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Disordered system with n orbitals per site: n = oo limit
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A model of a randomly disordered system with n electronic states at each site of a d-dimensional lattice is
introduced. It is a generalization of a model by Wigner to.d dimensions and an extension of the usually
considered model for disordered systems to n states per site. In the limit n = ao, which is the limit of a
dense system of weak scatterers, the one- and two-particle Green's function can be calculated exactly. The
eigenstates are extended and the residual conductivity is finite, provided the Fermi energy is inside the band.
Two special cases are considered more closely: {i) In the case of mere site-diagonal disorder the n = 00

solution agrees with the n = 1 coherent-potential approximation for a semicircle distribution of the site-
diagonal elements. {ii) In a "local gauge invariant model, " where the phases at different sites are completely
uncorrelated, the Green s functions vanish unless the points coincide pairwise in local space. Except for a
special case of the gauge-invariant model, the systems (i) and (ii) show the same long-range correlation
between eigenstates over a length L which diverges like ~to~

'" as the energy difference co vanishes.

I. INTRODUCTION

In this paper a model of a randomly disordered
system with n electronic states at each site of a
d-dimensional lattice is introduced and its proper-
ties in the n =~ limit are determined.

This model is a generalization of two extensively
discussed models. (i) Wigner' and subsequently
others" have considered the zero-dimensional
case in the limit n =~ where the interaction is given
by an nx n symmetric matric with —,'n(n+1) inde-
pendent matrix elements f/v n. The f's obey a
probability distribution P(f) with vanishing (f),„
and finite (f'),„. (ii) The case of one orbital at
each site of a d-dimensional lattice has gained
much interest since Anderson's paper' in 1958.

In the n =~ limit, which is the limit of a dense
system of weak scatterers, the Qreen's functions
can be calculated exactly following essentially the
arguments by%'igner'and Arnold. ' The n = so-
lution sex ves as a starting point for an expansion
in powers of 1/n which will be considered in a
forthcoming paper. ' In all cases the leading term
in order I is determined but it is not discussed
here whether and how this limit is approached as
n tends to infinity. The solution for n =~ has
properties of the coherent-potential approxima-
tion"' (CPA). This is not unexpected in view of
the. result by Schwartz and Siggiao that the CPA
is exact up to second order in an expansion in the
inverse coordination number. In particular the
n =~ model with site-diagonal disorder is equiva-
lent to the CPA for the n =1 model provided the
site-diagonal e1.ements obey a semicircle dis-
tribution. This distribution plays a similar role
for the locator expansion in the CPA as the Qaus-

sian distribution for a cumulant expansion since
both terminate after the second term.

Off-diagonal disorder can be included in the
model. A special case is the "local gauge invar-
iant" model in which the phases of the eigenfunc-
tions at different orbitals are completely inde-
pendent from each other. Such an ensemble is
obtained by choosing the sign of the off-diagonal
elements at random. Consequently, the averaged
one-particIe Qreen's function vanishes except for
the diagonal part, and the two-particle Qreen's
function vanishes unless the four points coincide
pairwise.

The long-range behavior of the two-particle
Qreen's function for the site-diagonal disordered
model and for the gauge-invariant model are very
similar. Eigenstates separated by an energy dif-
ference &o are correlated over a length L which
diverges like ~&o~

'Is for &o-0, which indicates
that eigenstates which are close in energy undergo
the same phase fluctuations. " The two-particle
Qreen's function in -local space for energies in

opposite halves of the complex plane differing by
~ approaches a constant for d&2, diverges loga-
rithmically as a function of ~ for d=2 and like
~~ jet' ' for 0 ~d&2, repsectively, for to-0,

which implies that the eigenstates are extended"
for d &0. Both models exhibit a finite residual
dc conductivity for the Fermi energy inside the
band.

In Sec. II the model and special cases thereof
are defined. The one-particle and two-particle
Qreen's functions are determined in Secs. III and

IV. A discussion of the long-range behavior of
the eigenstates and the dc conductivity are given
in See. V.
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Ii. MODEL

The ensemble consists of systems on simple
d-dimensional lattices. At each lattice site r
there are n electronic levels ir n) numbered by
&=1,2, . . . , n. The interaction is governed by a
one-particle Hamiltonian of the form

H= Z
i

v Il, ~ +. f,„,, ~}lira )("" rl i(2.1)
a&

'
Wn

The matrix elements vr„are identical for all sys-
tems of the ensemble and translational invariant

and similarly for M' and M".
For the special choice P= Q one obtains

(2.9)

For real matrices f one obtains (real ensemble)

~rr'r "r"' -z"vIrr 'r "'r" ~ (2.10)

urn) - exp(i@„)urn) (y „real), (2.11)

If the matrices f are complex and the ensemble
is invariant against arbitrary phase transforma-
tions (phase-invariant ensemble)

Vrri - r-r, o ~ (2 2) then one has

Thus for vanishing f the Hamiltonian decomposes
into a sum of n translational-invariant Hamilton-
ians

m'=0. (2.12)

Finally we require that the ensemble is trans-
lational invariant, that is

JI = v„„rn r'e (2.3) ~rr'r "r'" ~r+ R,r'+R, r "+R,r"'+ R (2.13)

, „.[P(f„)d(f jj IQ(f„„)d(f „]]. (2.6)

Here d(f„8'tis a measure in the space of the sub-
matrices f 8. It may be written as the product
of the n'(2-5 s) independent differentials
dHef„„„.8 and dimf„„„.z.

Due to these restrictions, the second moments
read

( n ir Ifr a, r' Sfr" y;r"'h)av = ah 8yi"err'r "r"' + ay 86iri rr'r "r'"

+&,& (2 7)

which allow the electrons to propagate in the de-
coupled systems labeled by e.

The matrix elements f are random variables.
We require that the expectation values of these
matrix elements vanish

(2.4)

(the brackets ( ),„ indicate an ensemMe aver-
age) and that the probability distribution of the
submatrices f„s(they contain all matrix ele-
ments f„„„zfor given n and P) are independent
from each other apa. rt from Hermiticity,

(2.5)

Moreover the probability distributions of all sub-
matrices f„swith n &P should be equal, as well
as the distribution of the diagonal submatrices
f„so that the probability distribution can be
written

jim) —a„„i rn), a„„=+I

for real matrices and

(2.15)

and similarly for M' and M".
We assume that the higher-order moments exist

to the extent required (compare Arnold' ). Al-
though we will derive the equations for the general
case (2.7}, we will particularly consider two
special cases:

(i) Site diagonal disorder In th. e Anderson
model' only the site-diagonal elements are ran-
dom variables. They are independent from site
to site. Thus (2.7} reduces to

(f„„„sf„-y„-g)., =~„„~„„-~„„-(5„|~sM+&„&sgM'

+5,6,5„,g "}.
(2.14)

(ii) Local gauge-inuariant model. In a dis-
ordered system the averaged one-particle correla-
tion function between two points decays rapidly
with increasing distance due to phase fluctuations.
Similarly, the two-particle correlation becomes
small unless the four points of this function are
pa, irwise close to each other. Thus, on a scale
large in comparison to the phase coherence length
the correlation functions contain practically &

functions between pairs of points. In order to
investigate the long-range behavior it might be
useful to consider an ensemble in which the phases
are totally uncorrelated from site to site. Thus,
we restrict to ensembles which are invariant
against the local gauge transformations

where M and M' are'determined from P and M
+M'+M" from Q. Interchanging both factors f
in (2.7) and using the fact that f is Hermitian
yields

urn) -exp(iy„„) (rn) (cp,„real)
for complex matrices. This implies

Vrrt —6rrt V

(2.16)

(2.17)
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(2.18}

For real matrices one has

If the invariance (2.16) holds, then

(2.19}

(2.20}

Thus the electrons propagate only due to the
random off-diagonal terms f.

HI. ONE-PARTICLE GREEN'S FUNCTION

In this section the averaged one-particle Green's
function

Translational invariance yields 1G(re,', r),=z((re r')) (3 1)

~rr ™r-r',0 (2.21)

and similarly for M', M",M"', M'". In this gauge-
invariant model the term v„„.=5„„,v, Eq. (2.1V),
can be eliminated by a shift of the energy scale by

is evaluated in lowest order in 1/n along the
lines" by Wigner' and Arnold' for the zero-di-
mensional case. For this purpose (z —H) ' is ex-
panded in powers of fyielding

ra r' = r G ~ r' & 8+ r G „& G r' + — r G ,G ,&,„G r' +.~ ~ ~

Ofg
'

with the general term

n ' g (r
~

G'( f „G'f„+G' ~ f,s),„G' ~r')
CXy' ' 'CYy

(3.2)

(3.3)

and

G'(z) = (z —v)-'

In terms of the Fourier components

(3 4)

v(q) = g v„oe"", (3.5)

one has

(r)G'(z))r )=1 G'(Z, z')e"~"-e (3.6)

with

ff 0'
»

'Go(q, z) =[z —v(q)] ',
(3.7)

(3.6)

and g being the volume of the primitive cell.
To determine the leading contributions of G„

we consider the partitions of the indices
n, e„.. . , n~, into all possible distinct sets. For
example, a, n„n„e, can be divided into the
three sets (a, a,), (a,), (a,) or into the sets (a),
(a„a,), (a,) or into the set (a, a„a„a,) or into
the sets (a), (a,), (a,), (a,) or others. Now the sum-
mation for a partition is performed with the re-
striction that all e's in the same set are equal,
but the n's in different sets differ from each other.
This summation yields (n- 1)(n- 2) (n- l )
equal contributions for a partition into l +1 sets.

Thus, a contribution of such a partition is of the
order n' ' '. To obtain the leading behavior of
G one has to find the partitions with maximum l
for given k which yield nonvanishing contributions.
For this purpose consider the sequence
o., n„e„.. . o.„» a as a walk of k steps from
Q to Qy to G2 etc., to a connecting l + 1 different
points n, respectively, a;. Here a point is
attributed to each set. If the step between n;,
and a; (including its reverse) is performed only
once, then (f„, , ,),„=0 factors out of the ex-
pression (3.3). Thus each step of the walk has to
be performed at least twice to yield a nonvanishing
contribution. An example for such a walk is
a, a„a, . . . a, „a„a,„.. . , a (with k =2l ) con-
tributing in order n'. Thus, for the leading con-
tribution only walks with k + 2/ have to be con-
sidered. This implies that at least one of the in-
dices n; ~ a is in a set of one member, since
otherwiseall of the k-1 labels a». . . , n„, mould
be in sets of at least two members which would
imply k —1 ~ 2l (we allow a to be in a set of one
member) in contradiction to k &2l. Since this a;
is connected to the other e's only by the steps
from n;, to ~; and from o.; to 0,;„both steps
have to be identical and n;, = n;„. Now let us
skip the steps n; „n;, a;„and consider the re-

= k —2 steps and l' =l —1 different points. Again
we have k' &2l'. We reduce this walk again and
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again until k and l are zero. Since 0 changes by
2 and l by 1 at each reduction, no walk with k
&2/ yields a contribution and 0 = 2/ yields the
leading contribution.

At one step of the reduction e, will be the label
(point) which occurs only once arid the walk has
been reduced to n, e» n or a, e» o, , e. The
only exception is the zero-step walk. Thus, all
the walks which contribute in leading order can
be determined recursively as follows: Either
perform no step [which corresponds to the term
Go& 8 in Eq. (3.2)] or perform the step from u
to a„ then a walk in leading order from n, to
Q] then a step from a, to n and then again a walk
in leading order. Thus, we may write in leading
order

G(r, r', z) = Go(r, r', z)

+ G r, r»z Z r»r„z G r„r', z

(3.10)

with the self-energy

Z(r„r„z) = g M„,„,„,„,G(r„r„z).
73,74

(3.11)

Since M and G are translational invariant, Eqs.
(3.10) and (3.11) reduce to

G(q, z) = G'(q, z) + G'(q, z)Z(q, z) G(q, z) (3.12)

with

G„„(z)= G'(z) +n ' p G'(z){f„„,G„,„,(z.)f,,„),„
xG (z) . (3.9)

We have not yet considered G 8(z) for n P.
These off-diagonal contributions are of the order
n ' '. This can be seen as follows: Since each
step has to be performed at least twice, a and P
have to be in sets of at least two members. If
each set contains at least two labels, then 0+1
~ 2(l+2) for I+2 different sets. Such a partition
yields a contribution of order n '~'. If there are
n s which are single members of their set then
we perform the reduction until no more a; is in a
set of its own. For the reduced walk we have k''

~ 2l'+3 and thus 0 ~ 2l +3 for the original walk.
An example for a walk which contributes in order
n ' ' is n, P, n, P. %e do not pursue the discussion
of these off-diagonal elements of G.

Using Eq. (2.7) we may write Eq. (3.9) for the
diagonal term G = G in leading order

M(q qz) M ei((r1+fe'(r4-r3)
7y737yo

7] 7374
(3.15)

For the special case of site-diagonal disorder
the self-energy, Eq. (3.11), becomes diagonal

Z(r„r„z) = 5„„Z(z)
with

(3.18)

Z{z) =MG„(z),

where G~(z) is a diagonal element of G

G~(z) = G(r, r, z),
thus

G(q, z) = G'(q, z) + G'(q, z)Z(z) G(q, z)

=[z —v(q) —Z(z)] '

(3.17)

(3.18)

(3.19)

Thi.s equation has the form of the CPA equation"
for the one-particle correlation for n=1 provided
the self-energy obeys Eq. (3.17). If we choose
the semicircle distribution for the diagonal ele-
ments e

(4M —e')' '/2', e' ~4M

P(~) =

~4M0,
then the average t matrix4' vanishes

(3.20)

(3.21)

for Z given by Eq. (3.1'l) which can be easily seen
by evaluating the left-hand side of Eq. (3.21}with
the probability distribution (3.20). Thus, the
n = ~ limit of the site-diagonal disorder model
yields the CPA solution for the n=1 model with
semicircle distribution.

Coherent-potential approximations for systems
with off-diagonal disorder governed by n=1
Hamiltonians

H=H + X)H;,

where the ~; assume independently one of two
values have been considered by Takeno" and by
Schwartz et al. ' One can show that for a semi-
circle distribution of the A's one obtains Eqs.
(3.10) and (3.11).

For the gauge-invariant model Eq. (3.10) reduces
to

G(r, r', z) = &„„z '+z-'g M„„,G(r» r„z)G(r, r', z).

G„.(r, r', ) = f a(q, z)e"" ', (3.13)
(3.22)

G vanishes unless r =r' because of the phase fluc-
tuations

Z(q', z) = M(q, q'}G(q', z), (3.14)
G(r, r', z) = G,(z)5„„ (3.23)
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and Eq. (3.22) reduces to

z G,(z) = 1+-,'E,'G', (z)
with

(3.24)

(3.25)

For large z, G,(z) has to vanish like z ' and G,(z)
has to be analytic except for real z. This and Eq.
(3.24) determine uniquely G,(z)

Gl( } E2 ( ( 0) j z +/~2 E251/20 Z +KZ Eo)
(3.26)

where the sign of (z' —Z', )'~3 has to be chosen so
that

sgnIm(z'-E', )' '=sgnImz for complex z,
(z' —E') ' ' & 0 for real z & E (3.2 I}
(z' — E')'~' (0 for ical z( E. -

G,(z) has a branch cut along the real axis in the
interval

K 8 q3(r» r„z,r„r„z')

=G 3(4» r„z)G&3(r„r4, z')+cumulant. (4.2)

The leading order in n of the cumglant depends
on the labels o., P, y, ~. The highest-order con-
tribution n ' is obtained for o. =6, P=y and n=y,
P=6, respectively. Only these two cases will be
discussed here.

To calculate K 88 the right-hand side of Kq.
(4.1) will be expanded in powers of G' and the con-
tributions will be summed in which pairs of sub-
matrices f 3 and/or f8 occur. Such pairs of
factors come either (i) both from (z —H), or (ii)
both from (z' —H) ', or (iii) one from each re-
solvent. Consider for the moment only those pairs
of factors funder (iii). In leading order they con-
tribute

K 38„=G3(z)G3(z')6 3+n 'G3G3(f 3f3„),„G'Go

+n GOGO „G G 8 8
1

xG'G'+

E &8&E . (3.28) which yields

In this interval we may write

G,(z) = 2E, 'e "" for z =E, coscp +is0,
s =+1, 0&( ~+a.

We note that

I G,(z} I
- 2/E, ,

(3.29)

(3.30)

where the equal sign holds only along the branch
cut (3.28). The density of states is given by the
semicircle law

K~88„=GG6„8+n 'Q GGMK„38~ .
0|~

For the cumulant C

(4 3)

K 33 =G G336„3+n 'Q G3G3(f„„f„~),„K

If one now includes all contributions for which
pairs of factors come from either (z —H) ' or
(z' —H) ' then G' has to be replaced by G every-
where in the equations which yields

p(E) =z 'ImG, (E —i0)

2(E3 —E')' ~3/zE33, E' (E33

(3.31)

&nssa = GG~ a 8+ &
~

one obtains

C = GGM C+ n 'GGM GG.
Introducing the T matrix by

(4.4)

(4 5)

0 E2~E2
0

as in the zero-dimensional case."
IV. TWO-PARTICLE GREEN'S FUNCTION

In this section the averaged two-particle Green's
function

K, 3 „3(r„r»z, r» r4, z')

(4.6)

and multiplying this equation from both sides by
GG one obtains by comparison with Eq. (4.5)

C=n 'GGTGG.

K„33 (r» 3'„z, r„r4, z')

(4.'I)
With full arguments the symbolic equations (4.4),
(4.6), and (4.1) read

r, x,y

will be considered. It may be written as

(4.1) = G(3'» 3'„z)G(r„r4, z')6„3+C(r» r„z, 33„i 3)z,
(4.4')

T(r„4» z, 3'„r„z')=M(r» r» 4r4)

+ QM(» 1 s 4 t 4)G( I ) 3 tz)G(33 t34 Iz') T(r3', r»z, r„r3 z ) (4.6')
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C(r„r» z, r3, r4, z ') = n ' QG( r». r~', z) G(r~ ', r~, z ')T(r, ', ra ', z, r ', r ', z ')

x G(r, ', r„z)G(r„r,', z), (4 7')

where the sums run over all primed sites x'.
Similarly one obtains

K(yoC~S = GQ~~S+ C' (4.8)

with the same arguments as in (4.4') and (4.7'),
however

and

C' = n-'GGr'CG (4.9)

v" =m'+m'Gav"

reads

(4.10)

T'(r„r» z, r„r, z ') =M '(r„r„r„r~)+ g M '(r„r, ', r„r, ') G(r, ', r, ', z}

(4.10')

K „„=GG+ C+ C'+O(n ')

provided 6 is calculated to n '.
For real matrices one has

(4.11)

T'(r„r„z, r3 r4 z ') = T(r„r„z,r4, r„z ')

(4.12)

Note that for K„„„„Eqs.(4.4) arid (4.8) are only
correct in order n'. In order n ' one has

t

G(z') = G(z)(G'(z)) 'G(z') —G(z)[MG(z)]G(z')

(4.18a)

and similarly

G(z) = G(z)(G'(z ')) 'G(z') —G(z) [MG(z') ]G(z ') .
(4.18b)

Subtraction of these two equations and the use of

which can be obtained from Eqs. (2.10) (4.6'),
(4.10'), and G(r, r', z) =G(r', r, z). For the phase-
invariant ensemble (2.11) one has

(G'(z)) '-V'(z')) '=z-z'
yields

I' = G(z) G(z ') + G(z)[MI'j G(z')

(4.19)

(4.20)
+I P

~um ale. Starting from the equality

(4.13) for

& =(G(z') - G(z)) ~(z - z') . (4.21)

Comparison of Eq. (4.20) with Eq. (4.3) shows that

&(rir ) = 2 &aBBn(rir izi r irr'8

=G „(r, r";z') —G (r, r",z), (4.14)

one obtains the sum rule'

(z - z ') Q E„88 «(r, r', z, r ', r ",z ')
r'g

=G ~(r, r", z') —G ~(r, r",z). (4.15)

prom Eq. (4.21) one sees that the sum rule (4.15)
is fulfilled for n = y (o, 4 y does not contribute in
leading order).

In the special case of site-diagonal disorder T
reduces to

This sum rule is fulfilled in the leading order
calculated. To see this introduce the notation

with

(4.23)

(4.16)[MG(z)]„„=P,V„„„„G(r„r„z)
r3r4

in Eq. (3,11). Then Eq. (3.10) reads as a matrix
equation

T(r„r„z,z') M&„„,+g MG(r„r', z)G(r', r„z')
r'

xT(r', r„z, z ') .
(4.24)

G(z) = G'(z) + Go(z)[MG(z)]G(z)

from which one obtains

(4.17) To compare with the CPA4' this equation can be
rewritten in the form
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with

(4.4 5) e fqpr

+1 for one sublattice

-1 for the other sublattice.

(4.52)

n("(r„r„z,z') =G,'(z)G, '(z')T(r„r„z, z').

(4.46)

Thus, one has

Thus, eigenstates of energy F- and —E are strongly
correlated. Indeed, for such a system with n
=~ one has

G,(z)G,(z')M(q)
G-'(z)G-'(z') -M(q)

' (4.47)
M(q +q) = g M e'('"'"

IM(q) I M(o) =-,'E', . (4.48)

Now turn to G, '(z)G, '(z'). According to Eq.
(3.30) the absolute value of this product cannot
be less than —,'Ep'. This minimum value can be
obtained only along the branch cuts. For the pa-
rametrization

In order to discuss the singularities first con-
sider M(q), Eq. (4.44). Since M„„.is the average
of an absolute value, it is not negative and M(q}
is real and obeys

(4.53)

1. i' 1z -E+&&, z ——E+~u, (4.54)

where E is real and ~ has an imaginary part of
sign s one obtains

nC(q, +q) =(i&c&s/2)(p(E) -Aq') '. (4.55)

Thus, &(k), E(l. (4.50), diverges for k =qo, s =s',
cp+y' = ~, that is for energies z =E+is0, z'
=- E+is0 which implies a long-range behavior
with oscillations of wave vector haft', . More pre-
cisely for

Ep cos(p + ssQ
y

8 Ep cosp + ss 0 (4.49)

one obtains alorig the branch cut

4 e i (s q+ s ' y ' ) if (q}/E2
'(&P+~ 0' )E2 nz( }4 p CYX

(4.5o)

For the moment assume IM(q) I =M(0) holds only
for q=0. Then C becomes singular only for
s =-s', z =-z' at &=0. In this hydrodynamic
limit one obtains with (4.38) the same long-range
behavior (4.40) as for the site-diagonal disorder
model with

sM(q) 1 ~a' 2d~ (4.51)

This result is in agreement with our assumption
that for the discussion of the long-range behavior
one may substitute the gauge-invariant model.

There is an important exception to this. It is
not always true that IM(q) I =M(0) implies q =0
(apart from reciprocal-lattice vectors). This
assumption fails in the trivial case when the sys-
tem consists of several sublattices with ho inter-
action between different sublattices. It also fails
in the case where the system consists of two sub-
lattices A and B so that f connects both sublattices
but vanishes between sites of the same sublattices.
One-dimensional models for n =1 of this type have
been considered by Theodorou and Cohen, "and
Eggarter and Hiedinger. ' They show a singularity
of the density of states at zero energy and have the
property that an eigenstate g(r) of energy E implies
an eigenstate (Il'(r) = e "o"p(r) with energy —E,
where

V. LONG-RANGE BEHAVIOR AND ELECTRIC

CONDUCTIVITY

The long-range behavior can be best discussed
in terms of the spectral function

5(H-E) = —g . , s =+1,2m, E —JJ+is0 '

8 is expressed in terms of the Qreen's functions

(5.2)

S(r, r', E„E,)
= —(4z') ' g ss'K„s&„(r, r', E, +iso, r', r, E,

ss'8
+is'0) .

(5.3)

The product in E(l. (4.3) yields only a short-range
contribution. Thus, one may neglect GG and ob-
tains

S(r, r', E„E,) = g &rn I &(H- E,) I
r'P)

B

x &~ pl~(e-E)lra&),

= Z 4 (r~)4.*(r'P)0;(r'P)4$(r~)
Big

~ n(E, z, )a(~, ~,)), -
(5 1)

where the indices & and j number the eigenstates
of the system. The spectral function is the product
of the density of states at energies E, and E,
multiplied by the averaged correlation function of
the electrons at these energies. Since
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S(0, r) =(4m')-~ Q
its

I(- 2~p(EI
++&

)I

(5.5)

where the short-range contributions for s =s'
have been neglected.

Introducing the wave vector
X/2

2 978

2nAp(E)

one obtains for (r ]» (K(

( ) (&-1)/2

(5.6)

(5.7)

which indicates that the correlation between wave
functions separated by an energy difference ~
decays on the length

L = I~ I '=[2~&p(E)/I ~l]'"
which diverges like ~co~ '~'. We may interpret
this length as the length over which the wave
functions lose phase coherence.

For the gauge-invariant model with the special

(5.8)

S(r, r', E„E)
= —(4m ') ' g ss 'nC(r, r', E, + is0, r', r, E, + is '0) .

4$

(5.4)

For E, =E+-,~ and E, =E—,co—, Eq. (4.40) yields
the long-range contribution

property (4.53) one shows similarly that for E,
= E+ & ~ and E, =-E+ 2& one obtains the long-
range behavior (5.V) with an addition factor e"0".

For (r ~&~L however S(0, r) approaches a finite
value for fixed r and a-0 provided d&2, since
the integral (5.5) exists for &v=0. For d=2 S
diverges 1ogarithmically and for d&2 it diverges
like ~&u~' ' '. The same behavior is observed
for 8 and complex cu. Following Economou and
Cohen" this indicates that for d&0 the eigenstates
are extended since C do~s not diverge as fast as
l~l '.

Conductivity. According to Kubo" and Green-
wood" the conductivity &z(&u) can be expressed in
terms of the current-current or density-density
spectral function

with the Fermi distribution function

f (E) =(exp[(E- p)/AT]+1) '

(5.9)

(5.10)

r
(5.11)

In the dc limit w =0 only the long-range contribu-
tion of C will survive. Thus, one obtains

e'n - t' QP (dv(~ R) = — 6' r'nC~ rEO+ —~ iso E-——is)Sm'd'0 ' ' 2 ' 2

e'n
& ~ &

C( )
2ne'nAp'(E)

4g2 g g~ gq2 t

(5.12)

The conductivity is finite everywhere inside the
band.
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