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We present the self-consistent numerical-basis-set linear combination of atomic orbitals (LCAO) discrete
variational method for treating the electronic structure of thin films. As in the case of bulk solids, this
method provides for thin films accurate solutions of the one-particle local density equations with a non-muAin-
tin potential. Hamiltonian and overlap matrix elements are evaluated accurately by means of a three-
dimensional numerical Diophantine integration scheme. Application of this method is made to the self-
consistent solution of one-, three-, and five-layer Ni(001) unsupported films. The LCAO Bloch basis set
consists of valence orbitals (3d, 4s, and 4p states for transition metals) orthogonalized to the frozen-core
wave functions. The-self-consistent potential is obtained iteratively within the superposition of overlapping
spherical atomic charge density model with the atomic configurations treated as adjustable parameters. Thus
the crystal Coulomb potential is constructed as a superposition of overlapping spherically symmetric atomic
potentials and, correspondingly, the local density Kohn-Sham (a =—2/3) potential is determined from a
superposition of atomic charge densities. At each iteration in the self-consistency procedure, the crystal
charge density is evaluated using a sampling of 15 independent k points in (1/8)th of the irreducible two-
dimensional Brillouin zone. The total density of states (DOS) and projected local DOS (by layer plane) are
calculated using an analytic linear energy, triangle method (presented as an Appendix) generalized from the
tetrahedron scheme for bulk systems. Distinct difFerences are obtained between the surface and central plane
local DOS. The central plane DOS is found to converge rapidly to the DOS of bulk paramagnetic Ni
obtained by Wang and Callaway. Unlike the result of earlier non-self-consistent calculations, only a very
small surplus charge (0.03 electron/atom) is found on the surface planes —in agreement with jellium model
calculations.

I. INTRODUCTION

Transition-metal surfaces have become a sub-
ject of intense interest and study. ' »4 As in the
case of bulk transition-metal studies, which have
taken place over the last 40 years, the difficulty
of treating localized 4 electrons along with the
itinerant s-p electrons has provided the challenge
and impetus for developing the sophisticated the-
oretical methods necessary for accuretely deter-
mining the electronic structure of transition-
metal surfaces. For bulk systems, considerable
progress has been made in the last few years in
this direction. »" Band-structure calculations of
the electronic properties of transition-metal sur-
faces within the thin-film model include multiple
scattering, ' tight binding, ' and supplemented
orthogonalized plane-wave methods. " Kasowski'
applied the linear combination of muffin-tin or-
bitals technique to study the energy bands and sur-
face states of a 20-layer ¹i(001}film at high-
symmetry points in the two-dimensional Brillouin
zone (BZ). In a parametrized linear combination
of atomic orbitals (LCAO) spin-polarized calcula-
tion for a 35-layer Ni (001) film, Dempsey and
Kleinman showed that the existence of surface

states above the majority-spin band throughout
the two-dimensional BZ could account for the re-
versal of photoelectron spin polarization observed
0.1 eV above threshold. " While providing valuable
information about surface properties, these cal-
culations are restricted by the arbitrariness in
choosing a non-self-consistent (SC} potential,
tight binding, or other parameters. In a recent
study of the effects of different non-SC potentials
on surface states in Fe, Caruthers and Kleinman
concluded that SC is important for transition-metal
film calculations in that both the existence and the
symmetry of some surface states depend crucially
on the details of the potential.

The first self-consistent calculation for a tran-
sition-metal surface was made for Nb(100) using
a pseudopotential scheme. »' Due to the localized
nature of the d electrons, approximately 1000
plane waves ranging over an energy of 10.2 Ry
were required to form the basis set. Conver-
gence tests for bulk Nb»' indicated that the s, p
levels and the d-band wjdth were converged to 0.01
eV, and that the 4 level may shift relative to s-p
levels by as much as 0.2 eV when additional plane
waves up to an energy of 16 Ry were included by a
perturbation technique. While the ab initio SC lin-
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ear combination of atomic Gaussian orbitals
(LCGO) calculations for Cu(100) and Ni(100) re-
quired a much smaller basis set," "the vari-
ational flexibility of their basis set may be limited
by the neglect of the atomic 4p states .[Note that
the state of purely 4p symmetry (L,', ) is occupied
in both bulk Cu and the bulk majority-spin-state
Ni bands. In addition, the pure 4p state X„which
influences the slope of the 6, bands arising from
the d-band complex, and therefore the position of
the Fermi energy relative to the top of the d band
in bulk Cu, is missing. ] Both the pseudopotential.
and LCQO methods achieved self-consistency using
the symmetrized-plane-wave. (SPW) expansion of
the charge d:ensity. However, due to the lack of
periodicity along the surface normal direction,
this procedure is very cumbersome for the follow-
ing reasons. First, although it is possible to arti-
ficially restore the periodicity at a long distance
away from the surface, the z component of the
reciprocal-lattice vectors g, ) is so small that
an enormous number of SPW must be included to
obtain a fairly smooth density. Second, the large
Fourier coefficients at very small &„which van-
ish in the bulk systems (as required by the peri-
odic boundary conditions), tend to slow down the
convergence rate in the surface calculation. Third,
the relatively long-range behavior of the surface
dipole moment may require additional spacing be-
tween two adjacent surface layers in a SC calcula-
tion in order to keep them from interacting with
each other. For these reasons it is extremely
difficult in the plane-wave expansion method to
reproduce the sharp structure near the nuclear
sites accompanying the charge transfer away from
the surfaces.

The degree of self-consistency obtained is de-
termined by the accuracy of the crystal charge
density in the calculations. However, due to the
complexity of the problem, both of the existing SC
calculations '3 ~ were limited, in sampling the
crystal charge density in the SC cycle, to the use
of only three special k points in —', of the indepen-
dent two-dimensional BZ. The special-k-points
formalism is based on the premise that the inte-
grand is relatively smooth in k space, so that it
results in a rapidly convergent Fourier expansion.
While it has been applied successfully to semi-
conductors, the convergence of the results ob-
tained with increasing number of sampling k points
for a complex 4-band charge density in a metal
with a sharp step function at the Fermi energy
needs to be more carefully explored. In particu-
lar, the problem could be quite serious in the case
of ¹i,where the Fermi energy crosses the upper
d-band complex. ~' The self-consistent potential is
more sensitive to the concentration of the localized

d electrons in the transition metals than it is to the
free-eleetronlike s-p states. Yet, the d holes on
each layer of a ¹ifilm can only be determined ac-
curately after the effects of the cutoff of the Fermi
energy are properly included.

Bearing this in mind, we propose in this paper a
simpler procedure to account for the major fea-
tures in SC calculations. The SC numerical-basis-
set (LCAO) method of Ellis and Painter'o and Zun-
ger and Freeman" for bulk systems was general-
ized for the case of an unsupported thin film. A

detailed description of the method as applied to
one-, three-, and five-layer Ni films is presented
in Sec. II. Systematic changes as the film thick-
ness increases are discussed when the band struc-
ture and density of states one, three, and five
layers of ¹i(001) film are compared in Sec. III.
Results obtained are compared with experiments
and with other theoretical studies. In Sec. IV the
effect of SC is discussed. Finally, a two-dimen-
sional BZ integration method to calculate density
of states, Fermi energy, and charge density,
which was generalized from the linear-analytic-
tetrahedron scheme of Jepson and Anderson" and
Lehmann and Taut" for bulk systems, ' is given in
Appendix A; convergence tests and results for a
Ni (001) monolayer are given in Appendix B.

II. METHOD

We consider a, film of m layers with the origin of
the system midway between the two surface layers
and the z axis normal to the surfaces. The unit
cell consists of aparallelepiped whose z dimension
extends to +. The Coulomb potential is formed
as a non-muffin-tin superposition of spherical
atomic potentials that can contain long-range ionic
components to account for charge transfer in the
film. A superposition of overlapping spherical
atomic charge densities is used to construct the
local density Kohn-Sham (n = —,') p~~' exchange po-
tential. " Atoms up to 25 a.u. away from the atom-
ic site were included in the two-dimensional direct-
lattice sum to obtain the superposition potential
and charge density. The long-range ionic compo-
nent of the Coulomb potential accompanying the
charge transfer near the surface is included through
a generalized Ewald-type procedure. "

To reduce the dimension of the secular equation,
the numerical LCAO Bloch basis functions are
orthogonalized to the (frozen) atomic core states. "
The energy of the core states in the atoms at the
surface layers are shifted with respect to that of
the center plane due to the reduction in the number
of nearest neighbors and surface dipole moments.
Their overall energy dispersion in k space, how-
ever, remains quite small, so that the Bloch core
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states can still be approximated by the atomic
wave functions to good accuracy. We have used as
basis set numerical atomic M, 4s, and 4p orbitals
for each Ni atom, generated from a Herman-Skill-
man-type atomic program, "but with the long-range
tails of the virtual states suppressed by an addi-
tional potential weQ to avoid the possible occur-
rence of linear dependencies in the basis set.

Having tabulated the initial potential and Bloch
basis functions, the Hamiltonian and overlap ma-
trices that appear in the usual linear variational
secular equation are calculated directly by a nu-
merical three-dimensional Diophantine integra-
tion scheme" without decomposition into multi-
center integrals. The unit cell in the form of an
infinitely long parallelepiped is divided into three
regions, defined in Fig. 1. Within region I, the
Diophantine points inside spheres of radius 8 cen-
tered at each atomic site p, are generated in spher-
ical coordinates. Most of the difficulty in the nu-
merical integration comes from treating the Cou-
lomb singularity near the site of the nuclei where
the potential is nearly spherically symmetric and
the wave functions are of predominantly s-like
character. For a spherically symmetric integrand,
a three-dimensional numerical integral is equiv-
alent to a one-dimensional radial integral having
the same number of Diophantine points. Further-
more, the corresponding weighting factor, which
is proportional to the square of the distance from
the nucleus, tends to smooth out the integrand near

FIG. 1. Schematic representation of the regions over
which the Diophantine integration scheme is carried out
using the sampling integration points assigned in the
text.

the nuclei, and provides a rather rapid conver-
gence rate. No sampling points are required in the
vacuum region II (~s ~

&L), where the charge den-
sity vanishes. Finally, the sampling points in the
interstitial region III are generated in Cartesian
coordinates with equal weights. The method is a
very simple and straightforward one to use, re-
gardless of the complexity of the system con-
sidered. In the case of a transition metal the rate
of convergence of the numerical integrals in the
Hamiltonian matrices is determined by the neces-
sity of sampling sharp spikes in the core wave
functions with the Coulomb, singularity near the
nuclear sites. These problems are avoided in us-
ing the frozen core approximation. As an illustra-
tion of convergence of the results with respect to the
number of Diophantine points used in the different
regions, we present some results for a monolayer
of Ni(001) in Appendix B.

After solving the secular equation, the crystal
charge density is computed by integrating the
square of the wave functions

~
4~

' over the occupied.
portion of the two-dimensional BZ. In order to
accurately account for detailed Fermi-surface ef-
fects, we developed the analytic-linear-energy-
triangle scheme as a generalization of the analytic-
linear-energy-tetrahedron method' ~ for bulk
systems, using energies and wave functions at 15
equally spaced points in —', of the irreducible zone.
A detailed description of the method as applied to
the computation of the density of states, Fermi
energy, and charge density is given in Appendix
A. This procedure has the advantage over the
special-k-points method in that the contribution
from the occupied portion of a triangle can be
evaluated exactly as a linear combination of sub-
divided triangles if we assume that the energy and

vary linearly inside each triangle.
The self-consistent potential within the super-

position model is obtained iteratively by varying
the atomic configuration as an adjustable param-
eter. In some of our early calculations, we used
the Mulliken' charge and population analysis. The
Mulliken analysis amounts to arbitrarily dividing
equally, between the relevant sites, all the cross
terms in the charge-density expression between
basis functions located on different inequivalent
sites. However, due to the extensive overlap with
the 4p stateg from different atomic sites, the con-
verged results overestimate the 4p concentration.
For this reason, we have developed, instead, a
least-mean-squares fitting procedure under the
constraint of charge neutrality and the Pauli ex-
clusion principle at selected points in x space.
The Diophantine points, which have higher density
inside region I than in region III, are selected on
an equally spaced grid. In addition, we have added
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TABLE I. Integration parameters, input atomic configuration for the SG potential, and the
degree of SC {&) for the one-, three-, and fi.ve-layer Ni (001) films. (See text or definition of
R and I..)

Ao. of layers

R (a.u. )

1 (a.u. )

SC conf igurat ion

First (center)

Second

Third

Valence electrons
per unit cell

S~ (eV)

750

1500

2.2

8.324 25

3d 8.
684 ~i.204P 0.i2

0.187

10

-5.61

750

2000

22
11.653 95

3d 8.474~i .434P0.42

3d 8.5i4gi .254P0.08

0.249

30

-5.38

600

3000

2.2

14.983 65

3d 8.
424~i .304p0.22

3d 8.484~i.5i4PO. i i

3d 8.544~i .354P0.04

0.361

50

-5.52

points very close to the nuclei in order to ensure
that the cusp behavior at a nuclear site is fitted
correctly. After taking account of the reflection
symmetry about the center plane, we find that
around 250-600 points are usually enough to fit
three, six, or nine valence-state configurations
in the one-, three-, or five-layer Ni (001) films,
respectively.

At each iteration, the degree of self-consistency
is examined by calculating

1/2
(p(r) p(r) )2ds~

«j)'S Slip
unit cell

where p and p, are the crystal and superposi-
tion charge density, respectively. Since Hamil-
tonian and overlap matrix elements are computed
by three-dimensional numerical integration tech-
niques, there is some accumulation of numerical
errors in p . In Appendix B, we discuss the con-
vergence of the wave functions by examining b, and
the Mulliken charge analysis of the wave functions
using different sets of Diophantine points. This
shows that 4 should be viewed in the superposition
model as an upper bound to the difference 5p be-
tween p,„and the true p„„.

At each iteration, the fitting coefficients are
compared with those results of the Mulliken charge
and population analysis of the wave functions and
the input atomic configuration, and are modified
accordingly in the next iteration to generate a new
superposition potential and overlapping charge
density. The final SC configuration is determined
by the minimum of h. This method has been ap-
plied successfully to a Cu (001) monolayer, '~ the

TABLE II. Layer-by-layer projection of the valence-
state charge density as calculated by nearest volume in-
tegration of p«„(cf. column A) and pstlI, (cf. column B).
The input atomic configuration and the corresponding
Mulliken analysis are given in columns (C) and (D),
respectively.

(a) Non-SC potential
layer

First (center)
Second
Third {surface)

(b) SC potential
layer

10.89 10.00 10.00 10.86
10.73 9.97 10.00 10.97
8.82 10.03 10.00 8.60

.F&rst (center)
Second
Third (surface)

10.01 9.98
9.96 10.01

10.03 10.00

9.94 9.95
10.10 10.15
9.93 9.88

one-, three-, and five-layer paramagnetic Ni (001)
films discussed here, and an ordered overlayer of
c(2x 2) oxygen chemisorbed on the surfaces of a
three-layer ¹i(001) film" using sampling points
comparable to those of column E in TaMes III and Dt.
Usually around 5-12 iterations are required to
reduce & by 40%%u()

—60% from its starting value
at the zeroth iteration. The resulting 6, , which is
an upper bound of the true differences, ranged
from 1.87%%u() to 0.72%%uo of the total number of val-
ence electrons in the unit cell.

En principle, it is possible to further minimize
6 by expanding 5p in a more complete set of func-
tions such as symmetrized plane waves or Gaus-
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TABLE III. Comparison of the energy-band eigenvalues at high-symmetry points for a Ni
(001) monolayer calculated for a superposition model potential (3d 4s ) with different sets of
Diophantine points in regions I and III (cf. Fig. 1) for boy frozen-core and full basis functions.
Units are eV; the zero of energy is the vacuum.

Core
A

Full
B

Full
C

Full
D

Frozen
E

Frozen
F

Frozen

Ãr

birr

F(
F3
F(
F)
F4
Xg
X3
X2
x,
X4
X3
M4

M~
Mg

M3
M5

300
600
-9.22
-6.07
-4.92
-3.88
-3.34
-6.19
-5.57
-4.19
-4.07
-3.75
-3.18
-6.36
-5.03

3077
-2.S1

1.99
-3.75

75Q

1500
-9.20
-6.18
-5.13
-3.90
-3.56
-6.23
-5.59
-4.40
-4.33
-3.78
-3.19
-6.52
-5.05
-4.01
-2.96

1.96
-3.91

1000
2500

-9.22
-6.20
-5.14
-3.91
-3.58
-6.26
-5.60
-4.41
-4.33
-3.79
-3.20
-6.54
-5.07
-4.01
-2.97

1.97
-3.92

1Q00
2500

-9.29
-6.21
-5.15
-3,92
-3.58
-6.27
-5.61
-4.43
-4.34
-3.80
-3.3-0

-6.55
-5.07
-4.02
-2.98

1.99
-3.93

750
1500

-9.27
-6.20
-5.15
-3.92
-3.59
-6.26
-5.60
-4.42
-4.34
-3.SQ

-3.29
-6.54
-5.07
-4.02
-2.98

1.98
-3.93

300
600
-9.31
-6.20
-5.24
-3.93
-3.58
-6.25
-5.62
-4.48
-4.40
-3.80
-3.29
-'6.54
-5.08
-4.14
-2.98

1.94
-3.93

sian orbitals, permitting solutions to the Poisson
equation'to be obtained analytically. However,
rapidly oscillatory behavior combined with ex-
tremely localized numerical errors found in p
at each nuclear site make the convergence of the
expansion of 5p in symmetrized plane waves and/or
Gaussian orbitals very slow. Since the net charge
(volume integral of these localized numerical er-
rors) is extremely small, th'eir overall effect on
the energies or wave functions are probably neg-
ligible. The simplicity of the discrete variational
method does not limit expansion of the potential
to any particular analytical form. Thus it is more
convenient to expand 5p in region I in Kubic har-
monics and solve the radial part of the Poisson
equations numerically, whereas the slowly varying

5p in the interstitial region (III) can be expanded
in a rapidly convergent symmetrized plane-wave
series. Generalization of this approach to the
treatment of a full potential beyond the superposi-
tion of the overlapping spherical charge-density
model is under development, and will be reported
later.

In Sec. III we present results for one-, three-, .

and five-layer ¹ (001) slabs; the integration pa-
rameters, SC charge configuration, and the degree
of SC(b, ) are tabulated in Table L The convergence
in the energies and wave functions correspond
closely to those given in column E of Tables DI
and IV of Appendix B. Note that the atomic con-
figurations listed pertain only to the SC atomic
charge density generated from numerical solution

TABLE IV. Comparison of the Legree of self-consistency n (cf. Eq. 1) and the Mnlliken
charge analysis of the wave functions for the same sets of Diophantine points and approxima-
tions as defined in Table I.

Core
A

Full
B

Full
C

Full
D

Frozen
E

Frozen Frozen

Nr

&rrr

Mull 3d
4p
4p

300
600

2.619
8.54
0.9S
0.44

750
1500

0.840
8.60
0.97
Q.41

1000
2500

0.555
8.60
0;96
0.42

1000
2500

0.250
8.62
0.93
0.45

750
1500

0.262
8.62
0.95
0.43

300
600

0.321
8.62
0.96
0.42
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of the same Hamiltonian for a free atom with the
external potential well (in a.u. ),

—0.2

—0.4

added to avoid the possible formation of linear de-
pendence in the virtual states of the LCAQ Bloch
basis. Because of the extensive overlapping of the
free-electron-like 4s-4p states, the atomic con-
figuration shown in Table I. does not reflect the
charge transfer between different layers. Note al-
so that the SC potential for the one-, three-, and
five-layer Ni (001) slabs had a least-mean-square
error between the input superposition and the true
crystal charge density of less than 1.87% 0 83 fp,
and 0.72% of their valence electrons per unit cell,
respectively.

—0.6

—0.8
r

—0.2

. —0.4

I

X

I

Yp

III. RESULTS

A. Energy-band structure

The self-consistent energy bands of the five-
layer Ni (001) film are presented in Fig. 2 along
the high-symmetry directions in the two-dimen-
sional BZ. In order to clarify the band structure,
states of 4, -F, -Z, symmetry are displayed above
those of 4~ -F, -Z~ symmetry. In addition, the
wave functions have either even or odd parity with
respect to reflection about the central plane. For
a given two-dimensional symmetry, only bands of
opposite parity are allowed to cross one another.
The general trend in the energy bands (opening of
gape, bandwidths, etc.) agrees quite well with the
parametrized LCAO calculation of Dempsey and
Kleinmans for a 35-layer spin-polarized Ni (001)
film. There, extremely localized surface states
of majority spin (X,) and doubly degenerate (X,)
states were found to be essential' for accounting
for the reversal of the photoelectron spin polari--
zation observed~7 0.1 eV above the threshold. The
limitation of a film thickness of five layers does
not permit a thorough study of the surface states.
However, the existence. and symmetry of the sur-

. face states was found by Caruthers and Kleinman"
to depend crucially on details of the potential. The
simple SC procedure described in this paper ap-
pears to be an ideal way to investigate the surface
states in a thicker film. The variational freedom
of the LCAO basis set can be improved by adding
additional virtual atomic states or symmetrized
plane waves in order to describe the surface states
that may peak more than a half layer outside the
surface plane. The surface states of a Ni (001) film
are investigated in a future publication, where we
extend our calculation to treat a thicker film.

Surface and finite thickness effects can be better

—0.6

—0.8

-I.O

FIG. 3. Energy-band structure of the five-layer Ni
(110) film plotted along the high-symmetry directions in
the two-dimensional BZ. The upper panel shows the
states that have Q —Fz —T& symmetry and the lower
panel the states of && —F& —Z~ symmetry,

understood by comparing the projected surface
band structure with that of the bulk system as pro-
posed by Caruthers eS a/. " Note that the two-di-
mensional unit cell is rotated 45' in the xy plane
away from the edge of the cube with length a/W2.
To construct the projected band structure, we
show in Fig. 3(a) the projection of a three-dimen-
sional fcc unit cell defined by direct-lattice vec-
tors a(s, —,', 0), a(—,', ='„0), and a(0, 0, 1) that is
commensurate with that of the two-dimensional
surface unit cell. The corresponding projection
of the three-dimensional BZ defined by reciprocal-
lattice vectors (K) = (2s/a)(1, 1, 0), (2v/a)(1, -1, 0),
and (2v/a)(0, 0, 1) are shown in Fig. 3. Symmetry
points in the two-dimensional BZ are denoted by
an overbar. Now in the limit of infinite film thick-
ness the energies at a point k in the two-dimen-
sional BZ span all the points at (k, k, ) +K in the
three-dimensional BZ, where -s/a &k, &s/a. The
two-dimensional energy levels at the I', M, and X
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W

Q(x)

(a) (b)

FIG. 3. (a) Projection of a three-dimensional fcc unit
cell defined by the direct lattice vectors a(2, $, 0), a(~»
= ~, 0) and a(0, 0, 1). The solid lines represent the base
of the commensurate unit cell. (b) The corresponding
projection of the three-dimensional BZ defined by the
reciprocal-lattice vectors (K = (2m/a) (1,1,0), (27t/a)
(1, -1,0), and (2&/a)(0, 0, 1).

points are used to reconstruct the three-dimension-
al energy bands in Fig. 4 along', , Z, and L, to
(m/a)(~, —,', 0) directions, respectively. The unpub-
lished band-structure results of Wang and Calla-
way'4 for paramagnetic bulk Ni are also included
for comparison (solid lines, but with the origin
of the bulk energy bands shifted in order to align
the Fermi energies). Note that states of b, ,(x' -y'),
6,'(xy) symmetry agree very well with that of the
bu1k results, while states of b.,(xz, yz) symmetry,
whose lobes at the surface atoms point toward the
missing nearest-neighbor atom sites, deviate
slightly more. A rather large downward shift of
0.05 Ry was found in the 6, states of predomi-
nantly sp character relative to the d-band complex.

The fact that the F, state projected from a five-
layer film lies below that of the bulk result is

rather surprising, since the bandwidth of both the
sP and d bands are expected to be narrower in a
thin film. The initially assumed non-SC potential
yields a value for E~ -1"~ that is 0.08 Ry larger
than that for the SC results. However, when we
compare the width of the projected sp states along
the 6 direction, we find indeed a narrowing of 0.05
Ry, i.e., in a thin film the sp bands are driven
down in energy relative to the d bands. It is inter-
esting to note that a lowering of the I', level by
0.01 Ry was also reported" in a non-SC calculation
for a 13-layer Al (001) film when compared with the
result of an equivalent bulk calculation for Al. The
magnitude was found to be dependent on the sur-
face-to-volume ratio of the film [e.g., it was re-
duced to 0.005 Ry in a 39-layer Al (001) film]. In
a supplemented orthogonalized-plane-wave (OPW)
calculation for a 13-layer Fe (001) film, "it was
found that the width of the sp band and the position
of the bottom 1"~ level relative to E~ were substan-
tially increased when the Xz exchange potential
was reduced by varying a from 1 to —,. Similarly,
the value of I'» -1",was found to increase with
decreasing o, in a SC calculation for bulk Cu."
For these reasons, we tentatively associate the
lowering of the I'~ state of a five-layer film in
Fig. 4 with the reduction of the superposition
charge density, and hence of the exchange poten-
tial from the bulk values near the surface region.

The convergence with respect to the film thick-
ness is examined in Fig. 5, where the projection
of the F level onto the 6 direction for the one-,
three-, and five-layer films are compared. Note

-0.2

-0.2

-0.4

-0.6—

-0.8—

I

F5

X»Xp ~

X3
X(

~ '
~ ~

L3

Lp

L3

~ ~ I
L

+
—p.g —pF ~+~~+7

+ ~+
Q+~

-0.6—

-0.8—

a.~.P
5-
2+~
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that whereas the d-band complex can be described
rather weQ by a three-layer film compared with
the five-layer result, the plane-wave states (h~)
in the three-layer film are narrower. As the fQm
thickness increases, the splitting of the levels,
which for three-dimensional symmetry points are
degenerate, gradually disappears. In the extreme
case of a moaolayer, the widths of both the d band
and the sp states are much narrower and the re-
sulting center of the d bands is found to lie rela-
tively high in energy.

B. Density of states

The density of states (DOS) and the projected
local DOS are compared in Fig. 6 for the one-,

three-, and five-layer Ni (001) films. The two-
dimensional DOS is seen to have more structure
than does the three-dimensional DOS because the
continuous spectrum along the s direction in the
case of the bulk is replaced by discrete energy
levels in the thin-film case. From the computa-
tional side, we also expect more numerical in-
stability in the case of a film, since the conver-
gence of the 4 integration is degraded by the in-
creasing number of accidental degeneracies al-
lowed in the two-dimensional symmetry plane.
Originally, the DOS was calculated from a sam-
pling of 15 k points in —', of the irreducible zone
using the triangle scheme desex'ibed in Appendix
A. These results were then smoothed by a Gaus-
sian broadening function of 0.1 eV full width at
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half maximum (FWHM) (dashed lines in Fig. 6) to
permit all detailed structures to be preserved
when comparing results of different theoretical
models. [Note that this smoothing procedure was
not necessary in the DOS of bulk Ni" (shown as
dashed lines in the second box on the right), as
this was calculated using 505 points in ~~ of the
BZ.] The DOS shown as solid. lines in Fig. 6
were smoothed by a Gaussian fold of 0.5 eV FWHM
in order to compare with the different experimen-
tal results. One sees that there are distinctive dif-
ferences between the surface-plane (SP) and cen-
ter-plane (CP) projected DOS in either the three-
layer (left-hand column) or five-layer (center
column) results. The CP DOS consists of three
major peaks located at approximately 0.3, 1.9,
and 3.6 eV below E„. Each peak in the five-layer
film has an additional shoulder that would be
smoothed if a larger FWHM Gaussian fold were
used. The way the three- and five-layer CP DOS
converge toward the bulk DOS is very encouraging,
in that it provides some direct evidence for the
adequacy of describirig the surface properties
using thin films of only five atomic layers thick.

The severe narrowing of the d bands and the ac-
companying upward shift of its center of gravity
that we reported in our earlier study of a Cu mono-
layer" was also found in the case of a Ni mono-
layer (see the top panel in the right-hand column
of Fig. 6). These effects are a direct consequence
of the reduction in the number of nearest-neighbor
atoms at the surfaces. Similar, but smaller,
changes are observed in our SP DOS for three- or
five-layer films. In contrast to the CP DOS, the
SP DOS exhibits a major peak at about -0.6 eV,
with three weak shoulders on its rapidly decreas-
ing side of the DOS at lower energies. These dif-
ferences between the SP and CP DOS, and in the
five-layer case also with the second plane DOS
(bottom panel in the right-hand column), may be
important in interpreting results obtained with
surface-sensitive spectroscopies (if one has es-
cape depth information to include jn the anal-
ysis" "). The five-layer DOS (bottom panel in
the center column) still differs substantially from
the bulk DOS since 2 of the contribution arises
from the SP DOS. Thus it is very important to
properly separate and weight the contribution from
the SP DOS in order to understand the role of the
surfaces in a thin-film model.

One reason that our projected DOS differs from
the recent self-consistent LCGO results for a
three-layer ¹i(001) film by Smith et al.~' is the
different means employed in carrying out the pro-
jection. Whereas the results shown in Fig. 6 were
weighted at each k point by the Mulliken charge snd
population analysis of the wave functions, the re-

suits of Smith gt g$. were weighted by the sum of
the. square of the coefficients of the basis functions
in that plane. ~' ' However, since the LCGO basis
functions are not orthogonal, the contribution from
the off-diagonal elements of the overlap matrices
have been neglected, making the sum of their cal-
culated projected DOS not equal their calculated
total DOS. This argument does not account, how-
ever, for the discrepancy seen in comparing the
two total DOS's. We believe that our total DOS is
the correct one, since our center-plane DOS has
been found to converge to the bulk DOS.

C. Fermi energy

The Fermi energy (E~) for the SC one-, three-,
and five-layer film are compared in Table II. Note
that the E~ for the five-layer slab converged from
its initial value of -9.14 eV (superposition of neu-
tral atom M~'4s~4po' potentials} to -5.52 eV,
which is in reasonable agreement with the mea-
sured work function of 5.15-5.27 eV. "' In a
SC calculation for a bulk system, the origin of the
energy bands has no effect on the electronic wave
functions because the solution of Poisson's equation
is not affected by a rigid shift in the potential.
However, a reasonable value of E~ in a SC calcula-
tion for surfaces ensures that the potential di-
minishes as it approaches the vacuum region with
a proper surface dipole moment. The present the-
ory does not include many-body effects, such as
the work done against the image force in removing
an electron from the metal. " The sensitivity of
the Ez with respect to the degree of SC(h) is not
sufficient for us to make a quantitative estimate of
the possible many-body effects for the following
reasons: .Since the charge density p decays much
faster than the p+' exchange potential in the sel-
vage region, the charge-density self-consistency
employed here does not monitor the tail of the
potential beyond the range of p. Furthermore, the
least-squares fittingprocedurein our SC process
emphasizes the high-density limit (which affects
details of the energy bands) more than the low-
density region (which tends to rigidly shift the
potential}. Other than a possible error of V% in
the estimate of E~, the uncertainty in the long
tail of the potential has very little effect on the
ground-state properties presented in other sec-
tions of this paper.

D. Charge density

Finally, we present in Fig. 7 the SC valence
electronic charge-density map of a five-layer ¹i
(001) film on the (110) plane with the surface nor-
mal along the vertical qection. It is interesting
to note the way the charge density gradually
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parameters. A unique solution can be derived if
the potentials are evaluated self-consistently.
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where A is the area of the unit cell. A factor of 2
has been included to account for spin degeneracy
in Eq. (Al). The total density of states Q(E) can
simply be obtained by setting

M,.„(k)= l. (A2)

In order to calculate the local density of states
projected onto orbital p, according to the Mulliken
charge and population analysis, ' we define

M, „(k)= Q c,*„(k)e,.„(k)S„,(k),
72

(As)

where c,.„(k) and S„„(k)are the eigenvectors and
overlap matrices, respectively. For a given band
index (i}, the summation includes all basis (v).
Equation (Al) can also be expressed as an integral
over a line of constant energy E in the BZ.

APPENDIX A: ANALYTIC-TRIANGLE-LINEAR-ENERGY

METHOD

In this section we describe the analytic-triangu-
lar-linear-energy method, as generalized from the
linear anal-ytical tetra-hedron method" '4 to inte-
grate over the two-dimensional BZ. The orbital
density of states is defined as

):„(z), , p f (i))))[z -z)),.(%)] d'),
(Al}

2A. — I' dl,
(2 )' ~ '" (Ivz. ))I)*,,—., =

'

(A4)

The BZ is first divided into triangles, with corners
of a given triangle labeled k~k, k, such that E, E,
~E, , and use the notation E(k, ) =E, and M „(k,}
=M,". For Qlustration, we consider only a single
band so that the band index is dropped. The con-
tribution from each triangle can be integrated an-
alytically if we assume that E(k) and M"(k) are
linear inside the triangle. We find that

or

2A (z-z, ) / „z-z, „„z-z,g„(E) (2 ), 2B
( E )(E E )

~M~+ 2(E E )
(M2-M~)+( 2(E E )

(M~-M~) if E~~~E ~E2,

(A6)

( E, -E (M~('+M2)" z -z, „„zz,
(2~)' ~ (z -z,)(z, -z,) ~ 2 2(z, -z,)

' ' 2(z -z ) ' 2))

(A6)

where B is the area of the triangle. The contribu-
tion from each triangle to the integrand density of
states n(E), defined as

n(z) =f g(z )dE'
«00

(AV)

can be obtained directly from Eq. (A5) or (A6}.
The Fermi energy E„is determined by setting

N(E~) equal to the total number of electrons in the
unit cell. It is possible to determine E~ efficiently
without actually calculating G(E). The energy
range is first divided into a few intervals where

N(E) is evaluated. The interval that contains E~
is then subdivided to obtain a new energy range
over which N(E) is evaluated. The search is con-
tinued until the desired accuracy is obtained in the
determination of E~. The only approximation is
the assumption that the energy is.assumed to be
linear inside each triangle; of course, as the num-
ber of triangles increases (and the size of each
decreases), this approximation gets better and
better.

More general integrals involving a step function
occupation at the Fermi energy
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k eE~-Ek d k (A8)

can also be obtained analytically if we assume
linearity of the integral f($) inside' each triangle.
If the triangle is completely occupied, then

F =-',a[f(K,)+f(X,)+f(u,)]. (AQ)

For a partially filled triangle, the integral can be
evaluated by (i) using the smaller occupied tri-
angle if El ~z

Z =, I l.~' ~ +
F. F, ~f(n, )

( @ g
2- X 3-

+ f(k )+ ' f($,), (A10)
I

where B' is the area of the occupied triangle, or
(ii) by subtracting the contribution of the unoc-
cupied triangle if E2 &E~ &E3 ..

F =
2 [f (Ã~) +f (k,) +f (k3)]

rt ]»

2
' Z'-Z f(')'Z' Z f("')3 gE, -E, ' E, -E,

3 1 3 2

(A11)

where jg" is the area of the unoccupied portion of
the triangle.

APPENDIX 8: NUMERICAL CONVERGENCE TESTS

ON Ni {001)MONOLAYER

The energy bands of a monolayer of Ni (001)
film calculated at high-symmetry points for a
superposition potential (atomic configuration .

3d 4s ), using different sets of Diophantine points

in region I (N~) and III (Nz) with It = 2.2 a.u. and
L, =8.32425 a.u. , and either frozen- or fuQ-core
basis sets are compared in Table III. Note that in
column I' the frozen-core results are converged
to within 0.09 eV for N, = 300, N~ = 600, while the
corresponding full-core basis results (column A)
still differ by as much as 0.26 eV. However, both
types of basis sets are converged to within 0.02
eV when N& = V50 and Nz = 1500 points are used
(columns C and D). From the same table, we can
also see that by freezing the core basis, we have
made overall errors of less than 0.02 eV in the
d-band complex and 0.1 eV in the relative position
of the s, P, and d levels.

In Table IV we compare the convergence of the
wave functions by examining b, and the Mulliken
charge analysis of the wave functions for the same
sets of Diophgntine points given in Table III. Note
that the Mulliken charge anaj. ysis for the frozen-
core basis converged to slightly different results
than those obtained with the full-core basis due to
the changes in the orthogonalized LCAO Bloch
functions. For the frozen-core basis, b, (N, =750,
N«, = 1500)has converged to within 5'$ when com-
pared with that of h(N, =1000,N~ =2500), while
the corresponding full-core basis value of 6 still
differs by 51/q. The remaining small unsystematic
numerical errors in p~(r) in r space cannot be
fitted within the limited superposition model; they
are effectively averaged in the least-mean-square
fitting process during each SC cycle. (We found
in several cases that the difference found for 6
betw. een the initial and SC potential calculations
remains approximately the same even though 6
itself can be further reduced by increasing N& and/
or Nvl. ) Therefore b, should be viewed in the
superposition model as an upper bound to the dif-
ference 5p between p,„~ and the true p „.
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