PHYSICAL REVIEW B

VOLUME 19, NUMBER 2

15 JANUARY 1979

Reconstruction of momentum distribution from point-geometry positron-annihilation data

L. Pecora and A. C. Ehrlich
Material Science and Technology Division, Naval Research Laboratory, Washington, D.C. 20375
: (Received 8 May 1978)

A method is presented by which the momentum distribution of the electrons in a metal, p($), may be
reconstructed from point-geometry angular-correlation positron-annihilation data taken in a plane. The result
is in the form of a truncated Fourier series in polar coordinates in that plane in momentum space. The
number of terms in the p(P) series is determined by the number of crystal orientations at which data were
taken. The effect of statistical errors in the data on the reconstruction of p(p) is examined for a hypothetical
free-electron metal. The method is applied to real data taken in the (100) plane of Cu, and it is found that
the comparison to the theoretically predicted p(p) is remarkably good. In particular, the results show that
surprisingly rich detail in p() can be reproduced using data taken for a minimum number of crystal

orientations.

I. INTRODUCTION

In positron annihilation or Compton-profile scat-
tering the object of study is the momentum distri-
bution function p(p) of the electrons in the material
being examined. However, neither experimental
method enables one to directly measure p(p). In-
sufficient resolution of Doppler shifts in available
experimental apparatus leads to each measure-
ment being an integral over p(p) along the momen-
tum axis parallel to the collimating apparatus.
Often, by choice (e.g., the long-slit positron-an-
nihilation apparatus), the measured data consists
of two integrations over p(p), thus

N(p,)= f f dp,dp,o(®) )

where N(p,) is the number of coincidence counts
at momentum p,.

The situation in which one wishes to obtain a
function defined on a two- or three-dimensional
domain from values of its integrals over lines or
planes, respectively, is encountered in many
fields. Reconstruction of the function by calcu-
lation of its two- or three-dimensional Fourier
transform has been shown to be feasible by a num-
ber of workers in various areas.'* Other meth-

ods!’*-® for reconstruction have included expansion.

of the unknown function in various polynomials or
sets .of functions, such as cylinder functions. The
expansion coefficients are then obtained by solving
the equations which are generated from the re-
lationship between the data and the desired func-
tion [Eq. (1), for example|. Mijnarends’ expan-
sion® in terms of Kubic harmonics is the three-
dimensional analog of our method and has been
used by a number of workers in positron annihi-
lation,””® Because of this, throughout this paper,
we shall compare our two-dimensional results us-
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ing point-geometry data with the three-dimensional
results using long-slit data obtained using his
method. A solution to the two-dimensional prob-
lem which is encountered in radiology was given
by Cormack'®!! and is mathematically equivalent
to ours. The comparison of our work and Cor-
mack’s will be covered in more detail later in this
paper. Finally two very good reviews of the gen-
eral reconstruction problem and its practical so-
lutions are given by Cormack'? and Brooks and
deChiro.!? i

The method of Mijnarends® consists of expand-
ing p(p) in terms of Kubic harmonics appropriate
for the crystal symmetry and solving the integral
equation which results from insertion of this ex-
pansion in Eq. (1). In general a good approxi—
mation to p() is obtained only for sets of data
taken at many different directions, usually six or
more. For reasons of geometry the long-slit
method does not yield an accurate reconstruction
of p(p) near p=0,7 although the functionality of
p(®) near =0 can be determined from an analysis
of the curvature of the profile near zero momen-
tum.!* However, the very nature of Eq. (1) re-
quires us to reconstruct p(p) for all p values,
which requires a great deal of information. This
accounts for the restrictions on the accuracy of
the long-slit reconstruction results.

The drawbacks to the long-slit method just
mentioned can be circumvented to a great extent
by the use of the point geometry or, so called,
crossed-slit setup for positron annihilation. In
this setup collimation of the emitted y rays is
done in two directions and thus two components of
momenta can be resolved simultaneously. Mathe-
matically this means that the data can be ex-
pressed as a single integral of p(p) over the mo-
mentum parallel to the y rays which, as men-
tioned, cannot be resolved. Usually, one of the
two resolved components is held constant (usually
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zero) while the other is varied. Thus we express
the data as follows:

No(p)= [ " db,p(p,p,=0), @)

where p, is the component of momenta of the pos-
itron-electron pair at which coincidence counts
are being taken, p, is the component of momenta
parallel to the y rays, and « is the angle between
a fixed direction (such as a major symmetry di-
rection) in the p-space plane, defined by p,=0,
and p,, i.e., o determines the orientation of the
apparatus coordinate system with respect to the
fixed crystal coordinate system. Because of the
nature of Eq. (2) it will prove possible to recon-
struct p(p) in the given plane in extended p space
from data, Na(pz), taken for various crystal ori-
entations in that plane. This means that less in-
formation will be required to reconstruct the re-
stricted function p(,p,=0) than would be required
to reconstruct the full p(p) function. Thus we
should get better results near p=0 and better re-
sults overall with experimental runs taken at few-
er directions than are necessary for the long-slit
analysis. Although p(p) will be determined only in
a specified p-space plane and not over all ) space,
this will not generally be a severe limitation since
one is usually interested only in specific directions
which often lie in just one or two planes.

In Sec. I we develop an approximation for the
point-geometry setup in a manner analogous to
Mijnarends’ method for the long-slit data. In Sec.

" III the method is tried on hypothetical free-elec-
tron-plus-Gaussian-core data and the effect of
data-point errors in the reconstruction of p(p) is
examined. Finally in Sec. IV the method is ap-
plied to real data taken in the (001) p-space plane
of Cu. The results are compared to theoretical
expectations for p(p) in the [100] and [110] direc-
tions in p space.

II. THEORY

We assume that p, =0 so that the data taken re-
present integrations of p(p) in the plane in P space
defined by p,=0. Further, let o, be the angle of
the orientation of the experimental apparatus with
a fixed direction ¢ in the crystal p,=0 plane. The
data points N, .(pz) then represents integrals of
p(®,p,=0) over lines in the p,=0 plane whose per-
pendicular distance to the origin is p, and whose
angle of orientation is ;. Figure 1 shows this
schematically. Thus for each «; we have a set of
data for various p,, [Naj(pz) |- <p,<o]. The full
set of data is the totality of the data sets for all
a;, j=1,2,3...,n.

~ LINE OF INTEGRATION FOR

é P Nui (Pz)
@
Pxz-® . ! 8 Px =+
P;{

REFERENCE AXIS ¢ \<

—>Px

FIG. 1. Extended Z-space plane of integration for
Eq. (2). ¢ is a fixed crystallographic direction and the
p.p, axes represent the coordinate system of the ex-
‘perimental apparatus. The double line represents a
typical integration direction at a value of p,=p} so that
the data generated would be represented by N o(p5%).

~ Since p(D) will only be defined in a plane we may
expand it in a Fourier series in polar coordinates

o®) =3 papleim, ®)

m= -

where p =|B| and ¢ is the angle of P with respect
to the reference direction in the plane (see Fig.
1). The coefficients p,(p) are not completely ar-
bitrary since p(p) must be real. This yields the
conditions

Re[p,(p)]=pL(p)=p"(P),
Im[p,(p)]=pi(p)==p!(P).

Hence we can restrict ourselves to solving for
coefficients p,(p) for which m=0. -

Equation (3) must be integrated along p, accord-
ing to Eq. (2). This means we must transform to
the p.-p, system. This is accomplished by letting

b=a;+0,

where 0 =arccos (p,/p). This yields
p@)=3" e'mp,(p)eim™. )
Inserting Eq. (4) into Eq. (2) we have

Ny ()= D e"”"ff_w dp,p,(p)cosms,  (5)

m= =co

where we have used e'™ =cosm6+i sinm6 and the
fact that the integral generated by sinm6 is odd in
p, and vanishes. The variables p and 6 are no
longer independent since the integral is restricted
to a straight line in the plane. The integration
variable can be changed to p, thus eliminating 6
and p,, as follows. Using the relation



19 RECONSTRUCTION OF MOMENTUM DISTRIBUTION FROM... 721

p.=(p% = p2P/2,
we have
d,
e

The angular dependence of 6 is eliminated by us-
ing 6 =arccos (p,/p) and cosmb =T, (cosb). T, is
a Chebychev polynomial of the first kind and is
defined by

T, (x) =cos[m arccos(x)].
Thus cosmé =T,(p,/p), and Eq. (5) becomes
= = ima ® pdp P,
N, (p)= > 2 ’f -7 Pn(P)T,, ("‘) .

ms - 523 4

(6)

Letting
P
gD = 2];”'(—102—)1730,,.(?)7",,. <‘1‘f) , (7
we have
N, (p)= Z g, (p e, (®)

We see that the full set of data, [N, (b i
=1,2,...n,—0<p,<«] canbe expanded in a
Fourier series in a plane using the polar coor-
dinates p, and @, i.e., we can think of N, (p 2 as
a function of two varlables b, and a;.

The problem of reconstructing p(p) becomes one
of solving for the functions g,(p,) in Eq. (8) and
then solving the integral Eq. (7) for p,(p) for
m=0,1,2,.... These may be treated as two sep-
arate problems.

There are a number of ways to solve Eq. (8) for
gn(p,) given a full set of data [N, |. If the data
points were taken fnr a large number of a ;s
(i.e., n large), then g,(p,) may be found by a nu-
merical integration of the Fourier integral

= 1 2 -ima
gnlp) =57 [ Nulpe™da.

However, the case is usually that we do not have
data in the full data set at enough angles to ap-
proximate this integral well. The other possibility
is that we may view the set of equations generated
by Eq. (8) for j=1,...,n as a set of linéar equa-
tions for each p, value with » knowns, N, (p,),
and an infinite number of unknowns, g,( pz). We
may solve for a finite number of g,(p,) values by _
truncating the series in Eq. (8). The g,(p,) func-
tions obey the same reality conditions as pm( P)
since they are related by Eq. (7). This means that

if we have » data sets with n =2/ -1, where [ is
some integer, we can solve for the first I g,(p,)
functions. Very often symmetry considerations
will allow us to set some of the g,,( pz) functions or
at least their real or imaginary parts equal to
zero. This leads to a distinct advantage over the
reconstruction of long-slit data when we only de-
sire p(p) along directions in high-symmetry
planes. This can be seen as follows. The criteria
for truncating the series expansions of p(p) are to
drop higher-! terms in the long-slit reconstruc-
tion and higher-frequency terms in the point-geo-
metry reconstruction. The number of terms re-
tained in each case is determined by the number
of nonequivalent directions in the crystal in which
data was taken. Suppose now we desire p(p) only
in the (100) plane of a fcc metal. The amount of
detail and in general the accuracy of the recon-
struction is determined by the number of terms
we can retain in the series expansion. In particu-
lar the detail of the reconstruction will depend on
the frequency of the angular function in the terms
retained. Thus if we want terms up to cosl2¢,
where ¢ is the polar angle in the plane we need
the first six terms of a long-slit reconstruction,
but we only need the first four terms in the point-
geometry reconstruction since the fourfold sym-
metry of the plane reduces the number of nonzero
terms and reduces the number of directions at
which data must be taken. The reason for this,

of course, is that with the long-slit method we
must reconstruct p(p) over its entire three-di-
mensional domain and although certain terms in
the expansion may not contribute higher-frequen-
cy terms to the reconstruction in a particular
plane they must be retained and cannot be arbit-
rarily dropped in favor of those contributing high-
er-frequency terms in that plane. The same ar-
guments apply to any plane of high symmetry.

We are now faced with solving Eq. (7) for p,(p)
given g,(p,). To do this we use the methodology
of Mijnarends.® We take the case when m is even.
Then g,(p,) is an even function since Eq. (7) is
even in p, except for the T,(p,/p) factor which is
even (odd) as m is even (odd) [for more proper-
ties of the g,, functions and for proof of the unique-
ness of the solution of Eq. (7) see Ref. 10]. First
we take the Fourier transform of Eq. (7),

f gn(p,)cos(kp,)dp,
0

d, .
=f ap P,,,(P)Pf ri;;ya— T, (%) etktz

0o

Performing the integration involving T,(p,/p),'°
we have
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| b coser dp,=nim [~ dp o, (ppI(k0), (@)
[} [}
where J,,(kp) is the Bessel function of the first
kind. The right-hand side of Eq. (9) is just the
Hankel transform of p,(p), excluding the mi™ fac-
tor. Thus upon taking the inverse Hankel trans-
form we have an expression for p,.(p) involving a
double integral,

1 o
on(D) = == fn dkkJ,(kp)

X f ) ap,g.(p,) cos(kp,) .
[}

The order of integration cannot be interchanged in
Eq. (10) since the integral over % will not con-

|

(10)

verge. However, using the following property of
EmlDy),

lim g,(p,)=0,

by
which follows from Eq. (7), we can integrate the
b, integral by parts. This yields

PulB)= = f ar ) [ %1&- sin(kp,)dp, -

The order of integration can now be interchanged
and the % integration can be performed.!* Thus for
m even we have an expression for p,(p),

(=1)"/2sin|m aresin(p,/p)]

(pz p2)1/2 pz<p
d
pulp) == [ " ap, 2l (11)
£ b.>b.
(P2=p°V "2+ (P2=p?) /2" > =
A similar analysis for m odd results in
—1)(m+1)/2 ;
et e
=1 = dg,(p,)
= - . 1

Pu(P)= — fo ap, === (12)

dp,
—pm

(0 -5 "%+ (D3 -p

The p, integration will be numerical since, in gen-
eral, g,(p,) is known only at a finite number of
points. This is no problem in treating positron-
annihilation data even though the upper limits of
integration are infinite. This is because, to a very
good approximation, the data, N (p,), fall off as
exponential functions beyond some p, value. Be-
cause of the linear relation between [N ( pz)] and
[£,.(p.)] this means that the g,(p,) behave similar-
ly and can either be extended by fitting an expon-
ential to the “tail end” of the function or can be
truncated if the values at large p, are small enough
that their contributions to the integrals (11) and
(12) are negligible.

Equations (11) and (12) may be compared to
Cormack’s more compact result!!

= dg,(p) T,(p,/p)bdp
== [ e St )

Equation (13) is actually equivalent to Egs. (11)

2)1/2]7" ’ pz>p °

[

or (12) if m is even or odd, respectively.'® This
can be shown as follows. For Eq. (11) and (12)
express the integration in the p,<p range as an in-
tegral over a Chebychev polynomial of the second
kind and the integration in the region p,>p as an
integral over a linear combination of a Chebychev
polynomial of the first kind and a Chebychev poly-
nomial of the second kind. The two integrals over
the polynomial of the second kind can be combined
into one integral from p,=0 to -, From the prop-
erties of the g,(p,) functions'! this integral must
vanish.'® This leaves the integral over T (p,/p) in
the p,>p range which is just Eq. (13).

One of the properties which the gl p,) functions
must satisfy in order to be able to carry out the
manipulations described in the previous paragraph
is that they must fall off faster than p;¢"*!) for
large-p, values.! This is necessary in any of the
integrals in which the g, (p,) function or its deriv-
ative is combined in the integral with a polynomial.
However, as pointed out by Cormack,'® in practice
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the g,(p,) functions obtained from real data rarely
satisfy all the required properties. It is a distinct
advantage of our formulation of the solution that
the derivatives dg,( p,)/dpz are never combined
with polynomials in the integral in such a way that
they must obey stringent requirements, like falling
off as p;™*!) for large p,. In fact the integral will
always consist of the function dg,,/dp, combined
with a function which itself falls off as p;(™*1),

We can now explore the consequences of certain
symmetries in the P-space plane in which the an-
alysis is being done. If the momentum distribution
p(P) is symmetric with respect to reflection about
some axis then we may choose this axis as our re-
ference axis, ¢ in Fig. 1. This means that p(p, ¢)
=p(p,-¢) from which it follows that p,(p)=p_(p).
This, combined with the reality condition, means
that pi(p)=0, i.e., [p,(p)] are real for all m.
Thus [g,(p)|m=0,1,2,...] are real and » data
sets [N, ,( p,)] now determine 7 p,(p) functions
[compare this to the general case of no symmetry
when we can only determine 3 (z+ 1) complex coef-
ficients, for » odd].

If rather than just reflection symmetry we have
a fourfold rotation symmetry then only terms for
which m =41, I an integer, will be nonzero in gen-
eral. This results in

=Y (" g, 984 (D,)
pu )= | " ap, Bale

sin[4l arcsin(p,/p)]
(p-p2)'2
p4l
(pZ_p2)l/2[pz+(p2 _p2)1/2J41 ) pz>p .

y D.<P

(14)

This is the symmetry which exists in the (001)

" p-space plane of systems with cubic symmetry.
Equation (14) will be used in Sec. IV to analyze
Cu data taken in the (001) plane.

Finally if the distribution is isotropic, we have
Pn(p) for m>0, which leaves

= _‘_1_ ® dgo(pz) 2 _ p2)-1/2
o= y(0)=Z | o, EEEE (5297 o

Equation (15) will be used to analyze the hypo-
thetical free-electron data in Sec. III.

III. APPLICATION TO A HYPOTHETICAL FREE-ELECTRON
CASE ' :

In order to get some feel for the effects of dis-
continuities in p(p), statistical errors in N,(p,)

data, and finite resolution of experimental appa-
ratus on the reconstruction of p(p) from the
N,(p,) data the hypothetical case of a free-elec-
tron metal with a Gaussian-core contribution to
p(p) was used to generate “data,” N, (p,). The
choice of functional form for the momentum den-
sity was

' 1
PAP)=0.1250(p, ~p)+ osrre™/¢F . (16)

Here p; was taken to be 5 mrad, a was chosen
to be 9.608 98 mrad® and ©(p, —p) is the step
function. This generated “data” of the form

N(p,)=0.25(25 — p2)!/20(p, - p,)+e /2% | (17)

where we have dropped the a subscript since this
is an isotropic situation. Data points were cal-
culated at 0.25-mrad intervals from Eq. (17) for
p,=0to 20 mrad. This then represented data
taken from a free-electron metal without statis-
tical error with an experimental apparatus with
infinitely fine resolution.

A general computer program was written to
calculate [ g,,(p,)] from [N (p,)] and to numerically
integrate Eq. (14). g/(p,), the first derivative of
ga(p.) with respect to p, was calculated by fitting
Zn(p,) to a second-degree polynomial, locally,
at three consecutive points. The program was
then applied to the data generated from the free-
electron case above.

Figure 2(a) shows the original p,(p) from Eq.
(16). Figure 2(b) shows the reconstructed momen-
tum density. The overall agreement is exceeding-
ly good with the exception of the small peak in
Fig. 2(b) around 5 mrad. The origin of this can
be directly traced to the calculation of gJ(p,).

For this case, which is isotropic, g,(p,)=N(p,)
and g,,(p,)=0 if m>0. Since gj(p,) is calculated
from a local polynomial fit and since the actual
derivative at p,=p is infinite, the values of
g4(p,) calculated for p, < p. become larger (i.e.,
less negative) than the actual derivatives of N(p,)
near to but less than p,. Hence, the integral con-
tributes larger values near the p, to the recon-
structed p(p) than would be expected. Artifacts,
like this, which result from discontinuities in
derivatives of [gm(z)] are sensitive to the method
of calculation of [ g/(z)]. The reason that local
deviations like this are kept localized and not
smeared out by the integration of Eqs. (14) and
(15) is made clear in the error analysis which
follows.

In order to study the effect of statistical errors
in N (p,) on the reconstruction of p(p), various
points in the previously generated data, N(p,),
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for the free-electron case were increased by a
fixed amount AN for various p, values: 0.5, 2,

6, and 10 mrad. AN amounted to a 5% error in
“count rate” in the hypothetical data near p,=0.
‘Of course it amounted to a much larger percen-
tage error at p,=10 mrad, but in general a large
percentage error will occur at larger angles where
count rates are lower and fewer counts are taken.
Figure 2(c) shows the superpositron of the four
p(p) functions calculated from the four sets of
data, each with an error at a different point. An
interesting observation is that although AN repre-
sented a smaller percentage error in the data at
p.=0.5 mrad than at any other point, it generated
one of the largest percentage errors in p(p) of

the four error points involved. The reason for this
can be seen in the integral in Eq. (15). Let us
break the integration into two regions p -p+ AP and
p+ AP~ where AP represents the extent of the
region of points used to locally fit g,(p,) to a poly-
nomial, i.e., it is the local region in which an
error in N (p,) produces the largest effects in
go(be)-

The first integration becomes

[ i, B2 18)
, P

From the mean-value theorem there exists an
“average” value, g/(p,) such that we can write

FIG. 2 (a) Theoretical
free-electron distribution.
(b) Reconstructed free-
electron distribution using

the “data’ generated by

Eq. (12). (c) Superposi-
tion of four reconstructed
distributions each recon-

structed from data with an
error of +5% of the

N(p, =0) value introduced
at one point.
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FIG. 2. (Continued)
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Eq. (18) as
_ bP+A P dp
! £ . 19
go(.ih,)f’> [Ty (19)

Integrating Eq. (19), we have
Zy(p) In[(1/p)(p+ APY -p?)] . (20)

Now, for p<pp p(p) is nearly constant and the
integral in Eq. (15) is nearly p independent. How-
ever, Eq. (20) shows that the integration region
near p,=p contributes more and more to the total
integral in Eq. (15) as p -~ 0. It is in fact divergent
at p=0. Thus small changes in N (p,) becomes
magnified near p,=0. In general, Eq. (18) controls
the overall integral Eq. (15), especially for small-
p values. The situation in the particular case of
positron annihilation where N, (p,) and thus g,(p,)
are nearly flat for small-p values is conductive

to generation of oscillations like those in Fig. 2(c).
Small changes in N (p,), and thus in g,(p,), in

a nearly flat region produce changes of sign in
g’ (p,) which are magnified by the integration and
appear as oscillations around the local mean val-
ue of p(p). However, because these variations
manifest themselves through local changes in
gh(p.), if gl(p,) is on the average zero over the
entire region of integration the result will not
show the effect of the variation. This happens,

for example, when there is a small “bump” in

gm(z) as in the induced errors in the free-elec-
tron case. This explains why the induced errors
did not affect p(p) at points far from the error
points. It was only when the integration was over
part of the error region that g,/(z) was not zero
on the average and large contributions to p(p) re-
sulted.

The propagation of errors, that is data points
that fall outside a smooth curve drawn through
the surrounding data points, can be put on a more
intuitive level. The difficulties can be traced to
the fact that the experiment is carried out ina
manner perfectly desecribed by Cartesian coordin-
ates, whereas the reconstruction of p(p) is done
using a limited number of terms in a polar-coordi
nate expansion, i.e., the momentum density dis-
tribution is implicitly assumed to not have rapid
variations with angle. We first examine the rea-
sons that local changes in N (p,) at say p,=p,
(e.g., statistical errors) result in local changes
in p(®) at p=p,.

Since N (p,) = | p(D)dp, we see that b.<p and
thus the values p,(p) for p <p, cannot possibly ac-
count for any behavior in N (p,). We may now
ask why the values of p(p) for p> p, are not af-
fected. p(p) is integrated along a straight line in
the plane to generate N (p,). If p(D) is to
‘“‘generate” the existing errors in N (p,=p,) then
somewhere along the line of integration p(p) must
contain errors. However, if these are not near
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p=p, then they lie further out in the plane along
the line of integration at some angle a’ with re-
spect to the ¢ axis (reference axis) and at some '
distance p,, say, from the origin. But since we
are using a limited number of terms in our Fouri-
er expansion, there are no high-frequency com-
ponents and the error could decay only slowly
from around a’ as a function of 6. For large val-
ues of p, this would imply that N,(p,) would detect
the “error” for p,=p,, and the “error” in N (p,)
would fall smoothly with p,. But this is not con-
sistent with out original hypothesis that there is

a single datum point abruptly out of line with near-
by data. Thus the error in p(p) must appear at
p=p, if the error in N (p,) appears at p,=p,.

The magnification of errors as p~-0 can be
understood as follows. Lines of constant p,(p)
are circles in the plane of integration. An error
in N (p.=p,) generates errors in p,(p) in a region
op about p=p,. Thus the error is confined to a
circular band of width §p centered on the circle
of radius p=p,. Then to a rough approximation
the error in N (p.=p,) is given by

AN~ Apl,

where Ap is the associated error in p®) and 7 is
the length of the line of integration intersecting
the circular error band. For §p < p the angle ¢
subtended by the chord I varies as p™/2, How-
ever, l=¢p and we have

Ap~AN/p*'? .

The errors induced in p(§) by AN vary inversely as
pY/2. Or, in words, for a fixed AN, as p becomes
smaller the region of integration which covers the
error in p(D), Ap, becomes smaller and larger
values of Ap are required to cause the same per-
centage error in N, (p,). The same analysis ap-
plied to reconstruction of p(p) from long-slit data

p(P)(ARB. UNITS)

P(mrad)

FIG. 3. Reconstructed p(p) (solid line) using
smeared data as compared to actual smeared
p(p) (dashed line).

yields the result
AN ~ ApQp?

where - is the solid angle subtended by the area
of integration over the error region Ap. For
Sp<<p, Q~1/p. Thus for long-slit reconstruction

Ap~AN/p

and the errors vary as p. This is the reason
errors in long-slit data produce so much larger
errors in the reconstruction of p(p) as p -0 than
occur for the reconstruction of p(p) from point-
geometry data. )

Finally, the effect of finite resolution on the re-
construction of p(p) was investigated. The theo-
retical free-electron data, N(p,), was averaged
locally in a manner which reflected the finite res-
olution of our experimental set up. This had the
effect of smearing the N(p,) function and thus also
p,( p) into a function which is shown as the dashed
line in Fig. 3 [compare with Fig. 2(a)], i.e., this
is the best that could be hoped for in the recon-
struction of p(p) from the smeared data. The solid
line in Fig. 3 shows the reconstructed p(p). The
reconstruction agrees very well with the smeared
p(p) function showing that the method can correctly
reconstruct p(p) providing the errors are kept
small and there are no discontinuities in deriva-
tives in the data. The small differences between
the two functions in Fig. 3 near p=0 are due to
not using enough significant figures in the original
smeared N(p,) data.

-

IV. APPLICATION TO REAL DATA

Data were taken using an apparatus conceptually
quite different from those used previously to
achieve the crossed slit geometry.!” %! In par-
ticular it is designed around two unique y-ray
collimators each consisting of an array of 210
tantalum tubes (with dimensions 40X 0.040 in.
with a 0,002-in. wall) aligned parallel to within
0.001 in. along their entire length. These pro-
vided an angular resolution of approximately 0.9
mrad in two directions independent of sample size
or sample to y-ray detector distance. The col-
limators are mounted on machined aluminum I
beams which are articulated by a “vertical feed”
machine tool driven by a stepping motor. The de-
tectors are Tl-activated Nal (dimensions of 3 in.
diameter by 4 in. long) interfaced with convention-
al coincidence counting electronics. A more de-
tailed description of the apparatus and its per-
formance is being prepared.??

Data were taken in various crystallographic di-
rections including the (001) p-space plane of cop-
per with p, in the [110] and [100] directions. A
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total of 40000 councidence counts were accumu-
lated each 0.25 mrad out to 4.5 mrad falling to
8000 counts at 7.0 mrad. Approximately 15% of
the counts were accidental. Beyond 7.0 mrad
data was taken every 0.5 mrad. These data were
used to reconstruct p(p) in the (001) plane. Al-
though we can use-only two terms in the Fourier
series to reconstruct p(p) in the (001) plane
using Eq. (14), a surprising amount of detail
emerges. Figure 4 shows the results of the recon-
struction for p(p) in the [100] and [110] directions
using essentially raw data which have only been
normalized to have the same areas. It can be
seen that even without smoothing the data, N (p,),
p(p) can be reconstructed for p<p,, the Fermi
radius, without the errors becoming overwhelm-
ing. This is not the case for reconstruction of
p(p) from long-slit data in which even smoothing
of the data will not remove the wild oscillations
which occur in p(p) for p< pp. If we smooth the
(001) data by a least-squares local parabolic fit
to seven points, a subsequent reconstruction
yields Fig. 5, which is quite well behaved every-
where except for p <1 mrad. These reconstruc-
tions should be compared with Fig. 6 which shows,
qualitatively, the trends in p(p) in the [110] and
[100] directions as calculated by Mijnarends*
using a Korringa-Kohn-Rostoker-Ziman method.
The smaller Fermi radius of the [110] direction
is clearly reproduced. However, the most im-
pressive results are in the reproduction of the
anisotropies beyond p =5 mrad. This substantiates
the claim formerly made that the reconstruction
of p(p) in a plane requires less data when the
point geometry setup is used. For example,
Mijnarends required data in 6-8 directions in his
analysis of long-slit data to show the same anis-
otropies in the [100] and [110] directions.

At this point we should remark on the differences
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FIG. 4. Reconstructed p(p) along [100] (solid linel
and [110] (dashed line) directions for pure copper.
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FIG. 5. Reconstruction of p(p) as in Fig. 4, but from
smoothed data.

in apparent Fermi radius, p,, for the two direc-
tions [100] and [110]. While de Haas—van Alphen
results #+2* show that the difference p,([100])
-p(110])= 0.5 mrad, we see that this is not the
case for the reconstruction, p(p) in which
»7(1100]) - p([110])~0.25 mrad. Mijnarends in

his reconstruction of p(p) also found this dis-
crepancy in p, for these two directions. The ex-
planation is easily seen from Fig. 6. Although
p(p) has been reconstructed we have not eliminated
the effects of finite resolution. Thus the p(p) we
have calculated is actually a smeared momentum
distribution. We can get a good feeling for the
effects of-the finite resolution on the reconstructed
momentum density p,,.(p) as it related to the
“true” momentum density for values of p>> A, the
half-width of the resolution function. We first
write

1 r- dg, §))
= m_ pfle
Pn(2)=5 j; B ( 5 )

where F(p,/p) is the appropriate integrand for

p(P) (ARB.UNITS)
o
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Plmrad)

FIG. 6. Qualitative theoretical variation of p(p) along
[100] (solid line) and [110] (dashed line) following
Mijnarend’s calculation (Ref. 14).
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the mth term into which all constants have also
been absorbed. The function g,(p,) is related to
the “true” profile Fourier coefficients &,(£) by

gn(b)= [ YO8+, dE

where #(£) is the resolution function. We can
substitute the above integral over k(£ +p,) for g ()
in the p,(p) equation and interchange the order

of the integrations, thus :

bulp)= [ atre)y [ ap, Palirbd) £

We now want to transform this into an equation
which relates the smeared coefficient p,(p) to
the Fourier coefficient o,, of the true momentum
distribution. We can do this as follows. We first
suppose that 7(£) gives contributions only in a
region of size A and p, and that we are interested
only in the range p> A. We may then approximate
p by p+ £ and p, by p,+ £ in the above double in-
tegral. The first integration then equals the true
mth coefficient o,(£{+p) as determined from
h,(E+p,). We can then write

pn(0)= [ dEr(Do,(£+p).

Since o,, is the true mth coefficient of the momen-
tum distribution, substitution of the last equation
into the polar series expansion for p(p) yields

Procl D) = f r(E)p(&+p) dE,

where p,,.(p) is the reconstructed momentum dis-
tribution, 7(£) is a function which represents the
finite resolution of the experimental apparatus,
and p(p+ &) represents the actual momentum dis-
tribution. In our case we are interested inp =5
mrad and our resolution yields a A of about 0.5
mrad so that the above approximation should be
adequate for our purposes.

Thus we see that 7(£) smears out the Fermi
surface and, what is important to this discussion,
gives contributions to p_,.(p) from states just
beyond p when p<p,. This would not matter if
all core states beyond p, had the same p(p+ &)
value but, as can be seen from Fig. 6, the core
contributions for various directions differ. It is
the larger core contribution in the [110] direction
which makes p . ({110]) appear to be larger, rela-
tive to p, ([100]), than it really is.

To illustrate this further we have smeared Fig.
6 by using for 7(£) a Gaussian with full width at

3.0 T T T T T T L— T

p(P) (ARB. UNITS)

P(mrad)

FIG. 7. Result of smearing Fig. 6 with a finite reso-
lution according to Eq. (16). Note that the difference
in apparent Fermi radii does not match the difference
between the curves in Fig. 6.

half maximum equal to 1 mrad, approximately

our experimental resolution. Figure 7 shows the
resulting distribution. The effect on p,([100])
~p#(110]) is as predicted. This shows that great
care must be taken in analyzing positron-ar?nihila-
tion data and Compton-profile data for details of
the Fermi surface. In particular it would seem
that conclusions regarding Fermi radii cannot be
made without some knowledge of the core states
just beyond p .

We see also that Fig. 7 agrees quite nicely with
Figs. 4 and 5 in overall shape. The only major
differences (disregarding oscillations due to sta-
tistical errors below p =3 mrad) are the humps
in the distribtuions of Figs. 4 and 5 from ~3.5—~
~5 mrad for both directions. These may be the
result of many-body effects® which are predicted
to cause peaks in p(p) near p,. If so it would
appear that these effects are anisotropic since
near p=5 mrad p(p) for [110] is predicted to be
slightly larger than p(p) for [110] (see Fig. 6),
but the reconstructions, Figs. 4 and 5, show just

the opposite.

V. SUMMARY

We have presented a method for generating p(p)
in a plane from crossed-slit positron-annihilation
data taken in the same plane. Analysis of error
propagation showed that the errors in p(@@) gen-
erated by errors in the data are generally not as
severe as with the reconstruction of p(p) from
long-slit data. Thus if one is interested in p(P)
for a few selected directions the point geometry
set up would be preferred for the acquisition of
data for reconstruction of p(p). In addition by
choosing the plane of highest symmetry contain-
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ing the desired directions it is possible to elimin-
ate many of the unknown Fourier coefficients and
thus obtain p() effectively to many more terms
from the same amount of data.
The application of the method to Cu data taken
in the (001) plane was presented as illustrative
-of the method. Using only two sets of data taken
for two different crystal orientations we were
able to reconstruct p(p) and investigate a large
number of details regarding the difference in p(p)
in the [100] direction compared to the [110] direc-
tion in extended P space. The particular applica-
tion to Cu also pointed out the pitfalls which occur
when determination of various quantities like p,
are attempted. Namely, one must take into con-
sideration the resolution function of the experi-
mental apparatus and certain details of p(p) around
the region of interest before quantitative con-
clusions can be drawn. This information (such
as the relative magnitude of higher-momentum
components in the vicinity of the Fermi surface)
will not, in general, be available from other

sources but rather falls naturally and automatical-

ly out of this procedure of calculating p(p).

Overall it may be concluded that positron an-
nihilation can be employed to generate realistic
p(®) functions for metals and that the point-geo-
metry experimental method enjoys the distinction
of requiring less data and being more accurate
than the long-slit method for obtaining p(p) in
particular directions.
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