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The pseudopotential approach is used to make exploratory calculations of the structure-dependent part of
the cohesive energy U, of black phosphorous in a variety of crystal structures as a function of atomic
volume. The calculations assume black phosphorous to be a simple sp metal, and empirical local
pseudopotentials from the literature were used to fit a modified "empty-core" pseudopotential form. The
effects of considering covalent contributions are also considered but not calculated here. At the 1-bar atomic
volume, the A-7 structure is found to be more stable than the observed black P orthorhombic. However,
the difference between U, (orthorhombic) and U, (A-7) increases as the atomic volume is decreased, in
agreement with the observed transition from the orthorhombic structure to the A-7 at 50 kbar. At smaller
atomic volumes, the calculations also yield a first-order A-7 to simple cubic transition which corresponds to
the one observed experimentally at 110 kbar. Although it is possible to imagine a continuous, second-order
deformation of the A-7 to the simple cubic, the calculations predict discontinuous behavior. The simple cubic
is predicted to remain more stable than the fcc, bcc, or hcp structure for a wide range of very high
pressures.

I. INTRODUCTION

Black phosphorous, which is the stable form of
phosphorous under normal conditions, '2 shows an
interesting sequence of structural transformations
in the pressure range 0-110 kbar. ' At 1 bar,
black P is a narrow-band-gap semiconductor with
an orthorhombic crystal structure. The local
atomic arrangements suggest that the bonding
might be predominantly covalent. At 50 kbar,
there is a reversible transformation to a semi-
metallic form with the rhombohedral "arsenic"
(A-7} structure. The local arrangements of atoms
are only slightly changed, however. At 110 kbar,
there is a second reversible, first-order transi-
tion, this time to a primitive simple cubic (sc)
meta/. Again the relative positions of nearest-
neighbor atoms change only a small amount during
the transformation, but the bonding character is
now purely metallic. The simple-cubic form of
black P is also interesting because the only other
example of an element in a primitive simple-cubic
structure is the low-temperature form of polon-
ium.

The pressure-induced orthorhombic to A. -7
transition was predicted by Parthe from space-
'filling criteria. ' This was one of the first (and
is still one of the few! ) correct predictions. of high-
pressure phase transformations. Nonetheless, a
more complete understanding of the phase behavior
of black P from a more fundamental point of view
has not yet been presented. In addition, black P
appears to be an ideal material for studying trans-
formations from predominantly covalent bonding

to metallic bonding.
Pseudopotential theory has been used with con-

siderable success in understanding the differences
in cohesive energy between competing crystal
structures for a variety of'+P'inetals. ' " When all
the refinements are used, the theory is quite com-
plex. However, quite reasonable results have been
attained using only local pseudopotentials. ' ""
While such calculations are not always completely
successful in predicting the correct crystal struc-
tures, they provide valuable insights as to why the
observed structures are indeed the stable ones.

Most of the previous structural calculations
have been restricted to materials with valence
s ~4. For materials with z -4, there are a num-
ber of difficulties that arise. Terms higher than
second-order are generally expected to-yield
significant contributions to the cohesive energy,
although the author is not aware of any rigorous
formulation including all third-order effects. In
many cases, a screening function appropriate to
semiconductors rather than metals should be used,
Special attention should also be given to the Bril-
louin planes covering the Fermi surface. More-
over, the difficulties in correctly accounting for
exchange and correlation contributions are in-
creased for the elements with s 4.

In spite of these difficulties, several structure
calculations have been done for the high-valence.
elements. The most recent and most sophisti-
cated is an Xo,-pseudopotential calculation by
Hafner for the pressure-induced phase transitions
in tin i Prvjously Weaireis made local pseudo-
potential structure calculatiogs for Si in the face-
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centered-cubic (fcc), white tin (A-5), and diamond
(A.-4}structures.

The earliest attempt to understand the arsenic
structure and the rhombohedral IV-VI compounds
using a pseudopotential approach was made by
Cohen, Falicov, and Golin (CFG)." The CFG cal-
culations concern the effects of crystal structure
changes upon electronic states near the Fermi
surface, but those authors did not attempt to calcu-
late the cohesive energy for the different struc-
tures. Weaire and Williams" (WW) made local
pseudopotential calculations for arsenic and anti-
mony, in which they found the rhombohedral ar-
senic structure to have a lower calculated cohesive
energy than the fcc, bcc, hcp, or sc structures.
Finally, Abe, Okoshi, and Morita" (AOM) have
completed local pseudopotential calculations for As
very similar to those reported here for black phos-
phorous.

The present approach is similar to those men-
tioned above of Weaire for Si and WW and AOM
for arsenic. This is a second-order perturbation-
theory calculation with local pseudopotentials,
which is described in greater detail in Secs. III
and IV below. Metallic (Lindhard) screening is
used and the Brillouin-zone planes near the Fermi
surface are given no special treatment. Thus, the
covalent effects implicitly considered in the CFG
calculations are ignored here. As the atomic vol-
ume iS decreased, this procedure becomes more
and more justified. However, the principal ad-
vantage of this approach is that it allows the cal-
culation of relative cohesive energies for various
crystal structures in a simple and straightforward
manner. Nore sophisticated calculations are much
more difficult and expensive to perform and are,
therefore, not well suited to the type of exploratory
calculation reported here. Because the results of
these calculations are physically reasonable and

interesting, as shown below, it seems reasonable
to do more detailed calculations.

In this paper, the second-order perturbation
calculations are applied to black phosphorous. The
stability of the observed orthorhombic structure
relative to the fcc, bcc, A.-4, A-V, and sc struc-.
tures as a function of volume (i.e., pressure} is
considered. In Sec. VII, the reasons that the CFQ

. and the second-order pseudopotential approaches
of WW and AOM both predict the A. -V structure to
be more stable than the simple cubic are explored
by patching up the second-o&der calculation to in-
clude covalent contributions from the Jones zone
planes near the Fermi surface in a man~er sim-
ilar to that of Heine and Jones, ' and Weaire"
for Si. As shown below, inclusion of these co-
valent contributions should also improve the cal-
culated relative stability of the observed "black
P" orthorhombic to the A. -V structure.

II. CRYSTAL STRUCTURES

There are quite a number of crystal structures
to be considered in this work. Black P actually
attains three different structures in the pressure
range 0-110kbar, and there are several other
possible structures that are worthwhile consider-
ing. Unfortunately, there is no systematic nota-
tion covering all the structures mentioned here.
For this reason, common abbreviations are used
here, supplemented by the Stxukturbericht" no-
tation when possible. In a few other cases, quo-
tation marks are used around the name of an ele-
mental form when it is used to refer to a struc-
ture type, e.g., "black P" orthorhombic. To
avoid confusion, the structures considered here
are listed in Table I with their abbreviations in
the text. Also listed are key crystallographic
parameters, as discussed below, and the packing

TABLE I. Abbreviations used in this work for some crystal structures. Also given are the
packing fractions I' and descriptions of the structures in terms of the A-7 parameters n and
Q, where possible.

Structure type P&breviatio+(8) Parameters

face-centered cubic
body-center ed cubic
diamond cubic
"arsenic" rhombohedral

simple cubic
face-centered rhombohedral
close-packed hexagonal
"white tin" tetragonal
"Bi II" monoclinic
"black P" orthorhombic

fcc,g-1
bcc) A-2

A-4
A-7

sc, Q-15
fcr

cphp A-3
A-5

"Bi II"
"black P"

0.740
0.680
0.340
0.284
0.355
0.524

0.740
0.535
0.526
0.332

n =60'
n = 109.47'
n= 90'
n= 84o

n= 84.5
n= 90

c/a= v 8/3
c/a = 0.5456
b/a = 0.9165,
5 /a =2.394,

Q = 0.081

Q = 0.250
Q =0.250
Q = 0.125
Q = 0.199
Q = 0.221
Q = 0.250

~ ~ ~

c/a = 0.4951
c/~ = 0.7572

v =0.104



808 D. 5CHIFERL

fractions I'.
The most important structures in, discussing the

behavior of black phosphorous are the A-7, sc,
and "black P" orthorhombic. These structures
and their relations to each other and to some other
structures are described below.

The A-7 structure is rhombohedral' with space
group R3~ (D~&) and can be considered as two in-
terpenetrating face-centered rhombohedral (fcr)
lattices A and I3 with rhombohedral angle Q. ."
The origin of the A sublattice is at (0, 0, 0), while
that of the B sublattice is at (2u, 2u, . 2u). CFQ and

%VW choose their rhombohedral axes to be from
the origin to the midpoints of the face diagonals of
the fcr lattice. In that case, the values n =60' and
& =0.250 describe a simple cubic structure.
Throughout this paper we shall use the alternative
set of rhombohedral axes consisting of the edges
of the fcr lattice. For this choice of axes, n
=90' ands =0.250 is sc; +=90 and v=0.125 is the

A4; e =60' and u =0.250 is fcc, and o. =109.47' and
& =0.250 is bcc.

The structure of black P at 1 bar is orthorhom-
bic' with space group Acam (V'„') and lattice con-
stants a =4.3763 A, 6 =10.4780 A, c =3.3136 A.
There are eight atoms in the unit cell, which are
located at

+ (u, U, 0) a (u+i, v, —,')

~P, v+. ..) + ( +, g —,0),

where & =2, as explained below, u =0.081, and
v =0.1017.

The "black P" structure is closely related to
both the simple cubic and A-7 rhombohedral struc-
tures. Figs. 1(a) and 1(b) show the relation be-
tween the "black P" orthorhombic [Fig. 1(a)] and

the simple cubic referred to orthorhombic axes
[Fig. 1(b)]. The bond angles are changed from 90'
in the orthorhombic structure, but the most
striking 'difference between the two structures is
the double-layer shift involving the atoms labeled
3, 4, 5, and 6 in both figures. The simple cubic
structure is attained when a a =c =b/(2MB) and
u=P v=- t =01

The relation of the bonding arrangements in the
black P and A-7 structures is shown in Fig. 2. In
both cases, the atoms are arranged in double lay-
ers. With slight changes (on the order of 1%) in
the orthorhombic lattice constants and position
parameters, atoms in both structures would have
the same first and second nearest neighbors. The
third nearest neighbors are different.

As discussed in the introduction, black phos-
phorous has the orthorhombic structure up to about
50 kbar' where it transforms to the A-7 structure.
TheA-7 structure is stable in the range 50 kbar

4

~l/2

"f101)

f0%3

[10']
( 010]

FIG. 1. Relation between "black P" orthorhombic
[Fig. 1(a)] and simple cubic referred to the orthorhombic
unit cell jFig. 1(b)]. The vertical cell axis is the g axis
and the horizontal one is the b axis. The arrows at the
lower left give the orientation of the simple cubic cell
relative to the orthorhombic cell. The fractions indi-
cate displacements out of the plane of the drawing in
units of the lattice constant c.

Black P

Orthorhombic

4I

a- Arsenic

Rhombohedral

FIG. 2. Relation between bonding arrangements in the
"n-arsenic" rhombohedral (A-7} and "black P" ortho-
rhombic structure. The fractions indicate displacements
out of the plane of the drawing in units of the urtho-
xhornbic lattice constant c.
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III. PSEUDOPOTENTIAL STRUCTURE CALCULATIONS

The theory of pseudopotential calculations of
crystal struc'tures has been treated extensively
by other authors. ' '"" For that reason this
section is devoted primarily to the features of
special importance to these calculations. Kith
slight departures for clarity, the notation used
here is that of Heine and%eaire. ' Their conven-
tion of using q to denote a continuous variable and

g to mean a reciprocal-lattice vector is also fol-
lowed here.

The cohesive energy per atom of a metal or
narrow-gap semiconductor can be divided into a
structure-independent part and a structure-
dePendent part U, . It is only this latter part that
is calculated in this work. For a metal, U, can
be written as the sum of two terms:

U~ =U~+U~s (3.1)

to -110 kbar where it undergoes a first-order
phase transition to the simple cubic structure. '
This is quite a wonderful transition, first, be-
cause it results in a primitive simple cubic cell
at all, second, because the transition is first
0~de&. Qeometrically, one can imagine a con-
tinuous variation of e and+ so that the A. -7 struc-
ture deforms continuously into the simple cubic, "
such 'a continuous process would result in a sec-
ond-order transition.

Finally, the other group-V elements, As, Sb,
and Bi, should be mentioned even though no calcu-
lations for them are reported here. The experi-
mental situation is somewhat different for each el-
ement, and it is useful to have all the structural
information of the group-V elements in mind.

The stable structure of As at 1 bar is the A-7, '
although &-As is metastable with the black P
structure. No experimental values of u and v are
known for &-As. As pressure is increased for the
rhombohedral structure, e- 90' and u —0.250.22

The A. -7 structure is reported to transform to an
unknown structure at about 120 kbar. "

At 1 bar, the stable structure of.Sb is also the
A-7.' As with As, 0.-90 and&-0. 250 with in-
creasing pressure. '4' " A first-order transition
at 70 kbar to the simple cubic structure is report-
ed by some workers" "but not found by others. ~'
Other transitions are reported at higher pres-
sures. "

Bi has the A-7 structure at 1 bar, and, under
pressure, o 90'andi-0. 250, just as in As and
Sb. However, in contrast to the behavior of black
P, Bi transforms to the monoclinic "BiII" struc-
ture, "not the simple cubic.

positive ions in a uniform, static electron sea, and
U» is the band-structure energy.

A. Ewald energy

In atomic units, "U~ is given by

U~ = o.~Z*/2R, , (3.2)

Z*=Z(1+q), (3.3)

where Z is the actual valence (Z =5 for P) and q
is the dimensionless orthogonalization hole param-
eter. There are several ways to determine q.' '
The method used here was to use the approximate
relation

qS (R, /R, )', (3.4)

where R, —= —,
'

v/qo as suggested by the "empty core"
model. ' The value R,=0.850 385 1 a.u. was used
for the results reported here, but values in the
range 0«, & 1 a.u. were also tried for a number
of trial calculations. Because it always turns out
that g & 0.1, fairly large percentage errors in R,
make very little difference in the final structures
found to be stable. It should be noted that g comes
from the energy dependence of the pseudopotential.

The local pseudopotentials that were finally used
in this work are independent of energy, and thus
it is slightly inconsistent to use anything other than
R, =0 in Eq. (3.4). However, none of the structural
trends are changed by replacing the actual value
of &, used with R, =0.

B. Band-structure energy

The band-structure energy is given by

&„=g'~*(g)s(g)&h'), (3.5)

with the prime indicating that g=0 is omitted from
the sum, with g=~g ~, and with &(g) the energy-
wave-number characteristic. Equation (3.5) is
perfectly general in that no assumption has to be
made as to whether E(g) will be constructed from
local or nonlocal pseudopotentials or as to how
exchange and correlation corrections will be
handled cess

In the case of local pseudopotentials, F(q) takes
a particularly simple form

where &, is the atomic radius, Z is the effective
valence, and 0,~ is the Ewald constant. The method
of Sholl" and Ewald-Fuchs" method were both
used to calculate o.~. A computer program pro-
vided by J. Hafner" was used for the Ewald-Fuchs
calculations.

The effective valence S* is given by

where Us is the electrostatic (Ewald) energy of E(q) =I V(q) I 'X(q)e(q), (3.6)



810 D. SCHIFKRL

f (q}=-,' q'/(q'+@~2 ~k', }, (3.9}

where X(q) is the Lindhard function and s(q) is the
wave-vector dependent dielectric function. ' V(q)
is obtained from Eqs. (4.1) and (4.2) below. The
Lindhard function X(q) is given by

4k~~ —qm q +2k~
X(q) =——,

'
Z(4&~) '~p+ ~

ln
Sqk& q —2k~

(3.V)

and &(q) is given by

e(q) =1. —(8&/Qq ) [1 —f(q)]X(q), (3.8)

where the factor [I-f (q)] corrects for correlation
and exchange. Three forms for f (q) were con-
sidered in the present work. The first is the Hub-
bard- Sham" 4'~ form

could be generated for the changing values of the
g's under pressure. Because the orthorhombic
"black P" structure has some very )mall g's be-
yond the range of the experimentally determined
v(g), it is necessary to choose an interpolation
function v(q) which has the correct limiting value
e(q-0) =- 3&+ and has some theoretical justifi-
cation as well. The Lin and Falicov form, ' ~ ' which
was used to fit the Fermi-surface data in the first
place, is inadequate for this purpose as it is un-
reliable at small Q'. The "empty core" model of
Ashcroft44 satisfies these criteria but cannot be
used to fit the empirical & (g) very well. A "modi-
fied empty core" model mas chosen of the form

V(q) =[-4sS/q'c(q)&] cos(qv/2q, ) C(q)D(q) (4.2}

with

where &', =2&~/w.
The second form is due to Shaw. "" IC(q) =A, /(A, +q"), (4.2a)

f (q) = 2(1 —exp[- ~ (q/&~)'(I +0.0254',)]), (3.10)

where &, is the electron density parameter given
by

r = g"~hR, .
Finally, the third form is simply no correction

at all,

f(q) =0 .(3.11)

The Hubbard-Sham form, Eg. (3.9), and the
Shaw form, Eq. (3.10}, yielded very close to the
same A.-7 structures of minimum energy at all
atomic volumes tested. Somewhat different values
of + and n were obtained with f (q) =0, and the
agreement with the observed structure at I bar
was worse. The calculations reported here were
all done assuming the Shaw form, Eq. (3.10), un-
less otherwise indicated.

JV. PSEUDOPOTENTIALS

V(g) =S(g)v(g), (4.1)

where S(g) is the structure factor, &(g) is the
pseudopotential form factor, and g is a reciprocal-
lattice vector with modulus g=~g~.

The pseudopotentials used here mere derived
from the empirical pseudopotentials compiled by
Cohen and Heine. " An interpolation function mas
fitted to this data, so that a consistent set of &(g}'s

Yn these calculations, local pseudopotentials were
used throughout. Nonlocal pseudopotential calcu-
lations are better justified, but are much more
difficult and expensive to perform. '

When local pseudopotentials are used, the total
Fourier component V(g) can be written as the
product

D(q) =(1 +exp [A,(-A,)])/(I+exp[A, (q' -A )]].
(4.2b)

In Eg. (4.2), Z is the valence, a(q) is the dielec-
tric response function, ~ is the atomic volume,
and q, is the position of the first zero of v(q).
Eqs. (4.2a} and (4.2b), A„A„A, and n are fitting
constants.

The factor C(q) modifies the curvature of ~(q)
to fit the literature values in the range 0.5& g
& 1.0 a.u. The value & =2 was used in the calcula-
tions reported here; however, v(q) could have
been fitted with s =1 or & = 3 (and different values
of A„A„and A, ). The relative stability of the
different structures did not depend strongly on &.

The factor D(q) in Eq. (4.2) damps v(q) so that
for q ~ 1.5 a.u. &(q)=0 in accordance with the em-
pirical values. Both C(q) and D(q) tend to unity as
q -0. Thus, v(q} is essentially the pure "empty
core" form at very small q. At each pressure,
the renormalization for the changed atomic volume
0, and dielectric response &(q) is correctly in-
cluded through the "empty core" part of Eg. (4.2).

The empirical v(q) came from semiconductor
data collected by Cohen and Heine. " Equation
(4.2) for v(q) of phosphorous was fitted to this
combined data after appropriate renormalization
for the change in 0 and &(q} in going from a com-
pound (such as InP) to the pure group-V element
(such as P).

The resulting & (q) were fitted with appropriate
values of &0, &, A„A„and A4, these quantities
were then varied within the limits of the experi-
mental uncertainty of the &(q} values for the best
fit to the observed 1-bar crystal structures. With-
in these limits the relative stability of different
structures was rather insensitive to the choices of

I
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TABLE II. Pseudopotential parameters used in Eq.
{4.2).

qo = 1.693 3504 a.u.
n=2

A ( = 7.000 575 1 a.u.
A3=2.S346171 a.u.
A4=4.0043290 a.u.

q„&,A„A„and A4. The values of these quanti-
ties and &, are given in Table II; and the result-
ant &(q) curve, along with the empirical values
from Cohen and Heine, "is shown in Fig. 3.

Finally, to keep the number of parameters var-
ied to a minimum, qo was kept constant. This is
equivalent to assuming that the radius A, of the ion
core is constant. "

0.1-

0-

Y Cg)

[au]

-0.2-

-0.3-

1.0
I

2.0
g (a,u)

3.0

FIG. 3. Phosphorous pseudopotential form factor
&(g). The circles represent empirical pseudopotential
values from Ref. 32. The line is calculated according
to Eq. {4.2) with the values of Table II.

V. CALCULATION PROCEDURE

The calculations are nominally performed at
O'K; entropy is not considered. Actually, co-
hesive energies of the 1-bar structures were cal--
culated using the room-temperature atomic vol-
umes. I ow-temperature lattice constants are not
available for black P. In O.-As, Sb, and Bi the
differences between the low-temperature and room-
temperature values of 0. and & are very small ex-
perimentally" 4' and are considerably smaller

than the errors in these calculations.
In Considering the relative stability of different

crystal structures, care was taken to keep the
atomic volumes constant to within 1 part in 10'.

In the "black P" orthorhombic structure, there
are six variables a, &, &, &, &, and I'. This is
too many parameters to vary together in any
meaningful way. The only values of a, &, and &

used were the observed values, or the values &

=c =5/(2M2) which correspond to the simple cubic
referred to the axes of the orthorhombic cell. For
both sets of lattice constants, &, v, and & were
varied to find the values at which U, was a mini-
mum, A similar problem is encountered with the
"Bi II" monoclinic structure; in that case the ob-
served structure in Bi was scaled down to yield
the correct 0, for black P.

The pressure dependence of n and & for the A-7
structure was investigated by reducing the volume
per atom . Calculations of U, were then per-
formed for the values of a and& in the ranges
60'& n& 94'and 0.125~&- 0.250, respectively.

The calculations were performed with double-
precision arithmetic on an IBM 3VO/168 computer
at the University of Chicago Computation Center,
or on a Honeywell-Bull computer at the Max-
Planck-Institut fur Festkorperforschung, Stutt-
gart.

VI. RESULTS

A. One-bar structures

The values of U, for several possible structures
for black P are given in Table III. In the orthor-
hombic structure, the calculations were done using
the observed lattice constants, but allowing the
atom positions & and & to vary. Table III contains
values of U, for the observed values (& =0.081 and
v=0.1017), as well as those which yielded the min
imum U, (u =0.081 and v =0.106). In view of the
total success of aQ the calculations reported here,
the very close agreement between the two sets of
parameters must be regarded as somewhat for-
tuitous'

As can be seen from Table III, the orthor-
hombic structure was also calculated to have a
lowerenergythanthesc, bcc, or fcc; however,
the A-4 and the A-7 both had even lower values
of U, . Of the A-7 structures considered, the most
stable was found to be anA-7 with &=84 and&.
=0.199.. At 1 bar, the A-7 structure is not even
metastable, so these results cannot be directly
compared with experiment. However, Jamieson'
finds the high-pressure A-7 form to have 0,

=87.6' and 0.21 &«0.22. In view of the fact that
e and & both tend to increase with pressure in As
and Sb,22' ' ' the calculated 1-bar A-7 cannot be
regarded as a particularly disheartening result.
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TABLE III. Structure-dependent part U, of the cohesive
energy for the "black P" orthorhombic structure vrith

&, is also given for the A-4 and most stable A-7
structures.

t E{a.u. ) Comments '

8

8

8

0 -7.884 19 Simple cubic*

-7.863 25

-7.865 55

0.160 0 -7.883 69

0.160

0.160

-7.866 97

2 -7.889 01

0.080 0.160 0 -7.89106

0.080 0.160

0.080 0.160

0.081 0.1017

-7.88139

2 7 89845

-7.900 02 Observed '-'black
P" orthorhombic

0.081 0.106 -7.900 43
t

Most stable
"black P"
orthorhombic

o.= 84 =0.199 -7.92300 Most stable A-7
+=90' m=0. 125 -7.92532 A-4

Asterisk (*) indicates that the lattice constants have
the simple cubic ratios of a =c =&/(2~2).

B. High-pressure structures

The values of U, for different values of the
rhombohedral angle q and u for the A-V structure
at different are presented as energy "contour
maps" in Figs. 4(a)—4(f). At 1 bar, the most
stable structure is with n =84.0' and u =0.199 as
discussed above. As is decreased from the 1-
bar value of ~„u increases reasonably rapidly
while e increases very slowly. The trends
are qualitatively correct for both u and a. No
experimental data is available for the variation of
either u or e in black P; however, these same
qualitative trends are seen in u and n in As, Sb,
and Bi under pressure. ""

The most interesting feature of these calcula-
tions begins to appear when Q =0.91 Qo[Fig. 4(c)].
At that atomic volume, a second local minimum
first appears for the simple cubic structure (o.
=90', u =0.250). When n is decreased just a
small amount more to 0 =0.892 00, the "simple
cubic" minimum and the "rhombohedral minimum"
at n =84.5 and u =0.220 have nearly identical val-
ues of &, [Fig. 4(d)]. By the time Q =0.885 Qo
[Fig. 4(e)], the "rhombohedral minimum" simply
disappears without the values of o. and u having
changed substantially; only the minimum around
the simple cubic remains. In other &cords, the

calculations Predict quite unambiguously that the
A-7 to simPle cubic transition in black P should be
a first-order transition. This is observed to be
the case, as (mentioned above in Sec. II. Further
compression to 0 =0.85V 00 and beyond, does not
change the situation [Fig. 4(f)].

The values of U, for a number of structures
relative to the simple cubic as a function of are
shown in Fig. 5. It is interesting to note that while
the observed orthorhombic structure was incor-
rectly calculated to have a higher energy than the
A. -V at 1 bar, it is correctly calculated as increas-
ing relative to the A-V with decreasing volume.
That is, the orthorhombic becomes less stable
than the A-V with pressure, in agreement with
experimental trends. It is also interesting to note
that the sc structure is calculated to remain stable
with respect to the more closely packed bcc, fcc,
and hcp structures over an incredibly large range
of atomic volumes. Ultimately, U~ will dominate
over Us and the close-packed structures will be
preferred over the sc, but this will apparently
happen only at far higher densities than treated
here.

The way in which some of these trends come
about can be seen by looking at the distribution of
structural weights W(g) =Q

~ S(g) ~' relative
to the energy-wave number characteristic &(q).
This is shown for & =&0 and & =0.96 &0 in Fjgs.
6(a) and 6(b), respectively. At 1 bar (ft =&0), both
the A. -4 and the sc have the greatest W(g) very
near q, . The fcc and bcc avoid q, somewhat, but
not as well as the A. -V and "black P" orthorhombic
do. In fact, both of these latter structures appear to
have very favorable structural weight distributions.

When the volume is reduced so that 8 =0.96 Bo,
the situation changes so as to favor the sc and A-4
over the other structures. The fcc and bcc now

have large structural weights around go and, in

fact, their situation will worsen for a while as R
is further decreased. It is for this reason that the
sc is calculated to remain stable over a wide range
of high pressures.

While pseudopotential theory seems to be most
reliable when small deviations from a given struc-
ture are considered, the strongly decreasing sta-
bility of the bcc, fcc, and hcp relative to the sc
when is decreased suggests that no refinements
to these calculations will change this behavior and
that this predicted behavior should be taken ser-
iously. High-pressure x-ray diffraction experi-
ments are in progress to check this prediction.

C. Stability of the simple cubic structure at high pressures

It is instructive to examine the balance between
the band-structure energy UM and the electro-
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It is by no means certain that these calculations,
if repeated for the other group-V elements, As,
Sb, and Bi, would yield the simple cubic structure
as a form necessarily more stable than the A. -v or
"BiII" monoclinic structures for any pressure.
The changes in U~s with pressure that are required
to stabilize the simple cubic may be attained only
in black P. Such a variation in the pressure be-
havior of U» as we go fr om black P to As, Sb,
and finally, Bi may account for the observed vari-
ety of high-pressure structures in the last three
of these elements. It may also explain the fact that
the simple-cubic structure has never been obser-
ved i,n As or Bi.

ff the volume dependence of the balance between
U~ and Uas is calculated to be different in As, Sb,
and Bi, we might expect such a difference to arise
in part from the fact that the 1-bar atomic volumes
and qo values are different and that nonlocality is
important in Bi. Even fairly large changes in the
u (q} curves of Fig 3do. not change the qualitative
results of calculations in black P.

VII. COVALENT EFFECTS

favors a distortion such that «0.250 and n & 90'.
When the atomic volume is small enough, the

simple cubic structure is stabilized against a shift
of the atom position parameter away from &

=0.250 by the electrostatic energy. This is shown
in Fig. 8(a), where Us and UM are plotted vs u,
with n =90' and R, =0.96 R, (1 bar). It can be seen
that U~ has the greater variation with + at this
atomic volume. However, the electrostatic energy
promotes a shear distortion which would eventu-
ally cause the structure to become fcc (n =60') or
bcc (n =109.4V1'). It is the band-structure energy
which stabilizes the structure against this shear
distortion. This is shown in Fig. 8(b), where Us
and U» are shown as functions of a with & =0.250
and R, =0.96 R, (1 bar). In this case, UM has the
greater variation with a.

These observations do not conflict with the con-
clusion of Born and Huang" that the simple cubic
structure is unstable for atoms bound together by
pairwise central forces. The total structure-de-
pendent energy U, can be shown to be of the form
of pairwise central forces, but it is not the total
potential. In contrast to the case considered by
Born and Huang, U, is only a rearrangement po-
tential at constant volume, and this volume is
largely determined by the volume-dependent, but
structure-independent total energy contributions,
such as the electronic kinetic and correlation en-
ergies. '

In these calculations, black P has been consid-
ered as a metal. While this is true if black P
takes the fcc, bcc, hcp or sc structures, the
A-7 form is probably a semimetal with the
Fermi surface almost completely contained in the
fifth Brillouin zone, and the orthorhombic form
is a small band-gap semiconductor.

In the case of covalent structures, the theory
outlined in Sec. III falls apart in several places
simultaneously. The critical difference between
metallic and covalent (including semimetallic)
structures is the separation of filled and unfilled
states by a band gap E~ in the covalent structures.
This feature gives rise to several important con-

siderationsns:

A. Dielectric functions

The dielectric response functions g (q) and &(q}
from the forms given, respectively, in Eqs. (3.7)
and (3.8) are changed to forms depending on the
energy gap E~. The Penn model is the most
familiar approximation for this case."' ' As E,
-0, the Penn model forms of p(q) and e(q) ap-
proach Eqs. (3.7) and (3.8), respectively. Thus,
for nonzero q, use of the metallic forms of y(q)
and &(q) is reasonable for small gap semiconduc-
tors.
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B. Extra cohesive energy contribution from Jones-zone planes

It is no longer sufficient to consider only iso-
lated Brillouin zone planes as was done in the
derivation of Eq. (3.5). There is an extra amount
of cohesive energy U» per atom resulting from
overlap of the Fermi sphere by multiple Jones
zone planes. For an isotropic semiconductor,
Van Vechten" has shown that this is given by the
Penn model as

Uzz =(SZE~2/16E», )[l+1n(E~/SE», )]

—~ (E,'/E~') Z.

%hen we are faced with real Jones zone planes
about the best we can do is estimate an average

gap E~ from the calculated gaps on the centers of
the Jones zone faces and apply Eq. (V.1)."'" This
yields only a, very approximate estimate of the co-
hesive energy contribution from the Jones zone
planes of course.

C. Higherwrder contributions to the Jones zone gap

The gaps of the Jones zone planes are not simply
given by E~ =2 [V (Jones zone)], but rather higher-
order contributions dominate the gap. Let g be the
reciprocal-lattice vector spanning opposite sides
of Jones zone. If there are reciprocal-lattice vec-
tors g» and g» such that g =g, +g» and V(g, ) and

V(g;) are large enough to contribute in second or-
der as much as V(g) in first order, then the Jones
zone gap takes the form
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E =2[V,ff(g)]

)( V (g~)V (g —g, }
05[-' '-(.g-g )'] &~

Eg

(7.2}

It has been shown that in IV-VI compounds with
the NaCl structure, as well as in the A. -7 struc-
ture, that the Jones zones are dominated by the
(131].planes. "'4 Thus,

V„,(311)= V(311)+4(a/2 v)'

x [V(111)V(200) + V(111)V(220)] (7.3)

for phosphorous in the A-7 structure.
In the simple cubic, referring to the cell des-

cribed in Sec. II, the structure factors S (111)and
8(311)are both zero and the covalent band gap E~
~ 0. If the atom position I shifts to a value 0.125
~~u~ 0.250, then S(111), S(200), S(220) and S(311)
are all nonzero and the Jones zone gap E con-
(ributes to the cohesive energy in the manner of
Kq. (7.1}. As has been pointed out before, '4 this
is an additional reason that the other group-V ele&
ments, As, Sb, and Bi, take neither the simple
cubic nor diamond structures, but rather. take the
A-7 structure, which is somewhere in between.

D. Higher-order contributions to the Jones zone gap in the

black P orthorhombic

Because the orthorhombic structure has a much
lower symmetry, the situation is more complica-
ted in this form of black P. Moreover, there are
important changes in the identity of the Jones zone
planes on going from the A-7 or simple cubic to
the orthorhombic. One example illustrates this
very well. If the simple cubic cell is referred to
the orthorhombic axes, then the (131)and (131}
planes are written as (160) and (061), respectively.
For the simple cubic structure, all these Jones-
zone structure factors are still zero, of course.
However, the double-layer shift illustrated in
Fig. 1 results in S(160)+0, although S(061)=0
still. Changes in the atom position parameters
& and & to their values in the observed orthorhom-
bic structure do not change this situation. If the
lattice constants maintained their simple cubic
ratios a=c = b/2M2, black P would be a metal and
not a semiconductor. However, the double-layer
shift also causes other structure factors to be
nonzero, notably, S(151)&0. As long as the lat-
tice constants have their simple cubic ratios,
the (151)plane does not lie near enough to the
Fermi surface. However, the lattice constants of
the actual orthorhombic structure are such that
the (151)plane lies on the Fermi surface and is
thus a Jones zone plane.

The higher-order contributions to V„, (151) are
given by

Vff (151)

(V(040) V(111) V(131)V(020)
2b +2 3b+2

(7.4)
where 5* is a reciprocal lattice constant.

A calculation of V«(151) from Eq. (7.4) and
V«(131) from Eq. (7.3}, shows that [V«(151)
=2[V«(131)]. This suggests that when the Jones
zone contributions are included for both the A-7
and orthorhombic structures, the orthorhombic
structure may well have the lower energy.

This argument is only tentative, of course.
Particular Jones zone planes were singled out
for this example with no attempt to Iietermine the
effects of the others. Moreover, if we are to in-
clude the effects of UJ7 we should use the covalent
forms of c(q) and X(Q') of Srinivasan'0 as well.
These calculations are in progress. The results
obtained so far are very similar to the sec'ond-
order calculations presented here, but in better
agreement with observed structural trends.

VIII, DISCUSSION

The calculated energy differences between the
various 1-bar structures, shown in Table III and
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Fig. 5 are considerably larger than those calcula-
ted for lower-valence elements. In view of the
fact that second-order local-pseudopotential cal-
culations tend to overestimate distortions, this is
a matter of some concern. It turns out that these
differences are probably a bit too large, but not
unreasonably so.

The only relevant experimental information we
have concerning the relative cohesive energies
of different structures of phosphorous is the val-
ues of the heat of formation H&~ for the different
allotropes. These are at 25'C and 1bar" (i) white
phosphorous, Hz' =0.0; (ii) red phosphorous, IPz
= -4.4 kcal/mole; (iii) black phosphorous, H&
= —10.3 kcal/mole.

The local bonding arrangements in red phos-

phorous and black phosphorous are quite similar
and so it is reasonable to expect energy differen-
ces between structures to be on the order of 6
kcal/mole =0.01 a.u. /atom. From Table II we see

. that the differences between the closely related
A-7, orthorhombic, and simple cubic structures
are calculated to be on the order of 0.01 to 0.04
a.u. This is a bit large but not unreasonable,
especially in view of the fact that at Q =00 the
orthorhombic structure is calculated to be less
stable than the A-7, contrary to experiment.

The general qualitative structural trends des-
cribed in Sec. VI are quite insensitive to varia-
tions in the pseudopotential. Quantitative agree-
ment can be improved with appropriate changes in

&(g). For example, it might be argued that the
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v(q} values for q& 1.3 a.u. might be stronger. As
can be seen in Fig. 3, this would improve agree-
ment with several empirical values of &(q), while
increasing disagreement with another. Such a
change would also improve the stability of the
orthorhombic relative to the A-7 at 1 bar and shift
all the phase transitions to smaller atomic vol-
umes, in closer agreement with experiment. Such
refinements lie outside the scope of this work,
which is to see if the general features of the black
P phase diagram can be understood in terms of
pseudopotential theory in a straightforward man-
ner. They can, and indeed it is remarkable that
the second-order pseudopotential approach works
so well in describing the structural changes as
black phosphorous goes from a semiconductor to
a semimetal and finally to a metal.

Some other difficulties in the calculations also
remain. As can be seen from Fig. 5, the volume
at which the A-7-sc transition takes place is
seriously overestimated. In addition, the diamond

structure is calculated to be more stable than the
simple cubic or A-7 in the range 0.75 0,- 0
~ 1.06 00. It may be hoped that the inclusion of
covalent effects through the special treatment of
the Jones zone planes, as discussed in Sec. VII
above, will correct this problem, at least for the
A-7. In black P, or any pentavalent element for
that matter, there are no Jones zone contributions
for the A. -4 or sc. This is not the total answer,
however. To reduce the stability of the A-4 rela-
tive to the sc we must look elsewhere, possibly to
the inclusion of nonlocality and more sophisticated
handling of exchange and correlation.

The problem with the A-4 structure is actually
part of a larger problem. For these large-Z ele-

ments, the second-order pseudopotential theory
is most successful when small distortions from a
given. structure are considered. As noted by AOM,
it seems usually less successful when the cohesive
energies of rather disparate structures are con-
sidered.

Despite the problems, the fact that the orthor-
hombic-A-7 relative energies show the correct
trends and the fact that the first order A-7-sc
transition comes out of the calculations suggest
strongly that we are beginning to understand the
structural behavior of black P from a micro-
scopic point of view.
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