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Study of a two-dimensional electron gas in a magnetic field. I. Weak field
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A many-body theory of a two-dimensional electron gas in a magnetic field is presented. The field
dependence of the Fermi momentum shows a two-dimensional peculiarity. It consists of the spin-dependent
paramagnetic part and the orbital diamagnetic part. The former increases more strongly with r, than the
latter. The paramagnetic and diamagnetic susceptibilities are found as functions of r, . The field-dependent
ground-state energy is evaluated. Its paramagnetic part decreases steadily with r„while the diamagnetic
part shows a maximum. No such maximum has been found for the three-dimensional case in the same
approximation which is valid for high density and low magnetic fields. From the susceptibilities, an effective

g factor and an eAective mass are derived. They are given approximately by g*/g = 1+0.87 X 10' n '" or
more accurately by g /g = 1+1.74&& 10 n " —0.708)(10' n ' and by m*/m = 1+3.21&& 10 n

where n is the number density.

I. INTRODUCTION

Since the famous work of Fang and Stiles' on the
extraordinary g factor, the many-body effects of
two-dimensional (2-D) electrons on liquid helium
or semiconductor interfaces have attracted much
attention in recent years. Active theoretical and
experimental works have been performed on the
magnetoconductance, ' dispersion relation, ' valley
splitting, ' exchange and correlation energy, ' elec-
trodynamics, ' cyclotoron resonance, ' optical prop-
erties, ' Wigner lattice formation, ' effective mass,
and g factor, "etc. In contrast to the metallic elec-
trons, the 2-D electrons show relatively large
correlation effects in a very wide density range.
Hence, they provide us with a very important test
ground for many-body theory.

Therefore, we have also studied the spatial
correlation of these electrons and the correlation
energy. " Concerning the latter, Rajagopal and
Kimball have made an independent approach al-
most simultaneous to ours. " We have shown re-
cently that the results of both approaches for the
second-order ring contribution are in perfect
agreement with each other, although the numerical
coefficient which appeared in our Eq. (4 4) of Ref.
11 involved a typographical error: It should read
=0.1728. However, Rajagopal and Kimball's sec-
ond-order exchange contribution was different.

Concerning the g factor, Janak" was the first
to attribute the extraordinary density variation
to electron interaction. Following him, Suzuki
and Kawamoto" considered the weak-field case
and Ando and Uemura" treated the strong-field
case.

The g factor has been evaluated by considering

the spin-up and spin-down electrons separately. If
their self-energies are given by Z, and Z, the ef-
fective g factor is obtained from g*=g+ (Z -Z, )/
p,~H. Here, the electrons in different spin states
are considered to have the same dielectric function.
Otherwise, their direct coupling does not enter the
above derivation of g*. Moreover, the dielectric
function has often been replaced by its static lim-
it.

In the past few years, we have studied the many

body properties of a three-dimensional (2-D) elec-
tron gas in a weak, '6 intermediate, "and strong"
magnetic field. The first case corresponds to con-
stant susceptibility, the second to oscillating sus-
ceptibility, and the third to what is known as the
quantum strong-field limit. These three cases
must be treated separately because the strength
of a magnetic field relative to the thermal energy
and also the Fermi energy determine the math-
ematical treatments.

For all these cases we have constructed the pro-
pagator correctly. The eigenvalues of the propa-
gator correspond to the dielectric function, as has
been proven elsewhere. " Although we do not use
the dielectric function formalism explicitly, it
has been obtained for all the above three cases
as a function of momentum, frequency, and also
field. By an obvious transformation from 1/kT
to frequency, we are able to convert the eigenval-
ues to the dielectric function.

In the presence of a magnetic field, the electrons
change their thermal motion. It is very important
to recognize this change in investigating many-
body properties of the electrons. In our formalism
the change is represented by the field dependence
of the eigenvalues which in turn determine magne-
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tic properties.
It is the purpose of the present paper to extend

our 3-D weak-field theory to two dimensions and
try to evaluate the field energy and the suscepti-
bility as functions of x, explicitly. To our know-
ledge, the magnetic correlation energy has not
been evaluated analytically yet. The magnetic
susceptibility will be derived from the grand-
partition function based on the standard differen-
tietion with respect to the field. We shall evaluate
the total magnetic response of the 2-D system by
this grand-ensemble method. As can be expected,
the total response consists of two parts: paramsg-
netic and diamagnetic. These two parts can be
separated from each other easily because the form-
er depends on Lande's g factor, while the latter is
independent. Indeed, the former is due to electron
spins while the latter is due to electron orbital
motion. In view of this difference and because we
shall obtain the paramagnetic and diamagnetic
susceptibilities, we shall determine the effective
g* and m~ explicitly as functions of x, .

In Sec. II, we shall construct the free-electron
propagator rigorously. For convenience, we
shall use the units in which 5=1 and 2m =1. From
the propagator, the grand-partition function of the
ideal 2-D electron gas will be obtained. Section III
gives the grand-ensemble treatment of the first-
order exchange graphs. We shall assume that the
field energy is small and calculate the exchange
contribution to order a4, where a' represents the
field energy. The field-independent part of this
contribution is known and agrees with what we have
obtained before. " The field-dependent part will
consist of two terms, one being common to para-
magnetic and diamagnetic responses and the other
being intrinsic to diamagnetic response only. The
latter represents the anisotropy due to the magne-
tic field. In Sec. IV, the ring-diagram contribution
will be evaluated. The eigenvalues which repre-
sent the unit propagation in the rings are given
rigorously first. We shall then evaluate the eigen-
values in powers of a'. Note that the eigenvalues
correspond to the dielectric function. " The field-
dependent part of the eigenvalues for small field
consists again of two parts, exactly as in the case
of the exchange contribution. Hence, there will be
two field-dependent terms in the grand-partition
function which represent the contribution from the
ring diagrams The first, which may be called the
isotropic part, shall be given relatively easily and
rigorously. Its contribution will be of order e' in
interaction and a4 in field strength. The second,
which may be called an anisotropic part, includes
a divergence which can be exactly cancelled by the
corresponding term from the exchange contribu-
tion. This divergence is due to zero momentum

transfer and remains in the ring-diagram contri-
bution even after summing over all orders in the
interaction parameter e'. There is yet another di-
vergence in each interaction order of the anisotrop-
ic part of the ring contribution. This divergence
is due to the singularity of the eigenvalues at mo-
mentum 2p„. Its origin and elimination will be
discussed in Sec. V.

We shall assemble all contributions in Sec. VI
and give the total grand-partition function explicit-
ly. Based on the golden rule of grand-ensemble
theory, the Fermi momentum will be derived in
Sec. VII. This quantity squared represents the
chemical potential of the interacting system. In
Sec. VIII, the total susceptibility will be derived
as a function of r, . The result will be a zero-.
temperature susceptibility formula. It contains the
paramagnetic part and the diamagnetic part. Section
IX will give the energy due to the magnetic field.
Finally, in Sec. X, we shaQ show that the ef-
fective g factor and mass can be derived from the
paramagnetic and diamagnetic susceptibilities,
respectively. Although improvements on our sus-
ceptibilities are possible in principle, they are
not what can be expected in practice in the im-
mediate future.

H. FREE-ELECTRON PROPAGATOR

Let us consider N electrons in a uniform mag-
netic field. The Hamiltonian is

y„, p
=

(2
)",/g exp[ip„x- ga (y —y )']

xB„(a(y-yo))ia) (2.2)

e„,= (n+-,') a), + -,'g(u„

where

(2.3)

The H„'s are the Hermite polynomials and
~
a) rep-

resents spin states.
Therefore, the free-electron propagator can be

constructed as follows:

(2.1)

where g is Lande's factor, 0 is the magnitude of
the magnetic field and the o's are spin variables
which take on either 1 or -1.

The solutions of the Schrodinger problem for the
case without Coulomb interaction are known:
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ft (z-. z, p p }.- g e-&j)ze»04~(l) (z, )y* ((z. )
'

& ( }
xp[--,'a' coth(sa')(x'+y')]

. 0 0, p ~ —" 2& 2 sinh(sa2) (2.4)

ln-0= Q—(-)"A, , (2.6)

where

,0 exp[- ,'a' c—oth(lpa2) (~'+y')] ~~

We obtain Aa', 1 cosh(-,'glPa')
2)F, , l sinh(l pa')

(2.7)

(2.8)

where A is the surface area.
For weak fields the right-hand side of Eq. (2.8)

can be expanded in powers of a'. To order a4,
we find

where

X (s) = exp(-s-,'ga')
~
0) (t (

exp(s-,'ga'}
~
4) (t I,

(2.5)s —
Pg —Pl j (QI

—2a (31l+ym)(xm —xl) j x —xg —xl.

Using the propagator, we shall evaluate system-
atically the grand-partition function. The free-
electron contribution to the grand-partition function
is given by

Equation. (2.9} is meaningful only for weak fields.
The low-temperature limit should be taken after
the field has been brought to zero. Since in gener-
al the case g=2 is important, we have introduced
into Eq. (2.9) a factor of 4 together with g'.

In Eq. (2.8), the magnetic field enters the hyper-
bolic cosine function, which is even, and also the
hyperbolic sine function, which is odd. Due to the
extra a' outside of the summation, the grand-par-
tition function is an even function of the magnetic
field —as it should be, because we expect the same
statistical properties from the system even when
the field is reversed. In Eq. (2.9) we have retained
terms to order a'. For the purpose of deriving
the susceptibility, the terms to this order in field
strength are needed.

The function E,(FI) defined by Eq. (2.10) is char-
acteristic of Fermi statistics, In the 3-D case,
the field-independent term and the first field-de-
pendent term proportional to a4 in the free-elec-
tron grand-partition function are characterized by
E,&, and E,&„ respectively. For the present 2-D
case, the two E functions are

(-)""exp(-F)m)

where

(2.9)

APa4
ln=, = E,(F})+ (—,'g '- —,')E, (F})+ O(a'), &,(n)= P(-)'"e', ~=expn=z/(I+e)

HI. FIRSTWRDER-EXCHANGE GRAPHS

(2.11)

1
d()(}) .Ir(e+ 1)

'

e r)+ 1
(2.10) The contribution from the first-order-exchange

graphs to the. grand-partition function is given by

00 W

)r=, = —P (-r)' Trfdj)' fdF fdF 4(r' F")IC '(r'F"",jd)K-( "F'F, 0 j) )j)
g 12 /el

t

APa' ~,cosh(2glPa'), sinh(jPa') sinh[(l —j}Pa']
16)F' ~ sinh(lPa ) ., q ~ P ~ a sinhlP'eI

(3.1)

where u(q) is the Fourier transform of the Coulomb
potential. We can expand the right-hand side in
powers of a'. After term-by-term integrations
over q, we perform summations over j and /. To
order a' we find the grand-partition function as
follows:

APe'
(I) = Q dqe jo j/j)j)(j (3 3)

ja2 lp el 0

(II) = ———a4 g- (1P}0
APe' g' 1 4

" -g)'
8jF 4 3, , lp

-So-Sl r in''dtI 8
In=-,„=(I)+ (D) + (ID),

where

(3.2)

(3.4)
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X dq q2& ~" ~/»@ .
0

APe a g' 1 1
4m' 4 3 p~' (3.9)

(3.5)
The integrals over q are easy to obtain. The

summations can be expressed in terms of

The third integral shall be combined with the
ring-diagram contribution as will be discussed
in Sec. IV.

IV. RING DIAGRAMS

P
)/2 " 1

2 — cfP g

7T . 0 g +1

P2 2 X/2 (3.6)

The ring-diagram contribution can be expressed
in terms of the eigenvalues of the effective
propagator. They are

a ~(,» cosh(-,'glpa')
2m~), ) sinh(l pa')

where

(3.7) where

exp z ——d~, 4 1

We find

(I) =
4 dq [F , ,())')]' =

3
p' .Ae', , 2APe'

Similarly,

(3.8)

1 1 sinh[(n+ jP)a'] sinh1[-o, + (l —j)P]a']
4y a' sinh(l pa')

Performing the j sum and expanding in powers of
a', we find

y (q) y(0) (q )+ )((1(L)
(q ) + y( lb )

(q ) (4.3)

&~"'(q)= —g exp 2&ijx-x 1 ——pq' dx,
"(-)''e' ' " x

r= l (4 4)

~,' "(q)= ———Z (-) z l exp. 2)(ijx —x 1 ——Pq: dx,) Pa g 1 ~ )) ) .. x
4~ 4 3 r., l

(4 5)

3a4 2 'O

y(&())( )
— P q p ( ))-le

6w

r 2

x' 1 —— exp 2)(ijx —x 1 ——Pq' dx. (4 6)

Note that the two field-dependent parts of the
eigenvalues are related to the field-independent
eigenvalues as follows:

g 1 8
y(la)(q) a4 y(o)(q)

8 6

a4
(q) — (,, x &(q)

(4.7)

(4.8)

&~"'(q) —=&("(s,u) = (1/2z)F(s, u),

F(s, u) =1—(1/2s)[g, (s, u)+g (s,u)],
(4.9)

where &~=p2~ represents the Fermi energy of the .

electron gas.
The field-independent eigenvalues have been

evaluated elsewhere. " We note that it is possible
to express the eigenvalues as follows:

where we have replaced the discrete integer j by
a continuous variable u and introduced a dimen-
sionless variable s such that

s =q/p~

u = (2)(j/Pg, )(1/s).
(4.10)

It is easy to distinguish the variable u thus defined
and the Coulomb interaction u(s). The functions
g (s, u) are defined by

g, (s, u) = [(s +iu)' —4]'~'. (4.11)

In comparison with the real representation of the
eigenvalues which we derived in a recent paper, "
the above complex representation is compact and
convenient.

Explicitly, the field-dependent eigenvalues are
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a4Z(" (q) =X"'(s,u) =, (43g'-1)F,(s,u),
PF

1(1F,(s,u)= -i —,+ —,i,s(g', g')'
(4.12)

h ~ (ls) ~PPls
8

s Qf s*Ssf Ss[-s(s)]"

a'
&,"2)(q) = &"2)(s, u) =, F,(s,u), (4.13)

F

2, -s2u2+i2s(s' —3)u+ (s' —4s'+ 6)
s'(

(4.14)

For small. s the following approximation is reason-
able:

4
In~(lb) tPPF

x [A, (p)(s, u)]" 'X""(s,u),

(4.20}

du[-u(s)]"

x [X( )(s,u)]" A.
" '(s, u) .

Fl(ssu} = —
(

2 2/2 +O(S)s
6u

2+4 5/2 (4.16)

24t 5u u i 24
F2(s, u) pi ( 2+ 4)7/2 ( 2+ 4)5/2) s2 B(

(4.1V)

where Rs(u) rePresents the terms in the large
parentheses. In terms of these eigenvalues the
ring-diagram contribution can be given by

F(s,u) =1- [u/(u'+4)' '] —=R(u). (4.15)

(As in. the 3-. D case, the first approximation func-
tion R(u) is independent of s.) Note that in this
small s region, F(s, u) is independent of s. The
notation R(u) has been introduced in analogy with
the 3-D ca.se in which essentially the same approx-
imation which is valid for small momentum trans-
fer gives an s-independent R. From Eqs. (4.15),
(4.V), and (4.8) we find

(4.21)
The field-independent part of the ring-diagram con-
tribution has been evaluated by us recently. "
Therefore, we shall omit the discussion. In what
follows we shall be concerned only with the field-
dependent part. To order e', ln- „""is given by
(see Appendix A)

4a4 t3 2

(4.22)

This result is correct to the indicated order. In
the second integral ln-„"~', the expansion in pow-
ers of e' causes a divergence due to small momen-
tum transfer so that we must perform the summa-
tion over n:

Q [-u(s)&(P)(s,u)]" '=-1+ („

ln= = ln="'+ ln=""+In="2'+ O(a') (4.18)
(4.23)

(p) s4PP)p Q
1

8w „n du[-u(s)&(p)(s, u)]",

(4.19)

The first term is independent of the field, the sec-
ond and third terms are proportional to the square
of the field strength. These terms are given by

where &(')(s,u) has been defined in E(I. (4.9).
In E(I. (4.21), even after taking into account all

(e'/s)" terms, the s integral is divergent at s =0.
This divergence can be removed by combining the
first-order exchange term ln=,'„"'w'th ln=„" '. It
can be proved that we can combine ln=,'„"' with
In=„"2) by replacing +„.2 by P„., in E(I. (4.21}.
We will obtain

Ape2a4 " " -e' A.Pe2a4 " ss 24R (u)s F u(s 2)psuF(siu) —
12 2 (fu s+(e2/ )R( )

C

(4.24)

where s, , a cutoff parameter, has been introduced
in order to show the cancellation of a divergence
clearly. For s &,s, the summation over n is per-
formed and R(u) and Rs(u) are introduced. These
integrals can be evaluated analytically (see Appen-

dixes 8 and C):

J " = (I)lds dQE2 S~N ~ g E ~pl
C

0

(4.25)
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duBs(u
C 1(,/ ) (). (426) We note first

Using these J,'",' and J» we can write ln=„',"„'as
follows:

gke2 4 ~ 2 ~ & QP 2 4

(4.21)

where

P, = kq ~f(vi /Pa').

(5.1)

(5.2)

1 9v 1) e'
24 128 4/s, P„

(4.28)

where in view of e' in that term, the terms of
order e4 are not evaluated. The coefficients of
the first two terms in the sum of Eq. (4.27) are
given by the next two equations.

Z,"~' = —,
' lns, ——,

' - —,
' ln2+ (t). (4.29)

The first term diverges when S,-O but this diver-
gence is cancelled by the corresponding term in
the first term of Eq. (4.28)

Z& )=(hv- —.')(1/s, )-~v+y. (4.30)

Again-, we have retained only the terms of order
e' and lower, The divergent first term here is
cancelled by the fourth term in Eq. (4.28). The
term (P is divergent in the following way:

S dS
(4.31)

Ne will shower in Sec. V that this divergence is
artificial and can be eliminated. It is due to the
singularity in &"~I(s,u) at s =2. It is actually
caused by a premature zero-temperature limit
taken in the eigenvalues before integration. In
Sec. V, we wQl make a finite-temperature ap-
proach and take the zero-temperature limit after
the s integration. The result thus obtained agrees
exactly with what we have obtained, minus the
above divergent terms. The result is

where the last term is given by the integral of Eq.
(4.26) which is

e' Vw 11
96 s,p~ 1536 1440

0, p~+6&p

f(p) = -(1/2a)(p-p~)+r', p~- e&p&p~+q,

1, p&p~ —e

(5.4)

where

~ = I/Pp,

We then find

&/'0'(q) = (I/2v)F/(q),

where

(5.5)

(5.6)

F, (q) =1- (I/. 4qe)[T(p~+a) —T(p~ —e)], (5.7)

and where in terms of p, of Eq. (5.2),

T (k) =k(p k )&/ +p2 sin
p

In the zero-temperature limit, we find

lim F, (q) = 1 ——
i

—T. (k)
i2q ~sk

1=1——(g,+g ) =F(s,u),

(5.8)

(5 9)

If we apply the Sommerfeld method to Eq. (5.1),
we find a finite-temperature correction given by

n~j"'.(q) = (~/6&'PEq)(I/g '.+ 1/g '-), (5.3)

where g, have been defined by Eq. (4.11). Unfor-
tunately, this result is still singular for zero
temperature. This singularity is caused by the
zeros of the denominator of Eq. (5.1) at p=p, .

In order to avoid this difficulty, we introduce a
linear approximation to f(P):

APa4

+(»+~v+I)(e'/p )

+ „~(e'/p' ) + o(e')].

V. FINITE-TEMPERATURE APPROACH

(4.32)

in agreement with Eq. (4.9). We also find

F,(s, u) = -(e„/8&)(JPs'[V(k, ) + (p~ —&)W(k, )]

—k',s'[V(k, ) + (p~+ e) W(k, )]],
(5.10)

where we have used
The divergence in Eq. (4.29) or Eq. (4.30) is due

to the singularity in the eigenvalues X(0)(s,y). In
this section, we shall show that a finite-tempera-
ture approach eliminates this divergence because
the eigenvalues are free from the singularity.

ki =p~+ 6,

k, =p~- E,

V(k) = V,(k) + V (k),

(5.11)

(5.12)
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k2, . 2 . , 2 u' y10isu+12- s'
V (k)=, (-15u'+6isu —s') sin ' —4-

16q (4)«(e« - 4)

w(k) = w.(k)+w (k),

2 u' +3isu'+ 3(2 —s')u' +isu(s' —6) +2(3 —s')
W, (k) = k«, (~ 4)bi2

(5.13)

(5.14)

(5.15)

W(k) = s V(k)/sk,

+~ —s +sQ.

(5.16)

(5.1V)

ln „ob).~ & —ln„(»)
V lg wig

= —(A, pe 2a«/12v2pB)

In terms of these quantities, we evaluate the
combined contribution of the ring and exchange
graphs which has been denoted by ln=„",„". Since
Eq. (4.32) includes the two terms, i.e. , n=1, 2 of
Eq. (4.2V), and for clarity, let us evaluate these
two terms separately.

For the case n=i, we can write

)( (J )(2" + —4'[ln(e2/p~, ) ——,',2 —p]).
(5.18)

Here, the first equality indicates that the term
n =1 coincides with the first-order-exchange con-
tribution. The term J» is

1
00 00 00 00

ds d& yk, + ~-yak, -k,' s' s & Vk
8p~& 0 s 0

C

fk,'[2) (k, ) + (p —e)u)(k, )] —k,'[2)(k2) + (pB+ a)u)(k, )]f,
~F

(5.19)

where

()(k) =—;+ —,(ln2 ——,')+O(s', lns, ),

In the limit P- ~, we get

(5.20)

where the first term in the curly bracket is
00 00

J,''b'"=- —k, ds du [V(k,)+ (p)„- e)w(k, )]
C

—k~4 ds du Vk, + ~+a 8" k,
SC 0

(5,24)

(5.21)
Q-+ 00

Note that in this limit the divergent term Q of Eq.
(4.29) does not appear. Except for this divergent
term, Eq. (5.21) agrees with Eq. (4.29). We arrive
at

jm ln „(»)
g~ 00

= (A peba«/12)) 2pz)(- 4 lns, + «+ 2 ln2

+ —,'[- in(e2/P~s, ) +—l',v+ —,",]]
= (A pe2a«/12)r2pz)(- « ln(e2/2pz) + «(ln2+,~,w+ )2].

In the zero-temperature limit, we find

lim J(2b)"=-1/4s, +O(s,).
g~ 00

(5.25)

J,"~)B=- — — duE2(s, u) [T(k,) —T(k2)]
"ds

4E, s

9m' 11m

128s, 192
Introducing Eqs. (5.25) and (5.26) into Eq. (5.23),
we find

(5.26)

The second term in the curly bracket of Eq. (5.23)
is given by [cf. Appendix A and Eq. (5.V)]

The term for n=2 consists of.
ln~(lb)b n 2 —(ape«a«/12vbp2 )fg(2)A+g(2)B

(5.22)
LPe a 1 Qs

1'fx 12%2P2 4s 128s

11'' 9m 1 1
192 128 4 s

—(l222v - —«') (I/s, )],
(5.23) .

«Ps4d'{llw)
48m'2P3 48

(5.2V)
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Combination of Eqs. (5.22) and (5.27) yield the
divergent-free result of Eq. (4.32).

0.3—

VI. TOTAL FIELD-DEPENDENT GRAND-PARTITION

FUNCTION

For convenience, we assemble all the field-
dependent terms of the ground-partition function
which we have evaluated. Our result to order d'
in magnetic field is

ln "~'=APa'((1/12v)( —,'g' —1)

+ c[(1/12v')(-'g 2 1)+ (1/48'')(~+ —,',w)]

—(1/48m')c ln —,'c + [-(1/96v)(—', g' —1) .

where

c = e'/p~.

+ (11/2304v)]c'+ ~ ~ ],
(6.1)

VII. FERMI MOMENTUM

From the grand-partition function given by Eq.
(6.1) we shall evaluate relevant physical quanti-
ties. The first quantity to be evaluated is the
Fermi momentum P~ as a function of density.
For this purpose, we make use of the grand-en-
semble relation:

4 8 inc (V.1)

For a density parameter let us use

r, =e'/2(vn)' ' (7.2)

Since we are interested in weak fields, it is ap-
propriate to write

PQ PQ +PQ (V.3)

n = a'/H p', = ((up/4 By)'. (7.6)

Note that P~~' disappears when r, =0. That is, only

where the first term is field independent and the
second term represents the first field effect. The
former has been evaluated in our previous paper"
as follows:

p&o
& =p, [1—0.4501r, —(0.142 V y 0.04 x 10-')r,']

(7.4)

The second term P~~", which is new, is found to be

P&r'& =P,o,r,'[(1.407 x 10-'g ' - 3.997 x 10-')r,
—4.689 x 10 'r, lnr,

+(3.372 x10-'g'+2. 28V x10-')r'
—6.333 x 10 'r, lnr, ], (V.5)

where a is a dimensionless combination of the
field energy and Fermi energy:

o
CL

0
CL

O.I—

0.5 ]O rS
FIQ. 1. Field-dependent parts of the Fermi momen-

tum in the 'units of p z' /po plotted against r, . The para-
magnetic case corresponds to g= 2.

in the presence of Coulomb interaction, the first
field-dependent term p~~" appears. , This is a 2-D
peculiarity.

The field-dependent term p~' consists of the
paramagnetic and diamagnetic parts. These parts
are illustrated in Fig. 1. The spin-dependent para-
magnetic part varies more strongly than the orbit-
al diamagnetic part on the density parameter r, .
The field effect on the Fermi momentum appears
differently in 2-D than in 3-D. In 3-D, the first
term w'hich appears in the square bracket of Eq.
(7.5) is independent of r, . That is,. there is an
ideal-gas contribution. In 2-D, on the other hand,
the electrons are all in Landau levels unless per-
turbed out by Coulomb interaction. Therefore, the
first term depends on r, .

VIII. MAGNETIC SUSCEPTIBILITY

The magnetic susceptibility is evaluated from

1 (Sin=
g 0 ApH( BH (8.1)

The susceptibility thus obtained is the total re-
sponse of the system to a magnetic field and in-
cludes both the paramagnetic and diamagnetic
parts. These two parts can be easily separated
from each other because the former depends on
the spin. Note that the susceptiblity has a dimen-
sion. This is a fundamental difference from the
3-D case where the susceptibility is dimension-
less. The difference arises because the magnetic
field energy is defined in exactly the same way.
Equation (8.1) yields

y= (2e'/c') [(1/12@')(&g' 1)+ (8.956 x10 'g'r, )

+ 4.409 x 10 r, -2.985 x 10 ' r, ln r,
+ ( 9.425 x 10 'g'+ 8.525 x10 ') r ,'
—1.3438 x 10 r jnr ]. (8.2)
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evaluated recently by us. The field-dependent part&"' is as follows:

a'"= o.'r', {(3—&g')+ ( 5.540 x10 ' —0.1125g')r,
+ 0.03751r, ln r,
+ (1.184 x 10 'g' 0.1071)r ',

+ 1.689 x 10 ' r,'1 nr,} (9.3)

OIa
N

O

I

I I I I I I I I I I

0 ,5 rs

FIG. 2. The density dependenees of the paramagrietic
and diamagnetic susceptibilities. In both eases, the
ideal susceptibilities are subtracted off so that the
curves show the effects of Coulomb interaction. The
susceptibility differences are in the units of 2e /e .

For g=2 both the first and second terms in Eq.
(9.3) are negative, indicating that the magnetic
field reduces the ground-state energy in the first
approximation. However, -the paramagnetic and
diamagnetic parts counteract each other in this
respect.

,
In Fig. 3, we have plotted the paramag-

netic part of the field energy. The upper curve
represents the ideal-gas field energy. These en-
ergies can be separated from the-total energy by
choosing the g -dependent terms. In the actual
evaluation, we have chosen g=2. Due to inter.
action, the paramagnetic energy is lowered. The
difference between the two curves increases with
rs'

In Fig. 4, we have plotted the diamagnetic ground
state energy as a function of r, . Again, the upper

0.5 1.0 15 r

fn deriving this result, Eqs.. (7.4) and (7.5) have
been used.

We have plotted the total susceptibility in Fig.
2. The units of the ordinates are 2e'/c'= 2p2e,
where p, ~ is the Bohr magneton. For the para-
magnetic susceptibility we have chosen g = 2. It
is interesting to observe in these curves that the
paramagnetic susceptibility and the absolute mag-
nitude of the diamagnetic susceptibility increase
with r„ the former more strongly. Their limiting
values at r, =0 maintain the 3 to 1 ratio as in the
3-D ideal case. The interaction effects in 3-D
can be seen by plotting y —y, against r„which
starts from a constant. The corresponding plot
for 2-D should be for (y —y,)/2IJe, which starts
from the origin. This is a 2-D peculiarity.

O
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IJJ
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IX. FIELD ENERGY

The ground-state energy is obtained from

~lnE= lim
BP

(9 1)

~ (0)+ ~ 4)

where the field-independent part &"' has been

(9.2)

The field-dependent part of the ground-state en-
ergy is defined as' FIG. 3. Paramagnetic ground-state energy as a

function of r, . The upper curve represents the ideal
case so that the lower curve shows the effects of Coulomb
interaction. ]3oth curves approach each other in the
small r~ limit.
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.6-
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FIG. 4. Diamagnetic-ground-state energy. The upper
curve represents the case without Coulomb interaction.

the Coulomb interaction, and the effective mass
increases the Bohr radius. A valley degeneracy
factor 2 may also be introduced. With these cor-
rections we find an effective r,* given by

~"= (3.867/n"') x 10' (10.1)

where n is the number density.
I.et us now try to derive an effective g factor.

The paramagnetic susceptibility can be used for
this purpose. It is obtained from the total sus-
ceptibility by selecting the terms with Lande's
g factor. As shown in Fig. 2, the paramagnetic
susceptibility is very nearly proportional to r, .
Therefore, with good accuracy we find

g*'/g'= 1+ (1.74/n'~') x 10'- (0.708/n) xI10"

(10.2)

In Fig. 5 the theoretical effective g fact:or given
by Eq. (10.2) is plotted against n. Our theoretical
curve is close to. the experimental curve of Fang
and Stiles at densities around 3 ~10" cm '. The
deviation at smaller densities may be due to the
neglect of higher-order graphs such as the third-
order-exchange graphs. Since these higher-order
terms contribute relatively more at high r„ it is
safer to take only the first-order term. Assuming
that this term is small, we can. gee a linearized
form:

curve represents the ideal case. Although the
two curves come closer and closer as r, becomes
smaller, as they should, the diamagnetic ground-
state energy shows a maximum. The maximum
value is found to be 0.2833' and the m~imum
point is r, = 1.384. The maximum appears in two
dimensions in distinction from the 3-D case
in the same approximation. In a,ll these ground-
state energy curves, the ordinate is the energy
divided by n which is defined by Eq. (7.6). This
is a dimensionless combination of the field energy
and the Fermi momentum. Expressing the Fer-
mi energy in Hy, we have the second expression
in Eq. (7.6) which shows that the constant is pro-
portional to the field strength squared.

g*/g= 1+ (0.87/n'~') x 10'.

3.4

3.2

3.0

(10.3)

X. CONCLUDING REMARKS

We have evaluated the Fermi momentum, sus-
ceptibility, and magnetic correlation energy of
a 2-D electron gas as functions of r, . Since the
results are obtained for an idealized 2-D system,
certain assignments are needed in order to com-
pare the results with experimental data on the
electrons in a metal-oxide-semiconductor (MOS)
inversion layer.

Let us assume that the average dielectric con-
stant is 7.8 and the effective mass of the elec-
trons is 0.2 m. The dielectric constant reduces

2.8

2.6

2.4
6x10 z

C fTl

FIG. 5. Theoretical effective g factor due to Eq.
(10.2) is compared with the experimental curve of Fang
and Stiles. For comparison, Janak's original theoreti-
cal curve is also given.
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n (10"cm ') Formula

2.74 2.60 2.52 2.47 Eq. (10.2)
3.23 2.87 2.71 2.62 Eq. (10.3)

(%} 2.27 1.61 1.31 1.13 Eq. (10.43

TABLE I. Effective g factor and mass for electrons in
a MOS inversion layer.

wider range of density than that for the effective
mass, simply because the paramagnetic sus-
ceptibility is very nearly linear when plotted
against r, while the diamagnetic susceptibility
is not. For this reason, a much stronger vari-
ation of m* with density is expected for low den-
sities. An experimental determination of m* for
a wide density range will be important for our
theoretical studies. Finally we remark that we
get g=2.8V for n=4 &&10" cm ' according to Eq.
(10.3) which we proposed for low densities.

At higher densities, the theoretical and experi-
mental curves are almost parallel with each other, —

indicating that a small adjustment of the para-
meters such as the average dielectric constant
will yield a mcuh better agreement.

The diamagnetic susceptibility is independent
of the Lande's factor and is determinedby electron
orbital motion. Therefore, its r, dependence
may be represented by an effective ma.ss. Note
in this respect that

ps= ek/4wmc.
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APPENDIX A

Combination of Eq. (4.2) with Eqs. (4.9) and
(4.12) gives

Different from the paramagnetic susceptibility,
the diamagnetic susceptibility is nonlinear when
plotted against r, . For simplicity and avoiding
a possible difficulty Iarising from the higher-order
terms which we have not considered, we use the
first linear term that represents the exchange
contribution to the diamagnetic susceptibility.
After linea, rization, we find

where

A(6e'a4 3& (&ka ), ))=2 (g(1)+g(2)+ J'(3))
12)[(3P2 4 ( la la la

F
(A1)

(A2)

m*/m = 1+,~(3.21/n'") x 10'. (10.4)

Note that the coefficient to the second density-
dependent term is much smaller than that for the
effective g factor. This smallness is due to the
small coefficient 4.4 &10~ in contrast to the para-
magnetic coefficient 8.9 x 10 in Eq. (8.2). be-
cause of the smallness of the coefficient, the
above approximateformulaisbetter than aformula
which we would obtain by retaining other terms.
In any case, the above formula indicates that the
effective. mass will increase by a few percent if
the density is decreased.

The theoretical values of the effective g factor
and mass are listed in Table I. The theoretical
effective g factor thus evaluated is valid for a

(A4)

(1) ds, dZ
la

(
i 4)3/2

3

ds
2 1/22(4 —s) 4 ' (A5)

3

7T ds,— = ——+ l.im
p s 8

3i p 4S (A6)

where g, is defined in Eq. (4.11).
Using the method given in Appendix D we obtain

&» 1 " ds " u'+ 2(4 —3s')u'+ (s' —4)'
2 () s () ([u'+ (s+ 2}'] [gg&+s 2) ] j"

~[2k(k) //(k)] — dk '-k ' +k//(k))
1 ~ dk 1 ' 2[E(k) —A"(k)]

1r n'
= lcm ——+ —.

4s 4 (A7}
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introducing Eqs. (A5), (A6) and (A7) into (Al), we obtain Eq. (4.22).

APPENDIX 8

From Eqs. (4.14) and (4.25) we find

g(1) 2
~ '

d -s'u'+i2s(s' —3) u+ (s' —4s'+ 6)
1$ S2 5 + C.C,

sc 0
(Bl)

where g, is defined in Eq. (4.11). The last term
is the complex conjugate of the first term. Using
the method shown in Appendix D we obtain

where I~ represents the first integral which is

I~= —1/4s, +P,
ds . s'z' —6sz+2s'+6

1b S2 (Z2 4)5/2
sc F3.

-1 2
ds — +'~4-'*~"' (4- ')"*)

= —~ —2 ln2+ ~ lns, +lim1/2(4 s2)'~2.
S~2

The second term in Eq. (4.25) is given by

eJ~~ = ds- dÃF2 s qQ
sc 0

.00 ~ 00

duI 2(s, u)(g, +g )
sc o

—I~+I

(B2)

where Q is the divergent term defined by Eq.
(4.31). It can be expressed in the form of the
last term of Eq. (B2).

The second integral is
I

1 "dsIs=- — — duF2(s, u)(g, +g )
sc 0

Iy j + Igy2 ~

The first term I» can be easily evaluated by
using the method shown in Appendix D:

(B4)

1
I~,-- 2

2

S Ss

-s'u'+ 2s (s' —3)u+ (s' —4s'+ 6)

1 ' ds 2i s'z' —6sz+2(s'+3) ' ds 2'(3 —s') s 11 1 1
s s' r (z' —4)', s4 8 8 24 s, s,' (B5)

The second integral I» is more involved. We
have calculated some new integrals appeared in

I~,. They are shown in Appendix E. The final
results are

Is, = 2s(-7/16s, +1/s2)

&1+,'= k(9s/32 —1)(1/s,)

I~, can be written as follows:

(B6a)

[—s u'yi2s(s' —3)u+ (s —4s'+ 6)jg'
2 S S g5g5 + C.C

sc ~~ o Q+s+2 u+s —2
(B6b)

where the coefficients D,„are:
D, = 2(s' — 4)'(s ' —4s'+ 6),
D, =4(s' 4)( 2s' 2s4 —Ss'+36),

D~ = -4(5s 2 —36s4+ 51s2+ 36),

D6 = -4(2s ~+ 10s'+ 3),
D8= 2s

(B7)

Using Table II, given in Appendix E, and in
terms of the complete integrals of the first and
second kinds, we obtain

I ds g —s' t 1 2 k

s+2 1+0) (B8)



STUDY OF A TWO-DIMENSIONAL ELECTRON GAS. . . . I. . . . 843

where

k=s/2 or 2/s. (B9)

The argument of the elliptic integrals is invariant in the choice in E(l. (Q9). Using k as an integral variable
we obtain

1 ~ dk 3 2 Ea dkk k2 1 K
c

8 16s, ~sc
(B10)

In the first integral of Eq. (B10) the first expression 'in E(l. (B9) was used and in the second integral the
second expression, i.e. , 2/s, was adopted.

APPENDIX C

se&» e2
dsSSs(s) ss ',s sss Ss iS( ))-isSS( s)s

ScP

= ln -

2 duR~u — duR&u lnRu + duR~u Ru +0 (Cl)

u= 2tan8

as follows:

(C2)

These integrals can be easily evaluated in terms
of a new variable 8 defined by

6. Applying Cauchy's theorem we obtain

diZ 2 y2, 0
&(&)

r, (e' —4)"" '

4=0, 2 &s.

(DS)

g2

1th) 96 ln l536 ~ l~p
ll

c

+ (-„'~ m ——,',)e'/s, P»+O(e4)+O(s, ) . (C S)

APPENDIX D

The integrals (A2), (AS), (Bl), and (B4) have the
following form:

r fi (s + (s) 5'(s —ss)}+ gm(2 =& ~

This integral can be simplified by introducing a
new complex variable s:

S +$Q =8,
s+f» P(&)

de

II
BRANCH LINE FOR tg -4)'+

ie
~ ~ »»»»-IC

- Rez

s-4» 9 (&)
+ $ cfog

~ps (e' —4)"~' (e -0') S
- Rez

&(&)

r,+r, (z'- 4)

The contosurs I"l, X'2, I'3, and F4 are shown io Fig,
FIG. 6. Contour diagraxns for the integrals in Appen-

dix D.
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TABLE II. The coeffirients H2„and A2„of the integral (E&).

A2„

2(('-5h'n'-5('n'+ n'
3(3pe

( +&4k n +n
3)tPK

-8$($ +g )

((4 g8g2~2+ ~4)
3g3~2Q

-8(k'+ n')
3g

3(4+&0(2q2+3q4

&(&4+~«2n2+ n4)

3A
-8k n'(h'+ n')

2k($'+ 5('n'-5k'n'+ n')

$(8/8 25$ g ~18)4~» 25/2~»+ St()

-hn'(( -&8k n'+n )

3A

44n'(('+ n')(h'-4k'n + n')

APPENDIX E

~

0, n=0, 1,2, 3, 4

u'+ $ ) '~'lim, , (, n=5.u'+q' j

(E3)

The coefficients II,„and A,„are given in Table
II in which we. used

We have evaluated the following integrals which
appeared in I~2.

$&7I &0,

Q'" du
2 2,, »g2 =112+E(8)+'Ag+K(8)+ 5

(u'+ $ )(u +pe)
'

(El)

where E and E are complete elliptic integrals of
the first and second kinds, respectively. 8 and 5
are defined as

(E2)

6.333 x 10 'g'- 1.883 x-10

B~ = —I/48m'=-2. 1109x 10 ',
~3,

» 96~ (4; /I 2304m

2.487 x 10-'g'+ 4.835 10 ',
P~ ' =P, (a» /P»O)(D, r, +D, r, lnr,

+D, r', +D, r ', lnr, ),
(w/2'~') [B,+(1- ain2)B, ]

= 1.407 && 10 g —3 99'7 && 1o

(s/2»')B, = 4 689 x10-&D2=

D, = (4-—,'In2)B, + 3B,+2mB»

a, =,', (,'g»l,
1 3 ~ I 1 &26 7m)

12m' 4 & 48m' (15 16 i

~=(&2- n')» (E4)
3.372 x 10 g + 2.287 & 10

APPENDIX F

In this Appendix, we give exact analytical ex-
pressions for the relevant physical quantities.
These analytical expressions will help to confirm
and extend our calculations.

2
l =-& &=Aga4 B,+B,

PQ

e' e' e» 't
+B, ln +B»

p~ &

D4= 3B~= —6.333 & 10"~,

y = (2e'/c')(M, +M, r, +M, r, lnr,

+Ms r2+ M» r ln r»),

M, =B,= (1/12m)(-»g' —1),

M, = 2'~'(B (3ln 2/2)B, )
= 8.956 x 10 g 2+ 4.409 & 10

M2 = 2 ~ Bs= -2.985 x 10 ~,
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M =(2/n)[B +(1- ain2)B +mB ]

9.425 x10 ~g +8.525 x10

m, = (2/~) B,= -1.8488 && 10-',

+Wsr', + W~r, 1nr~),

Wo= —4mB~=- s(jg' —1),

W, = 4~2 w[-B,+ (2 1n 2/2)B, ]
,:=- 0.1125g'-5.540 x 10 3,

8' =- 4~2m'B =0.03751, -

Ws= —8[B2+(1 —a 1n 2)BS+n'BJ
1.184 x 10 2g 2-0.1071

S" =-883= 1.689 x10

.+Present address: Dept. of physics, State University
of New York at Buffalo, Buffalo, N. Y. 14260.

~F. F. Fang and P. J. Stiles, Phys. Rev. 174, 823 {1968).
A. B. Fowler, F. F. Fang, W. E. Howard, and P. J.
Stiles, J. Phys. Soc. Jpn. Suppl. 21, 331 (1966);
S. Kawaji, T. Igarashi, and J.Wakabayashi, Prog.
Theor. Phys. 57, 75 (1975); S. Kawaji and Wakabayashi,
Surf. Sci. 58, 96 (1976); A. A. Lakhani and P. J. Stiles,
Solid State Commun. 16, 993 (1975); G. Landwehr,
Festkorperproblem 14, 49 (1975); I. Eisele, H. Gesch,
and Q. Dorda, Solid State Commun. 22, 677 (1976);
22, 185 (1977); F. F. Fang, A. B.Fowler, and A.Hart-
stein, Phys. Rev. B 16, 4446 (1977).

C. C. Qrimes and G. Adams, Surf. Sci. 58, 292 (1876).
4J. F. Koch, Surf. Sci. 58, 104 (1976).
B. Vinter, Phys. Rev. Lett. 35, 1044 (1975); F. Stern,
phys. Rev. Lett. 30, 278 (1973);B.7inter and F. Stern,
Surf. Sci. 58, 141 (1976).

'A. L. Fetter, Ann. phys. (N. Y.) 88, 1 (1974).
~Q. Abstreiter, J. P. Kotthaus, J. F. Koch, and

Q. Dorda, phys. Rev. B 14, 2480 (1976); C. S. Ting,
S. C. Ying, and J.J. Quinn, Phys. Rev. B 16, 5394
(1977); H. Kublbeck and J. p. Kotthaus, phys. Rev.
Lett. 35, 1019 (1975).

8J. F. Koch, Surf. Sci. 58, 104 (1976).
P. M. Platzmann and H. Fukuyama, Phys. Rev. B 10,
3150 (1974); H. Fukuyama, Solid State Commun. 19,
551 (1976); M. Jonson and Q. Srinivasan, ibid. 24,
61 {1977).

J. L. Smith and p. J. Stiles, Phys. Rev. Lett. 29, 102
(1972);T. A. Kennedy, R. J. Wagner, B. D. McCombe,
and D. C. Tsui, Phys. Rev. Lett. 35, 1031 (1975);
F. F. Fang, A. B. Fowler, and A. Hartstein, Surf. Sci.
{tobe published); G. Abstreiter, J. F. Koch, P. Goy,
and Y. Couder, phys. Bev. B 14, 2494 (1976).
A. Isiha. ra, and T. Toyoda, Z. Phys. B 23, 389 (1976);
Ann. phys. (N. Y.) 106, 394 (1977).

~2A. K. Rajagopal and John C. Kimball, Phys. Bev. B 15,
2819 (1977).
3J. F. Janak, Phys. Rev. 178, 1416 (1969).
K. Suzuki and Y. Kawamoto, J. phys. Soc. Jpn. 35,
1456 {1973).

~ T. Ando and Y. Uemura, J. Phys. Soc. Jpn. , 37, 1044
(1974).
J. Tsai, M. Wadati, and A. Isihara, Phys. Rev. A 4,
1219 {1971);J.T. Tsai and A. Isihara, Phys. Lett.
A 43, 121 (1973); A. Isihara and J. T. Tsai, ibid.
43, 35 (1973); A. Isihara, Proceedings of the Thir-
teenth Conference on l.ozv Temperature Physics,
pol. 4, p. 47 (Plenum, New York, 1974); A. Isihara
and D. Y. Kojima, Phys. Rev. B 11, 710 (1975); Z.
phys. B 21, 33 {1975).

~ A. Isihara, M. Wadati, and J. Tsai, Phys. Rev. B 3,
990 (1971); Physica {Utr.) 77, 469 (1974).
A. Isihara and J. T. Tsai, Phys. Konden. Materie.
15, 214 (1972).
A. Isihara, Statistica/ Physics (Academic, New York,
1971), p. 424.


