
sumption might be argued to be reasonable, since
otherwise there would tend to be long-range cor-
relations (and order) of the type in the Neél state.
Also, we could argue its reasonableness if we
believe the Kekulé state to provide a good zero-
order picture, and then note that the nearness of
spin pairing tends to be preserved on applying
the Hamiltonian H.

Before using our main assumption we consider
a classification of VB structures for a very large
cyclic chain of sites. The classification proceeds
through a consideration of two conditions: (i) site
j is bonded (i.e., spin paired) to the nearest-
neighbor site j+1; and (ii) there is no bonding
“through” site j, i.e., there is no site near to and
the right of j. Now, we classify a VB structure as:
(a)type A, if whenever (i) and (ii) hold, sitej is odd;
(b) type B, if whenever (i) and (ii) hold sitej is even;
(c) type C, if it is not of type A or B. Clearly,
the Kekulé structures |a) and |b) are of types
A and B, respectively. In fact, all the physically
reasonable VB structures, i.e., those satisfying
our main assumption concerning the unimportance
of long bonds, are of type A or type B. (This is
easily seen, for if we have two nearest-neighbor
pairs of spin-paired sites, sayj~j+1 and j’'~j’+1,
then we see that the only way to obtain an odd number
of sites between these two pairs would be to have
at least one bond thvough one of these pairs.)

Thus, given our main assumption we conclude
the 6=0 ground-state wave function can be written
(at least asymptotically), in the form

| ¥)=1/V2 (|A)+ | B)), (3.1)

where [A) and [B) are composed from VB struc-
tures of types A and B, respectively. Much as
for Kekulé states we expect kets of type A and B
to be asymptotically orthogonal and noninteract-
ing.'® Consequently, the development involving
Eqs. (2.6)—(2.12) still holds, and the LRO param-
eter for [\If) is

p=%|A|@,-5,-5,-8)]4). (3.2)

Thus p is expected to be nonzero.

IV. LRO FOR 2s AN ODD INTEGER

We can make a slightly modified argument lead-
ing to the prediction of the same type of LRO

whenever 2s is an odd integer. For these cases
the ground state is'® still an overall singlet, even
though spin-pairing schemes no longer'? generally
apply. Our modified main assumption is that’in the
ground- state local-singlet spin couplings for a set
of sites are important only when the sites are all
near to one another. This assumption can be
viewed as saying that the singlet VB cluster ex-
pansion for the ground state converges rapidly.
Some of the same rationales as mentioned in Sec.
IO can also be invoked here to argue for the pres-
ent assumption.

Now, we note that a set of spin-s sites, with 2s
an odd integer, can only be coupled to a singlet

- when there is an even number of sites in this set.

Consequently, only even numbered site excitations
occur in the VB cluster ansatz, and a classifica-
tion into A, B, and C types of spin couplings oc-
curs, much as in Sec. III. The main assumption
again precludes type-C spin couplings, and LRO
results.

This argument fails for integer spin sites
because, for instance, three sitescanbe coupled
to a singlet, and three-site terms could be im-
portant in the VB cluster ansatz. Since such odd
numbered excitations can occur, two pair excita-
tions (wherein nearest-neighbor pairs of sites are
singlet paired) can have an odd number of inter-
vening sites coupled to a singlet, and the main as-
sumption fails to preclude spin couplings of type
C. For these spins we then expect no LRO.

V. LRO AND DIMERIZATION

Once we have admitted the type of LRO de-
scribed in Secs. II and III the tendency for bond
alternation readily follows. Clearly both the (+)
and () linear combinations of |A) and | B) exhibit
the full translational symmetry expected of eigen-
kets to the 6=0 model and both are asymptotically
(i.e., for very large n) degenerate for 6=0. For
0 deviating just very slightly from zero, one or
the other of the two essentially noninteracting kets
|A) or | B) will be lower in energy and will essen-
tially completely dominate in the wave function.
Hence, the rate of change of the ground state en-
ergy Eg with respect to 6 will be given by

(5 3),  --@l(3) 1o

1 2 b -
(A 330 (BB A

i=1

=3(A|(5,-8,-8,-5,)|A)=+p. (5.1)

Thus the presence of LRO of the type defined in
(1.2) leads to a nonvanishing linear ground state
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response to the dimerizing 6 perturbation, and the
uniform chain is not energetically favored.

VI. NUMERICAL RESULTS FOR s = + CHAINS

We use our’? many-body VB cluster ansatz to
make more accurate numerical estimates of the
LRO parameter p for s =3 Heisenberg models.
In restricting the cluster expansion to six-site
terms the wave function ansatz takes the general
form

[¥)=ule™) | o)
2 (6.1)
T+Ei (T:ti+1+ T;i+1{+2i+3+ T;i*1i+2i+3i+4i+5) ’

i=1

where!? the script U indicates that only unlinked
terms are to be retained and the subscript s on
U indicates an excitation is to occur on every
site. The excitation operators are chosen to give
rise to excitations

Thial2:i800)= (= 1)'x,[i,i+1],
T}iaiv0ins|€i 81181028100 =V ili, i+ 3][i+2,i+1],

T (6.2)

;101i42i+3i+4i+5 gigiflgi+2gi+3gi+4gi+5>
=(=1)z,[i,i+5][i +2,i+1][i+4,i+3],

where g; indicates some site ground state for site
j. These excitations of (6.2) are associated with
the Rumer diagrams of Fig. 1. The four-site ex-
citations giving rise to[¢,i+1][i+ 2,7+ 3] have been
neglected here, since preliminary computations
indicated they were unimportant. Other more
complicated six and more-site excitations were

neglected to keep the computations more tractable.

For 6 #0 the symmetry of the Hamiltonian (1.1)
causes an alternation in the variational paramet-
ers x;, v;, and z;. Infact we realize that only
states of type A (if 6 <0) or of type B (if 6>0) will
survive, and we may choose x;=y,;=2,;=0 for
either all even i (if 6 <0) or all odd ¢ (if 6= 0).
The remaining nonzero parameters we now simp-
ly denote by x, v, z. In Appendix A we use the
matrix element evaluation techniques of earlier
papers'™!® to obtain an energy expression

Es 1+16] (FI18,-5,1¥) 1-[6] ¥, -5,1¥)

JN ~ 2 @) 2 @y
(6.3)

FIG. 1. Diagrams repre-
senting the spin pairings
occurring in the two-,
four-, and six-site excita-
tion operators of (6.2).

7T a2 i3

i T w2 i3 4 45

-0.50 \

FIG. 2. Ground-state energy estimates for the s =§
linear Heisenberg model as a function of the alterna-
tion parameter 6. The lower curve is for the present
VB cluster ansatz, the upper curve is for a (less accur-
ate) nonsymmetric ansatz, and the points at §=0, +0.11,
+0.25 are numerical estimates from Duffy and Barr
(Ref. 20). The common RHF and UHF results for 6
=0 are also shown.

where the matrix elements over §,- 8, and §,- §,
are given in Appendix A.

Numerical optimization with respect to x, v,
and z now yields the lower curve of Fig. 2, and
the results of Table I. Also shown, in the upper
cugve of this figure, is the result for the two-site
nonsymmetric (non-VB) cluster ansatz of a type
discussed earlier'®; this ansatz is treated in Ap-
pendix B. We see that it is only the VB ansatz.
which predicts a cusp in this energy curve at 6=0.
Also in Fig. 2 we show the well-known5 & 13 14
restricted Hartree-Fock (RHF) and unréstricted
Hartree- Fock (UHF) solutions (of the Jordan-
Wigner transformed s=3 Heisenberg model) both
of which are surpassed in accuracy by the present
VB ansatz. Although the RHF solution is™® as-
sociated with a bond alternation instability, the
UHF solution apparently is not.!'* Finally in Fig.

TABLE L Selected results for the s =5 VB cluster
ansatz (with a normalization such that x =1.000).

6 Y z Eg/IN
0.000 00 0.319 0.283 —-0.43576
0.010 10 0.311 0.266 —0.43750
0.02564 0.298 0.242 —0.44030
0.05263 0.278 0.207 —0.44548
0.098 90 0.247 0.158 —0.45524
0.19760 0.194 0.090 —0.47930
0.298 70 0.152 0.050 -0.50753
0.39860 0.118 0.028 —0.538 26
0.503 76 0.089 0.015 -0.57228
0.600 00 0.066 0.008 -0.60500
0.694 92 0.047 0.064 -0.638 29
0.80180 0.028 0.001 —0.676 73
0.904 76 0.012 0.000 —-0.71451
1.000 00 0.0000 0.0000 -0.75000
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2 we also show the few points obtained by Duffy
and Barr®® from their numerical extrapolation of
finite chain energies, with their 6= 0 result being
known to be very accurate.?® Their points do not
seem to be inconsistent with a cusp at 6=0. Fur-
ther, the existence of a 6=0 cusp can be argued
to be consistent with their speculation®® that the
zero-temperature specific-heat slope is nonzero
only for 6=0: a ground-state cusp suggests, as
5 is changed away from 0, that the ground state
drops away from the excited states, so that we
expect an energy gap for spin-wave excitations,
with this gap closing to zero just at 6=0.

Next, we can compare results for the VB
ansitze with the excitations truncated at two,
four, and six sites. The LRO parameters for the
two-, four-, and six-site cases are

p=0.375, 0.225, 0.169, (6.4)

while the energies for the two-, four-, six-, and
o.gsite cases are

Eg/JN=-0.3750,-0.4268,-0.4358,-0.4431.  (6.5)

Comparison of the energy convergence to the
changes in the LRO estimate is suggestive that p
remains nonzero even for very accurate VB
ansitze.

Finally, calculations on finite even cyclic chains
for 6=0 may be consulted for some further evid-
ence. First we note that (+) and (-) linear com-
binations of |A) and | B) Kekulé-like states should,
for finite NV, give states |+) and |- ) with transla-
tional symmetries differing by 7. Thus we expect
the ground state of wave vector 2, and the lowest
lying state of wave vector k,+ 7 to approach de-
generacy at least as fast as 1/N. Checking this
energy difference for chains of length N=4, 6,8,
10, and 12 we find 2.0000, 1.302 8, 0.9515, 0.744 8,
and 0.6100J, respectively. Indeed, it is seen that
this appears to extrapolate linearly in 1/N to near
the expected limit 0.00.

VII. NUMERICAL RESULTS FOR s = 1

We employ the many-body cluster VB ansatz,
with a wave function

i— i+l

FIG. 3. Diagrams for
the spin pairings occur-
ring in (7.2).

i i+2
/iHQ—/H?)

T4l e2 i+3

EAN

N=8
-1.5

FIG. 4. Ground-state energy estimates for the s=1
linear Heisenberg model. The lower curve is for the
present VB cluster ansatz, while the upper curve is for
a single Kekulé state. The energies obtained for finite
cyclic chains of lengths N=7 and N=8 are also shown.

[¥)=u(e™)]| @),
(7.1)

2n
I*= Z (Tiin* Tiiaiizin)s
i=1
and

T;i+1lgig{¢1>=x{[i,i+ 1],
T;mmns|g‘¢§mg,-,,2gm) (7.2)

=y,li,i+ 3]+ 1,i+ 2]+ 2,[i,i+2][i+1,i+3].

The Rumer-type diagrams associated with these
excitations are displayed in Fig. 3. Again we have
neglected four-site excitations giving rise to near-
est neighbor spin-pairings as in [¢,i+1][i+2,i+ 3].
Again too we may choose x;=v;=2,=0 for either
all even ¢ (if 6 <0) or all odd ¢ (if 6=>0), and we de-
note the remaining nonzero parameters simply by
x, v, and z. The energy expression is of the form
in (6.3) with the §,-5, and §,-S; matrix elements
obtained in Appendix C.

Numerical optimization with respect to x, y, and
z yields the lower curve of Fig. 4, and the results
of Table II. Also shown, in the upper curve of
this figure, is the result of the simple Kekulé
states. Finally the 6=0 points computed®® for
cyclic chains of 7 and 8 sites are indicated; we
note that odd and even cyclic chains for s=3% are

TABLE II. Selected results for the s =1 VB cluster
ansatz (with x =1.000).

o y z Eg/JN
0.000 -0.353 0.420 —1.238 51
0.050 —0.334 0.391 —1.264 92
0.100 —0.315 0.364 -1.292 34
0.150 Y ~0.296 0.337 —1.32082
0.200 —0.276 0.311 ~1.35042
0.300 —-0.237 0.261 —1.43132
0.400 -0.199 0.214 —1.48109
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observed to yield upper and lower bounds to the
exact infinite chain energy per site, and such a
speculation seems to us also to be consistent with
the available s =1 data.”® The value we obtain for
the LRO from our present calculation is p =0.52.
Because of the seemingly rather large energy er-
ror and the rather large change in p from that of
the Kekulé state, this calculation is not so sup-
portive of the p# 0 prediction for s=1, as were
the calculations for the s=3 case.

VIII. DISCUSSION

Our predictions of ground-state dimerizing in-
stabilities are based upon the known global-singlet
character of the ground state along with an assump-
tion concerning local-singlet character, this as-
sumption being that singlet spin pairing (or coup-
ling) occurs almost totally amongst nearer-neigh-
bor sites (as is typical in conventional VB treat-
ments of molecular electronic structure, where
our “sites” are identified as s=% electrons). The
combination of global- and local-singlet symmetry
characteristics then implies an asymptotic degen-
eracy at =0, and deviation away from 6=0 yields
a linear energy response, much as in the conven-
tional Jahn-Teller effect.

The arguments we have presented concerning
ground state dimerizing instabilities have required
several conditions of the system, including: (a)
covalent structures only are of importance; (b) ex-
change interactions are one dimensional; (c) the
Heisenberg model is isotropic with no magnetic
field; and (d) the temperature is 0°K. The lifting
of any of these conditions would in general cause
our local-singlet assumption not to preclude the
admixture of type-C VB structures and hence spoil
our argument leading to LRO and dimerization.
Another type of condition for LRO is, naturally,
that the chains be very long. Of course in any
real system each of these conditions is generally
violated to some small degree. However, if the
violation is sufficiently weak, all that occurs is
that the curvature in our energy curves at 6=0,
instead of being infinite, is now finite but very
large in magnitude. If this magnitude exceeds
that of the relevant (zero-temperature) elastic
constant, dimerization still occurs, and at finite
temperatures spin-Peierls phase transitions can
occur.*® On the other hand, there are some as-
sumptions in the preceeding sections which do not
seem to be necessary to our LRO conclusion.
Thus, for instance, we could include next-nearest
neighbor or biquadratic exchange in our Heisen-
berg Hamiltonians.

It can be argued that our view of the dimerizing
instability in Heisenberg models is more reliable

than those previously given. There are two major
points in the argument: (i) our energies are more
accurate (i.e., lower) than both the® ¢ RHF solu-
tions and the'®!* UHF solutions; and (ii) a physi-
cally reasonable local-singlet symmetry assump-
tion indicates the dimerizing instability persists
for even very accurate wave functions. In addi-
tion, our predictions apply to a wider variety of
linear isotropic Heisenberg models. The predic-
tion for the s=3 case seems most reliable though,
because the main assumption of Sec. III or IV
seems consistent with chemical VB ideas, and
because our calculations of Sec. VI more strongly
support p #0. Further there are some rather spec-
ial models to which our wave function ansitze and
local symmetry arguments apply exactly. An ex-
ample in point is the special®® Heisenberg mod-
el,

[o]
->

@
H=J )Y [(1+08)8;+8,,,+(1-08)8,,,-5,+35,-5,,,
T \

+%§4-1'§i+1]7 (8.1)

which at =0 have the Kekulé states of (2.2) as de-
generate eigenkets; for the s=3 case the assoc-
iated eigenvalue is known to be that for the ground
state.

Finaily, it seems that the VB calculations of
Secs. VI and VII are the first many-body VB cal-
culations. Especially in view of the physical ap-
peal and of the qualitative differences between
VB wave functions and the usual (Hartree- Fock and
Green’s function) treatments further applications
should be made.

APPENDIX A: VB CLUSTER ANSATZ FOR s = ; CHAINS

In the appendices here we use diagrams with a
single vertical line (rather than a single point as
in a Rumer or superposition diagram), and we
stack up various diagrammatic components with
top-to-bottom diagram ordering corresponding to
left-to-right operator ordering. Further, we
use the matrix-element evaluation nomenclature
and techniques already described'™'® elsewhere.

Before considering the Hamiltonian matrix ele-
ments for the wave function of (6.1) we wish to
evaluate the “residual overlap ratios” via the so-
called strongly linked expansion formulas®’

; .(’—,_-.\“ /I_l_,.\l
: I [ S A T
i H i ' i ' i | H

' H H i H ' H I

H H | ' H i : '

H ! ' H i H ' 1 H H H !

[S— L J [R— [—1

FIG. 5. Closed (strongly linked) diagrams arising
in evaluating the overlap elements for the s=§ VB
ansatz.
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-
-

>1

»

FIG. 6. Strongly linked dangling diagrams arising for
the overlaps. All remaining strongly linked dangling
diagrams are obtained from those shown by inversions
or reflections. Hence, there are 4, 2, 2, 4, and 2
diagrams of the respective types shown here.

(q/ l \I’> even

= = 1200 m
fra = (F1¥) (1) ; £ "(1) fm/2_1 ’ (a1)
(1 ¥)az) _ 2 1
= — = 3(12 )34e0eme2
P oy~ 2 Ao) et

where a subscript (12...j) appended to an overlap
matrix element indicates sites 12...j are deleted
from the wave functions so subscripted, and the
script- £ terms are “strongly linked sums,” which
involve sums over linked few-site diagrams. Of
these linked diagrams there are “closed” ones,
given in Fig. 5, and “dangling” ones, given in
Fig. 6. Arrows have not been included on the
pairing lines, because our infinite linear case

is an even alternate (bipartite) graph for which
we can entirely avoid phases.!? The closed dia-
grams of Fig. 5 are easily evaluated, using the
techniques of Sec. IV of the preceeding paper, to
yield 2x2, 4y%, and 8z% Now the first of the dang-

N I

N
l‘?}v:'s
RN
[ | S S S R S

[/ A T T O R

[ 1!?:!
N N (g

FIG. 7. Higher-order diagrams arising in the ex-
pansion of the first diagram in Fig. 6. Although linked,
these diagrams are no longer strongly linked, since
more than one excitation operator is here required on
the ket side of the corresponding matrix elements.

SRERE

I
v‘=
T A S T T B
T T S T

Lo P U

H
1

FIG. 8. Higher-order diagrams arising in the expan-
sion of the third diagram in Fig. 6. )

ling diagrams of Fig. 6 can be expanded'® as 1/f
times the sum of the first two diagrams plus 1/f2
times the sum of the last four diagrams, all in
Fig. 7. The second danglingdiagram of Fig. 6isex-
panded similarly, with the lower left bar inthedia-
grams of Fig. 7replaced by the left-pointing arrow
structure as found on the bottom of this second dang-
lingdiagram. The third danglingdiagram of Fig. 6
is expanded as 1/f* times the sum of the diagrams
in Fig. 8. Next, the fourth dangling diagram is
expanded in terms of those in Fig. 9, with those
for the fifth diagram being very similar. Now
denoting the values of the first, third, and fourth
dangling diagrams, of Fig. 6, by x£, xn, ‘and y¢,
we see that these expansions just described above
lead to recurrence relations

E= (2xy+y£)—f1- +(2zx2+zx§+4zy+z§)};2 ,

n=<2x2+ 2te 5 g'&)/,é (A2)

= (4xz +2z2¢&)

~hl

From these we find,

_(2xy 2z -'lxzv2 vy xz 222\,
5-(7”"2*2”?+73‘)(1-7-7f-7§)

(A3)

which in turn determines n and ¢ (once x, vy, 2,
and f are known). Further because of the similar-
ity of the second and fifth dangling diagrams

of Fig. 6 to the first and fourth ones, we see
that they take values 3£ and 2. Then, the
nonzero strongly linked sums are

FIG. 9. Higher-order diagrams arising from the
fourth of Fig. 6.



884 D. J. KLEIN AND M. A. GARCIA-BACH 19

R S A S
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"::" 'EJ 'v:,u‘ —

FIG. 10. Various strongly linked diagrams with an
interaction line disposed as appropriate for the first
equation of (A 5). The symmetry numbers for these
diagrams are 1, 4, 2, 4, 2, 8, 2, and 1, respectively.

L4214 )= 242 4 2x¢,

£(12 )3456(13) = 4y2 + zyé-’

pa2 )345678(13) = 822,

£2(1,) =247+ dxt = £2 4 2x7,
L294(1,) =4y + 4y £+ £,
£123456(11) = 822.

(A4)

Hence, the residual overlap ratios of (Al) can be
determined self-consistently in terms of them-
selves.

Having found the f’s we now consider the Ham-
iltonian matrix elements, which are developed in
terms of similar strongly linked expansions

(¥I5,-5,1¥) 1 (12, . e = e a1
TN £56s, S,)+ £ (Sl'sz+s3-s4)7

- - - 1
+ LIB6(S . 5, + 5, 5,+ 5,50 §y) 77)

(A5)

(15,8, _ 1

Y <£ (5, 5)

h[ -

> » = =, 1
+ L3555, . 5, + 5.+ Sy) 7—),
where we have noted the translational symmetry
of [\I/) with the bonds between sites 27 — 1 and 27
identified as the “strong” bonds, for which nonzero
variational parameters appear in our VB ansatz.

ST N T S T T O N A

FIG. 11. Various strongly linked diagrams associated
with the second line of (A5). Their respective symm-
etry numbers are 1, 4 2, and 2.

The diagrams appearing in the first and second
equations of (A5) are given in Figs. 10 and 11, and
lead to the results

L2+ 8,)= —3(2x% + 4xE + £2 4 2x7)

L184(E .5, +5,-8,)=0,

£123456(F .5, 4 3,-8,+8,-5.) =0, (A6)
L2345, 8) = - 3(y2+ i+ B,

£2355(3 .8 1 5,-8,) =1 x 1627,

which then determine the Hamiltonian matrix
elements.

APPENDIX B: NONSYMMETRIC ANSATZ FOR s = 5

The nonsymmetric localized-site cluster ansatz
developed earlier may also be appled to the alter-
nating Heisenberg chain. This wave-function an-
satz is (most simply)

[ ) =ue™) | &)
|®)=apaB...ap (B1)

n n
t=x ) (2i-1,20)+y Z (2,2i+1),
i=1 =1

where (ij) is a transposition interchanging spin
indices ¢ and j. The nonalternating case (with
x=7v) has already been considered'® and we can
follow that development very closely. In evaluat-
ing the residual overlap ratios-only a single type
of linked diagram occurs and is associated with
the values x? or y%, depending on the bond involved
Our first residual overlap ratios are given as

=142/ fou+9/fen f3=1+9/fan+2*/f g
(B2)

As usual for infinite open chains the residual over-
lap ratios f (;,;., involving the deletion of sites on
the end of the chain achieve an independence of

the chain length, and we obtain

fe=fen=Fan=1+2/f,
fo=fen=len=1+9"/f.

Combining these two equations and solving, we
find

2 2 2 2\2 1/2
f.= 1+y2..x +[<1+y2—x) +x2] . (B4)

(B3)

For matrix elements over 28§,-§,,, + 3 exactly the
same type of diagrams arise as did'® in the uni-

form case, so that, taking care of the effects of
alternation, we presently find

(¥[8, 8, | 0)/(¥| ¥)= (1/2f, f,) (x + Y2 /f,) - 3,
W[, 8, | W)/ (¥ | ¥)= (1/2f, £ ) (v + x2/f,) - 5. (B5)
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APPENDIX C: VB CLUSTER ANSATZ FOR s = 1 CHAINS

We consider the ansatz of (7.1) with two- and
four-site excitations. The treatment uses the
same techniques as for the s=3% ansatz of Appen-
dix A. In evaluating the residual overlap ratios
the various closed and dangling diagrams which
arise are shown in Figs. 12 and 13. The
closed diagrams take values 3x% 9y% 3yz, and
9z2. Letting the first dangling diagram of Fig.
13 have the value x£, and expanding via the type
of procedure indicated in Appendix A, we obtain

xE=(3x%y +xyE+3x2z2 +x2£)/f2, (C1)
so that ’
E=3x(y+2)(fP-y-2)" (C2)

The second dangling diagram of Fig. 13 is simply
3£2. Consequently, the residual overlap ratios of
interest are given as

_ (rw) , - ] g

—_\=1® 4 2 - 4
Tu (¥ 1¥) 45y (Bx*+ 4w+ 58%)2+ (9y?+ 6yz + Oz )f
fz_(il_‘l’)(_m = (3x2+ 2xE) + (992 + 6yz + 922) —

<\I!| \I,> (1234) f2

(C3)
Next, for the energy expression we find the dia-

grams of Figs. 14 and 15 involved in the strong-

and weak-bond matrix elements. Then,
185 W) -2 <3x vave+ 360+ 12;2)

v fiz ,
(‘I'I<S‘;-} S;)I /A fzf (6x%y — 6x%z — 6yz — 92° + 4xy £
12

+3y8% _ dxzi - 3282). (C4)

FIG. 12, Closed diagrams for the overlaps of the s
=1 VB ansatz.

)
)

[
k

FIG. 13. Strongly linked dangling diagrams (with
symmetry numbers 4 and 2) for the overlaps of the s
=1 VB ansatz.

[
s T o B S
H i

e N AR o A N N SO N

FIG. 14. Strongly-linked diagrams with an interaction
line for the strong bond, as associated with the first
equation of (C4). Their respective symmetry numbers
are 1, 4, 2, 2, 4, and 2.

\></ \54/ L /

FIG. 15. Strongly linked diagrams (with symmetry
numbers 2, 2, 1, 2, 4, 2, 4, and 2) associated with
the second equation of (C4).
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