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Taking into consideration the first-order-exchange and ring diagrams, we present a theory of two-
dimensional (2-D) electrons in a magnetic field under the de Haas-van Alphen condition. The Fermi
momentum or the chemical potential of the system oscillates with the magnetic field, its interaction term
being characterized by a factor (e 2/pg)*’* = (2'%,)*’*. Due to a 2-D peculiarity, the susceptibility oscillates
as in the ideal case without a constant phase —ar/4 characteristic of the three-dimensional case. A relation
between the amplifude of the oscillating susceptibility and the field and temperature is derived. The energy
variation is like a *cos (me./a’), where a ? represents the field energy and ¢, is the Fermi energy for the ideal
case, i.e., 2mn, in the units # = 1 and 2m = 1, where n is the number density. The amplitude of the
energy oscillation increases with the field strength squared. A new specific-heat formula is also presented.

I. INTRODUCTION

Since the early works of Fowler, Fang, Howard,
and Stiles on magnetic conduction and of Fang and
Stiles on the g factor,' the many-body properties of
two-dimensional (2-D) electrons in a magnetic field
have attracted considerable attention.? Stimulated
by these works, we have developed in a previous
paper, hereafter to be called I, a general statist-
ical-mechanical theory of 2-D electrons in a weak
magnetic field and evaluated the magnetic energy,
susceptibility, and other quantities as functions
of 7, the density parameter.® Recognizing the
roles played by electron spin and orbital motion in
the magnetic response of the system, we have
succeeded in deriving the effective g factor and
effective mass from the paramagnetic and dia-
magnetic susceptibilities, respectively.

When plotted against », the paramagnetic suscep-
tibility was found to vary almost linearly. This
means that the effective gfactor squared isalsoap-
proximately linear in 7, dependence. Note that in this
respect the 2-D susceptibility defined similarly to the
three-dimensional (3-D) case isnot dimensionless
but is proportionaltothe Bohr magneton squared. In
addition, the paramagnetic susceptibility is propor-
tionaltothe square of the g factor. The diamagnetic
susceptibility is smaller than the paramagnetic
susceptibility. In fact, the ideal-gas susceptibil-
ities maintain the same one-to-three ratio as in the
3-D case. However, the diamagnetic susceptibility
shows a nonlinear increase when plotted against
v, Therefore, the effective mass is also nonli-
near. Only for a limited domain of v, is it a linear
function of »,. The approximate character of this
dependence is clear also because the susceptibility
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is proportional to the square of the Bohr magneton.

We have developed the weak-field theory for
absolute zero. The susceptibilities have been de-
rived from the grand-partition function in con-
sideration of the exchange and ring contributions.
In view of our purpose, these contributions have
been evaluated to order ¢* in magnetic field, where
a® represents the field energy, and to order e* in
interaction. Concerning the latter, we have neg-
lected the second-order-exchange contribution. As
can be seen from the case of zero field,* this
contribution is very difficult. Even for the 3-D
case which is somewhat easier to treat mathe-
matically, we have not been able to obtain an ex-
plicit result. Apart from this neglection, our
theory is rigorous and is a natural extension of the
theory of the correlation energy for zero field.

In fact, we have obtained the correlation energy
shift due to a magnetic field.

It is the purpose of the present paper to extend
the weak-field approach of I to the intermediate-
field case which corresponds to the de Haas-van
Alphen (dHvA) oscillations. Under the so-called
dHvA condition, the field energy is less than the
Fermi energy but larger than or comparable to
the thermal energy. This condition makes the
theoretical approach extremely difficult in con-
trast to the weak-field case. We have recently
succeeded in treating the 3-D case® and to ex-
tend the Lifshitz and Kosevich ideal-gas theory® to
the case with Coulomb interaction. Among several
interesting correlation effects, we have found that
the extra field dependence of the amplitude due to
interaction can be represented by an exponential
factor, giving a molecular basis to the phenomen-
ological Dingle exponential reduction factor.
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We shall employ a grand-ensemble approach and
the units in which #=1 and 2m =1, where m is the
electron mass. The grand-partition function shall
be constructed systematically in the interaction
parameter e?. Hence, in Sec. I we start with the
ideal-gas case. We shall construct the free-elec-
tron propagator rigorously and thenthe ideal grand-
partition function. The propagator will be used for
the subsequent interacting cases also.

In Sec. III, the contribution to the grand-partition
function from the first-order-exchange graphs
will be given. For weak fields, we have shown
that this contribution and the first ring contribu-
tion should be combined in order to eliminate a
divergence. Therefore, expecting the same re-
quirement we shall give only the general form for
the first-order exchange contribution.

In Sec. IV, the ring-diagram contribution will
be considered. The important step here is to eva-
luate the eigenvalues of the propagator under the
dHVA condition. Note that the eigenvalues as func-
tions of integers j and momentum ¢ give the di-
electric function as a function of frequency and mo-
mentum, as shown generally elsewhere.” - The
eigenvalues turn out to be oscillating with the mag-
netic field. It is important to note that the effect
of spins on the eigenvalues is factored out. This
is an indication that the electron spins are not the
primary source of the oscillations. It is the orbital
motion of the electrons that is important for the
dHvA phenomenon.

After considering the exchange and ring con-
tributions separately, we shall, in Sec. V, com-
bine the two and obtain an explicit result. In Sec.
VI, we shall evaluate the Fermi momentum which
enters grand-ensemble theory as a parameter.
This renormalization of the Fermi momentum
follows the golden rule of grand-ensemble theory.
Note that the Fermi momentum p, squared rep-
resents the chemical potential. Therefore, in Sec.
VI we are actually giving an oscillating chemical
potential. Note in the result for the Fermi mo-
mentum that an interaction parameter character-
istic of twodimensions enters. This parameter is
nonlinear ine?/p,, which is adimensionless combina-
tion of the Bohr radius represented by 1/¢? in our
units and the average electron histance represented
by 1/py; p, being the ideal-gas Fermi momentum.

The oscillating susceptibility will be obtained ex-
plicitly in Sec. VII. In deriving the susceptibility,
we have considered the interaction parameter ¢2/
bo to be small and retained only the lowest-order
terms. We shall then find that the interaction
parameter is cancelled out from the final suscep-
tibility expression. That is, the susceptibility
within the above approximation looks like an ideal-
gas formula. This is a 2-D peculiarity combined

with the approximation.

Section VIII will give the internal energy ex-
plicitly. From this, the specific heat will be ob-
tained in Sec. IX. Since the dHvA phenomenon is
essentially characteristic of free electrons, our .
emphasis in these sections will be in deriving osc-
illating functions. For this reason, the inter-
action effect on the internal energy will not be pur-
sued to a higher order in which a coupling of the
oscillating terms and the interaction terms ap-
pears. That is, we consider the oscillating terms
and interaction terms to be small and neglect their
cross products. As we shall see, the interaction
effect appears as a reduction in the internal energy
within the approximation. Since this reduction is
independent of temperature, the specific heat will
not have an interaction term. That is, we shall
report an ideal oscillating specific heat. This
is the zeroth-order result. We shall report on the
interaction effects on the specific heat in a later
article. Finally, in Sec. X we shall give several
relevant comments concerning the oscillating
susceptibility and the g factor, etc. In 1961, Kohn
discussed the independence of the cyclotron reso-

 nance and dHvA frequencies on short-range inter-

actions.® We shall be interested in the derivation

of an explicit and reliable formula for the dHvA
oscillations with emphasis on the effects of Coulomb
interactions on the amplitude and phase of the
oscillations.

II. IDEAL-GAS CONTRIBUTION

The free-electron propagator in reciprocal
temperature and coordinate. space is constructed by

Ko(?zﬁz;;xﬁl)
=Y e EmBee g (F0k (F), (2.1)
Ny C

where ¢ is the spin variable, 8=1/kT. The eigen-
functions and eigenvalues are known, We find

Ko(fzﬁz;?xﬁﬁ)

exp[ -1 a® coth(sa®)(x®+ y?)] et?
2 sinh(sa?) ’

2
a
=g Kl

s=B,-B,, X=%,-%,,

¢=%a2(y1+y2)(x2 -x), (2.2)
K (s) = exp(-sz ga®) 4 }(}| + exp(s3 ga®)¥)( ¥ |,
a*=eH/c=wy/2,

g is Lande’s factor, a® represents the magnetic
tield energy, and w,=2eH/c.

The free-electron contribution to the grand-
partition function is given by
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1nzo=12 ZT (=14, , (2.3)
=1

where

;2
A, = _2‘.‘77_ Tr (Ks (pet®

exp[—3 a? coth(1Ba®)(x? + yz)]>
x 2 sinh(IBa?)
(2.4)
Hence,

Ze ,1 cosh(3g1Ba?)
o=~ Z( z sinh(lBa®)  ’

where A is the surface area.
The right-hand side sum can be expressed in
terms of the Mellin transform:

(2.5)

- 1 cHew
2 0 [ s s,
0<c<1. (2.6)
We find
InE,=(Aa?/2m),, (2.7)
; s .
To= E?Wz_.[c:: ds sseinx;rs co:iﬁf(f:)a) , 0<e<d,
(2.8)
where
n=Bu=Pppy, z=e", a=Pa®. (2.9)

The contour shall be closed to the left in the com-
blex s space sothat the residues at sa=ilr, (I= —)
are picked up. Let us denote the residues as I,
for I=0 and I, for I#0. The residues I, due to
sinms are negligible for large 7 because they vary
as e”" as shown in Appendix A. We have

(2.10)

I, is the contribution from s=0. It is given by
~J

Ip=Ig +1gp+1y5.

(=2)*** cosh(lBa®3 g)
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Ig=(m/2a){1+(1%/30?) +¥*[3g)? - 5 [, (2.11)

where y=a?/pZ. I,, and I, are the contributions
from the residues at sa=ilr and s=1, respec-
tively:

®y_ T f e*" cosh(zgsa)
I 2 i s sin(rs) sinh(as)

By changing variable s such that s=x/a+ilr/a
for the first integral I, and s=x - for the sec-
ond integral I,, we find

ds . (2.12)

I - _yia cos(ln/y) cos(s glm)
Toe= 2 ,2:‘: =) Isinh(7%1/a) ’

.

- o™ 1 =(I=1)

=€ D, (<)terumim
1

Combining these results and neglecting I,, which
is small, we arrive at

cosh(z gal)

! sinh(al) (2.13)

4
InZ,= -‘-A%E{l+(w2/3nz)+ (22?2 -3]?

o v a cos(lw/v) cos(z gln)
" Z (=)' 1 sinh(7?] /a) }

(2.14)

II. FIRST-ORDER-EXCHANGE CONTRIBUTION

The first-order-exchange graphs contribute the

following®:

©

2. (-)iz'B,,

InE, , =

(3.1)
where the cluster coefficients are
1=1

B, =8 at,at, Z K(%,,(1 -DB;F,,0)

K (T, tﬁ;fn 0)% ol I?l —‘2 |) .

- A 3/2,2
ln':"'].x = ﬁ_ (a2/2,n,)2 m e Z Z
2 s=l t=1
where I=s+1.

[8inh(sBa?) sinh(zBa?) sinh(lBa®)]*7%

IV. RING-DIAGRAM CONTRIBUTION

The ring-diagram contribution is given by

= e[ o, (@-talt sl @)}

where

_ @ S ;. ua cosh(}glBa?)
Ma)= 2 g 2 (=) sinh(Zfa®)

s+t=l

Xexp<

Z f do exp

(3.2)
We find
(3.3)
(4.1)
2mija
(-5*)
» sinh[(sB+ @)a?] sinh[(#8 — )?]
a2 sinh(I Ba?) > (4.2)
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In the summations over s and ¢ are subject to s
20, t 21. Inorder to evaluate the grand-partition
functlon the exponential factor of the eigenvalues

has to be simplified. For this purpose, let us define

J

g> sinh[(sB+ a)a®] sinh[(18 - @)a®]

I(s,t):fﬂ da exp(-2mija/B)E(q, a;s,t), (4.3)
(0]

where

E(g, o:s,t)=E = exp <T P sinh(1Ba*)

()s=1,t>2
sinh[(sB + @)a?] ~  exp(sB + @)a?,
sinh[(#8 — @)a®] ~ 7 exp(tB — @)a?,

since I=s+¢ and due to the « integration,
I(s,t) can be neglected. (ii) s=0, ¢=1

exp(-¢°p), «~0,
- { exp[-(B - a)g®], a~ 8.
For other « values
E~= exp(-q%/2a?) . (4.6)
(i) s=1, t=1

(4.5)

— exp[-2(8 - @)a?] >

E® exp <" 2a?

(4.7)

iR’ 2 B? .
Alq)= @X [— % sin<21;ﬂa )exp<§-gf>+ . da cos <2ga> exp(—ﬂqz)}

B . /2mip’ a2
— %7 sln< W;B >exp<-§alz>

a?X q° » ,
T{mﬁ)— [~ (s cos (%

2mjB

+ exp(~B’q?)

g+ (2nj/pR SN\ 7B

2mj /B . h(ZﬂjB'

> , (4.4)
(iv) s=0, t=2(¢t=1)
_ 1 - exp(-2aa?®) .
E= exp (— ———pza—z— 2 . (4.8)
Hence, if a =0, E~exp(-ag?), otherwise
E= exp(-q%/2a?) . (4.9)

The integral over a of Eq. (4.3) consists of the
extreme regions in which k0 or @~ and the in-
termediate region. Accordingly, we have

ARV

We note that E is symmetric about ¢ =% g and after
a short calculation arrive at

(4.10)

(4.11)

Naturally, this result depends on B’. Since E =exp(—¢®/2,%) when aa? is not small, we estimate that a=~1/2a2

gives the point beyond which E = exp(-ag?).
becomes

a*xX q?

Ala)= = m{l ‘(3"" 2-::)[°05<B7Z>

where X includes a spin factor and is defined be-
low. The eigenvalues are oscillatory through this
factor X and also through the second term in the
square bracket. The factor X is characteristic of
a single free electron, while the momentum-depen-
dent factors represent the coupling of the effective
units (torons in the sense that arbitrary number of
electrons with exchanges can be the units in grand-
ensemble theory). As a function of momentum, g
(the eigenvalues are zero for ¢=0) reaches a

Therefore, we estimate B’ to be 1/2a% Then, Eq. (4.11)

9’8 mj
+§777 sm(Ba ):I},

(4.12)

maximum and then decreases. This result may
be improved if B’=c/a? is used at the expense of
introducing an adjustable constant ¢. Under the
dHvVA condition, Ba®>1, and because j* in the
denominators is dominant for large j, we can
simplify Eq. (4.12) as follows:

= a? L[ < q2> -a2/ az]
Kj(q)_ TX q4+(277j/13)2 1-(1+ el e 2 ,
(4.13)
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where

X= Z (-)izt
1-1
cHio
f ds

c=i®

cosh(z glfa?)

sinh(IBa?)
es"  cosh(z gsa)
sinh(sa)

T

<c¢<
i , 0<c<1,

sinms
(4.14)

In the last integral, a=pa®. The contribution from
the pole at the origin is n/a. The contributions
from the poles at as=ilm are given by

¢

dec exlrvivch COS(% Ing)

“a isinh[(ir*/a)(-)x]

T
2mi

(_)leiltlr cos(-é- lﬂ'g)
i sinh(lﬂz/a)

m
(87

Similar integrals appeared in the 3-D case.® We

arrive at

- A -
Ing, = 2’ qu ; u(q)x;(q)

2 &S . cosh(z glBa?)
= 202m)? _[dqu(q)g{r g (=) z'%

s+t=1v0

Using the relation

oo

E e-2rijals _ BO(a+nB),

j==

(n:interger)
we find

In=,,

“sinh(iBa®

Let us now separate the terms for £ -1=0 and

s=0 which are special in the double sum. The rest
will then be symmetric with respect to ¢ and s,

and we obtain

, cosh(z qlBa?) .

In=,, sinh(lBa?)

o [diuta) Z( Yz
quu(q)Z( =)z

= 2(2 )3

. , cosh(s gl Ba?)

2(2 )3 Toa sinh(lBa)?
q® sinh(sBa?) sinh(#Ba? )
X s;d exp (— a® ~ sinh(iBa?)
1
(5.3)
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_yrigt cosh( zngaz) Z

s+i=1
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sin(Ir/y)(cos} gl

n )
sinh(In? /a) ) - (4.15)

X= —

21r Z( )

=1

The second term represents a typical dHVA osc-
illating function. As we see. The spin factor g is
included only in the sign factor, showing its minor
role in the oscillations.

V. COMBINATION OF THE CONTRIBUTIONS
OF THE FIRST-ORDER-EXCHANGE AND RING DIAGRAMS

For weak fields, we have seen elsewhere that the
divergence in a part of the ring-diagram contribu-
tion is cancelled by the first-order-exchange dia-
gram. For our present case of strong field, it
is difficult to see the same because the eigenvalues
of the ring diagrams are very involved. Therefore,
without looking into this point concerning cancella-
tion let us evaluate the contribution combining the
ring and exchange contributions. We note that the
first ring contributes as follows:

sinh(IBa?)

8
x 2 f da e 2" exp

sinh[(sB + a)a®] sinh[(¢B - @)a®]
a sinh( Ba®)

< q). (5.1)

sinh[(s +1)Ba?] sinh[(¢ - 1)Ba?]
a® sinh(1Ba?)
ol}

sinh(s Ba?) sinh(¢Ba?)
a® sinh(l Ba?)

The first term on the right-hand side is equal to

ABa

pa? f dqu X,

2(2m)®

where X has been defined by Eq. (4.14). The sec-
ond term, upon integrating over d, gives ~InZ, ..
Hence, the combination of the first-order-ex-
change and ring diagrams is

7)

(5.2)

o (-

+ exp(-

InZ,, +1nZ, = 2(277 f dqu(q)X - 2(27r)

i e e

=M1+M27

_ulgr;(g)
1+ Eulg)r;(q)

(5.4)
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first and second terms.

In order to evaluate these terms, let us write
the eigenvalues of Eq. (4.13) as
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K(g,a?) =1 —(1 - g%/ 2a®)e""/ 2a* (5.6)

The sum over j can be replaced by integration
over

X 2
A (6])— e _4—_,_(_2(11'1]7_3_)2- K(qaaz) ’ (5.5) x=21rj/B. (5.7)
with Hence,
. (a°X/myu(q)K(q, a? (5.8)
Ma= - 5o i 1, ”’gf_ ¥ XK, 2>u<q>q e
_ ABm (@°X/m)K(q, a*ulq)q
o7 2(2ﬂ)3qufo dt [q*+ &(a®X/m)K(q, a)ulq)g*]*? ~ (5.9)
Performing the £ integration, we arrive at
A -
M2=—2_(§£'2_' qu [(¢*+F)** - 7], (5.10)
where
F=(a’X/1)K(q, a®u(q)q* = 2¢%a*XqK(q, a®) . (5.11)
On the other hand, the first term M, is
M,= 2(2”)2 fd 5 (2a° er) (5.12)

Hence, we obtain

M, +M,= 2(2") qu(—-(Za X)) +

- [q*+2e%a2XqK (q, az)]‘”)

A 2,2y\4/3 o 1/2
- 5(04: X) f dx[1+x3-x3<1+ %K((azer)l/sx,a2)> :| . . (5.13)
0 . :
Note that
2 ,2y\2/3 2,2y\2/3,.2
K((a*e*X) x,a?) =1 —(1+ "‘—-g—(a ez;X) x2> exp (— ii%%) (5.14)
and
(a*e2X)® ., pi.[ 21 . smh(l'lr/'y)cos(zglv)] ,
a’ =S 2 n ,§ (,) sinh(Ir%/a) ’ (5.15)

where

s=e*/pp, a=pa’, v=a"/py, n=Pp% . (5.16)
In Eq. (5.15) the second oscillations term is small
due to the large factor 7 in the denominator. We
can now write

A
My+ My= 22 541%p31(6)

o sin(lm/v) cos(z glm)
(“ §< - TR )

(5.17)

where

I(9)=f dz [1 +28.28
0

<1+ ;2; [1 —(1_,_92)6.9'2])1/2}

2/342
0= S_E&<

a

21 sin(ln/y) cos( i)
,z.z( -1’ sinh(lr?/ a) )

(5.18)

In the first approximation, exp(-6z%) may be
neglected because 6>>1. Then,

160)=f " da[t+2® -2%142/29V7]

=0.8149=1T . (5.19)

Our final expression is then
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= = oAB 454 21 5 sin(in/v) cos(z gin)
ISy, +In=, = Y3 <1+ K 2 - sinh(ir?/a) )

1=1

(5.20)

Combining all the contributions, the total grand-partition function is given by

InZ=1InZ,+1In% , +1In=,

47

4 2 ad 1
_ ABt} {1+ o (G @b e 5 T (i oS costi gt
1=1

1 sinh(m2l /)

3 o ¥ sin(Im/v) cos(z glm) 13 .
+134/ [:1"' —7.]_- g (—), Sinh(l‘”z/a) } + }. (5.21)

In this result, the last term is characterized by
a factor Is*/? which represents the correlation ef-
fect. As we see, this term is nonlinearly coupled
with the oscillating term in the bracket. There-
fore, we shall introduce a linearization in order
to solve the number density relation for the de-
termination of the Fermi momentum p,. This step
of linearization is unfortunate because we must
assume that the oscillating term is small.

The nonlinear character of the interaction ef-

PF=P0{1+ "

i (=)** sin(in/v,) cos(z glm)
11 sinh(l7%/a)

' E]

- —

i: (<)t sin(lm/v,) cos(s gl )

x[1_

poz (27",[)1/2’

=

0 I=1 ‘ Sin(lﬂ'z/a)

(n: density).

Here, s,, 7,, and v, are what we obtain from s, 7,
and ¥ by replacing p by p,, the ideal-gas Fermi
momentum. The above result shows that the
Fermi momentum in the actual interacting system
oscillates, although in a small magnitude. Such
an oscillating p, has been found for 3-D by us. It
causes modulations of the usual dHvA oscillations
because the period is dependent on pg.

VII. SUSCEPTIBILITY
The susceptibility is given by

1 % 9InE
XA P T | @y
Note here that the differentiation is at constant
z = expPpZ.
Because of the small oscillating part of p,, we

2 v cos(z gim)
ose _y (L2 1 _)i+1 2
X Xl &% =3) 4o o xz.l:( ) Usinh(In?/ @)

r

fect can be important. We shall further investi-
gate this point in a later article.

VI. FERMI MOMENTUM

From the total grand-partition function we can
evaluate the Fermi momentum py as a function of
density. This is achieved by making use of the
number density relation and neglecting small terms
such as 1”2 and (na)™. After three times of inter-
ation, we arrive at

I 3/3

+...]+. . } (6.1)

—

shall have relations such as

cos(In/y) = cos(ln/v,) + §IsE/ ¥(In/v,) sin(in/v,)

Siﬁ(lﬂ/ Y) =sin(ln/v,) - $1s¥/ 2 (In/v,) cos(tn/v,),
(7.2)

where sy=€?/p,. -
For a=Ba*>1, we can introduce an approxima-
tion

1/sinh(Ir?/ @)~ 2e™t"*/e |

As indicated in Eq. (7.2) there appear cos(lm/v,)
and sin(lr/y ;). Of these, we find that the coef-
ficient of the latter is much larger than that of
the former. The terms, withI, are cancelled out.
Therefore, the susceptibility is given approxi-
mately by

x{[1+ (In%/ &) coth(in?/ )| cos(ln/vy) + (In/v,) sin(In/v,)}, (7.3)
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where
Xo=(1/2m)(e?/c?) . (7.4)

The most dominant oscillating term corresponding
tol=1is

2 cos(zgm) mm, . LT
osc 0 — osc —
X =Xo 5 Shhr?a) a sin 7 X% sin 7

(7.5)

where Xjf¢ is the amplitude.
we then find a relation
X55¢ 72 H? sinh(n*kT/ i 5 H)
2me kT | coss gm |

In the regular units,

=1, (7.6)
where €,=p%/2m.

VIII. INTERNAL ENERGY
The internal energy U is obtained from
U= -(3InE/088), . (8.1)

The calculation is straightforward. After dif-
ferentation, the energy should be expressed as a

function of density, temperature, and field. The
result is

2 4 2 2
v= Abs [1+ L__‘g_(é"i_ _1) L

4 3m5 Do 3/ nj
1
% 141 0o T _cos(z glm)
Z (=) cos 70 Sinh(in?/a)
x coth(r?l /) Is“"":l (8.2)
Hence, the oscillating energy is
141 cos(ln/v,) cos(z glm)
yose - g (=) sinh(l7%/ )
x-coth(m%l /) . (8.3)

For large a and I~ 1, this is approximately
(U/A)~—(a*/1%)cos(m€,/a®) cos(z qm) ,

where €,=pZ. The energy varies as cos(re,/a?).
As a function of 1/H, the amplitude of oscillation
decreases rather strongly.

N

IX. SPECIFIC HEAT

The specific heat at constant area is found to be

yio cos(z g Im) cos(In/v,)

1rkT<
Cy=— — (1-12
V73 € ,5_:

0

sinh(m2l /a)
17 l

x{ coth(m?l/a)+ = 5 & [1 —2coth2(1r2l/a)]}+"' > . (9.1)

This result depends on «=8ugH
If @ is 1~ 3, Eq. (9.1) may be approximated by
2 BT

T3 e

€ sinh(7?/a)
On the other hand, for a>1, it is given by

cos(z gl

2 kT +
e T e (1T T kT costn/)

These expressions show that the specific heat osc-
illates as in the case of the susceptiblity.

X. CONCLUDING REMARKS

We have developed a statistical-mechanical
many-body theory of a 2-D electron gas with Cou-
lomb interaction in a magnetic field under the dHvA
condition. Under this condition, the field energy
is in between the Fermi energy and the thermal en-
ergy. Our theory is based only on first principles
and is suitable to low temperature and high den-
sity. The principle of our calculation is similar
to that for the correlation energy of 3-D electrons.

[1 12 cos(z gm) cos(m/7,) < 1r2>]

(9.2)

r

The Fermi momentum of the interacting 2-D
electron gas differs from the ideal case for which

Do=(2mn)*/2 . (10.1)

The Fermi momentum of the interacting system in
the intermediate field is found to oscillate with a

characteristic frequency parameter
Yo= a®/pZ . (10.2)

As for its dependence on the interaction, it varies
with #¥/* where 7, is the familiar density parameter

7, =(man)™/ 2= 21/ 25 = %/21/ 2, (10.3)
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The interaction causes a decrease in the amplitude
of the oscillations. Assuming that s, is small we
can use the expression

pr=Doexp(-3Iss/%) X glv,), (10.4)
where g(7,) is an oscillating function.

~ The susceptibility shows the characteristic 2-D
fde Haas—van Alphen phenomenon. The amplitude
of the most dominant susceptibility oscillation is
proportional to

Xollo/ @®~ Xoph/a, (10.5)

where X, is the ideal susceptibility corresponding
to the Pauli susceptibility for the 3-D case. Dif-
ferent from the 3-D case, the ideal susceptibility
has a dimension due to the 2-D character of the
system. The susceptibility oscillations are char-
acterized by the amplitude which varies with the
field as H™2, We have given a relation between

the amplitude of the most dominant oscillation and
the field and temperature. An experimental test of
such a relation is interesting. )

The internal energy has also been derived. The
amplitude of the main oscillation is approximately
proportional to H? and the frequency is determined
by a®/pZ when plotted against 1/H. The oscillation
is determined by the ratio of the Fermi energy to
the field energy. The specific heat shows the same
type of oscillations, as we expect. Under an adia-
batic condition, the temperature of the system
will oscillate. In the case of 3-D metallic elec-
trons such oscillations have been observed.

So far, we have considered the low-temperature
degenerate case. The opposite case of low density
and high temperature can be investigated based on
our general grand-partition function. Taking
the first-order-exchange contribution into con-
sideration, we find the quantum effects as follows:

X022 = (w3 n/kT) % £°[1 -3 Mn(1 =1/2" %ap)],
(10.6)

X2 = _(uZn/kT)5[1 —42%(1 -1/2" %)].
(10.7)

If we introduce as effective g factor in the first
equation above, we find a first quantum correction
which is determined by the de Broglie thermal
wavelength A and density:

g*~g(l ~t\%n). (10.8)

For convenience, a conversion table from our
units to the regular units is given in Table I.

It is very important to note that the oscillating
susceptibility formula given by (7.3) has been
derived in consideration of electron-electron in-
teraction. That is, it is not an ideal-gas formula.

TABLE I. Conversion of units.

Quantities Atomic units Regular units
Xo (1/27) (e%/c?) @rm/mu}
o Ba*=B(e/c)H BugH
Yo 01/770 I-‘LBH/(;i 217(2)/2m)

Yet, the formula does not contain an interaction
term. This is a 2-D peculiarity in which the in-
teraction terms cancel out in the high-density
approximation. On the other hand, a similar treat-
ment of a 3-D electron gas yields a factor®
exp(—c7, /a?) which reduces the amplitude of the
dHvA oscillations. This reduction is related to the
decrease of the Fermi momentum in the direction
of a magnetic field. The 2-D electrons do not
have motion‘in this direction when the field is
perpendicular to their surface. Therefore, as

far as many-electron interaction is concerned,

" there is no such reduction factor for two di--

mensions. If experimentally the amplitude is found
to show an extra density dependence, it is quite
possibly due to some other effect than electron-
electron interaction.

We also remark that in Eq. (7.3), the Landé g
factor appears merely as a sign factor. This is
because the dHVA oscillations are essentially due
to electron orbital motion. The same is true in
the 3-D case.

Therefore, in consideration of these fundamental
features of the 2-D dHvVA phenomena, we may not
introduce an effective g factor to represent many-
electron interactions.

The amplitude X §7° of the basic oscillation de-
fined by Eq. (7.5) is approximately

X55e ~ 4xo(kT/a?) exp(-kTT%/a?) . (10.9)

The exponential factor shows that the thermal energy
causes a kind of level broadening. Note in the 3-D
exponential reduction factor which we have just
mentioned that the interaction parameter 7, ap-
pears in place of k7.

Because of the form of Eq. (10.9), the amplitude
of the oscillating susceptibility will be a maximum
at

ET=a?/m2=ugH/m?,

This temperature is of order 0.1 K for H of order"
10* G. On the other hand, as a function of density
the amplitude increases monotonically. Unless
the oscillating part, i.e., sin n/v,, isintroduced,
there will be no maximum.

Finally, we remark that Eq. (7.3) for the oscil-
lating susceptibility does not have a constant phase
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—% 7 in the oscillating terms. This phase charac-
terizes the 3-D case and therefore its disappear-
ance in the 2-D case should be noted. We hope
that this and other 2-D oscillating properties be
tested by experiments in the future.
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APPENDIX

Contribution of Eq. (2.8) from the residues at
TS= I,

Z f cosh(z gsa)
Top= 21r s sinms sinh(as) -~

Using s=x-1,(1=1,2,3,...), we find

= L %7
[ = VI i cosh(z gal) 1 e
o3 g (V€™ el 2 p

-n - _) p=(1=1n cOSh(%gal)
€ Z( Ve sinh(al)l
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