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Solubility trends for a variety of solutes in seven prototypical simple divalent metal hosts are examined. In
this paper, we present a macroscopic model for predicting solubility trends. This model should prove more
successful than the classical approaches of Hume-Rothery or Darken and Gurry. The method is an extension
of a cellular scheme developed by Miedema, and involves two chemical coordinates. These coordinates, .
which characterize charge transfer between neighboring cells and the charge-density mismatch at cellular
boundaries, appear to be superior coordinates for determining solubilities trends, as contrasted with classical
coordinates such as atomic size or electronegativity. Moreover, we note the Miedema’s coordinates are
shown to accurately describe recent experiments that involve site energy preferences of metastable implants
in Be. This dramatic result suggests that Miedema’s coordinates may describe metastable systems and as a
consequence are more widely applicable than might be expected. Finally, we note that our results have
consequences for a pseudopotential description of intermetallic alloys and compounds.

I. INTRODUCTION

The prediction of extensive solid solutions for a
given solute and solvent in intermetallic alloys is
a formidable problem, and it remains one of the
‘major unsolved problems in metallurgy. No metal
can be prepared in a state of abolute purity and,
therefore, the nature of impurity solubility in a
host lattice is of more than academic interest. We
know that the impurities are commonly found in the
form of solid solutions with the host lattice,
and that the detailed properties of a metal
such as tensile strength, malleability, ductility,
etc., may depend crucially on impurity additions
and impurity-based solid solutions. Unfortunately,
however, very little theoretical progress in this
area has been achieved over the last 40 years, and
many fundamental questions persist. For example,
a clear understanding as to the nature of inter-
atomic forces between impurities and metal-host
atoms has yet to be elucidated. Also, we still lack
direct evidence, or predictive power, for the pre-
ferred geometric arrangement of arbitrary impur-
ities in a host-metal lattice which would enable us
to distinguish between substitutional and interstitial
site preferences.

Two events have occurred in the last five years
that lead us to believe that some of the formidable
barriers to understanding solid solubility in inter-
metallic alloys may be removed. The first event
has been the realization of an extraordinarily suc-
cessful global scheme that predicts and systema-
tizes heats of formation for regular intermetallic
alloys. The scheme has been developed by Miede-
ma and collaborators,' and is phenomenological in
origin. It is an isotropic cellular theory based
upon two elemental variables which characterize
charge transfer between neighboring cells and a
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charge-density (or surface-tension) mismatch at
the cellular boundary. Since the direct quantum-
mechanical calculation of alloy thermodynamic
properties is almost prohibitive, the scheme of
Miedema provides us with hope that a workable and
general, albeit phenomenological, description of
alloy properties may yet be achieved.

The second event consists of recent experimental
work by Kaufmann and coworkers.? In their ex-
periments, ion-implantation techniques have been
coupled with ion-channelling measurements. The
use of ion-implantation techniques provides a wide
range of new and unique metastable alloy systems
which cannot be obtained by the usual metallurgical
procedures. Perhaps the most dramatic result of
these experiments which so far have concentrated
on Be as a solvent host, is that the sife geometries
of the solute atom have, for the first time, been
directly and systematically determined. Since the
nature of a solid solution may differ radically de-
pending on whether the solute occurs substitution-
ally or interstitially, the latter advance may be
described as “revolutionary”.

Traditionally, the study of solid solutions has at-
tempted to form criteria by which interstitial and
substitutional solutions may be distinguished.?

For an interstitial solution to be formed in equili-
librium with the melt, certain conditions must be
met. We might expect, for example, that unless
the impurity atom is quite small, so that solute
atoms may enter the interstices or holes in the
solvent lattice, interstitial solutions would be un-
likely as contrasted with substitutional solutions.

At this poirit, we would like to illustrate, sche-
matically, how such criteria might be defined.
Consider the case of a self-interstitial. The maxi-
mum self-interstitial solubility will occur when
considerable strains are present in the lattice. In
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fact, we expect these strains to be sufficiently dis-
ruptive so that locally the host lattice resembles
the liquid state. We may then attempt to estimate
the enthalpy change associated with the long-range
structural energy which is lost as we pass from
the ideal crystal to this disrupted site. We write
AH ,=nkT;X,, where T, is the melting point of the
host, X, is the molar fraction of self-interstitials,
and & is the Boltzman’s constant. In order to esti-
mate » we consider two limiting cases. If we
ignore bonding effects of the self-interstitial, then
classically by the equipartition theorem we expect
~n=3. However, this estimate for » is too small
and a more realistic value for n is possible. Con-
‘sider a typical liquid metal for which in the melt
each atom has on the order of six nearest neigh-
bors. If we assume pairwise interactions and in-
clude some second-neighbor energies, the value of
n is more probably n =4-5. Given an ideal entropy
of mixing, we may estimate X% with a value of «
=4.,5 (x1). If the free-energy change vanishes,
then the entropy term TAS equals AH,;. For the
entropy of mixing we have AS=kX,InX; and, con-
sequently, X,.%exp(—an/T). Suppose as a typical
room temperature we choose T =%T,; then X,
=e 2"=¢"%=10"* [using our suggested limits »
<4.5 (1) we have 10755 X, 51073].

Of course, interstitial-impurity solubilities will -

be different from those of self-interstitials be-
cause of enthalpy site differences (i.e., bonding
differences from interstitial and substitutional
sites). Nevertheless, for simple host lattices, on
the average we expect a room-temperature solubil-
ity limit of X, 2 0.01 at.% to be indicative of a sub-
stitutional solution rather than an inferstitial solu-
tion. ’ '

This concept has been confirmed in Kaufmann’s?
work. His results demonstrate conclusively that
for a close-packed beryllium host extensive solu-
bility always implies a substitutional geometry for
the solute atom, and restricted solubilities imply
an interstitial geometry for the solute. Of-course,
a crucial question yet to be resolved is the critical
value of solubility X, which distinguishes intersti-
tial from substitutional solid solutions. In the case
of Be it turns out that a solubility X; =z 0.01 at.%
implies a substitutional geometry; for solubilities
X,;=0.01 at.% an interstitial geometry is prefer-
red. One of the goals of this paper is to account
for trends in the critical solubility X; from one
close-packed host to another.

To accomplish this task we need a more thorough
understanding of the nature of microscopic forces
present between the solute and solvent atoms. For
example, if the dominant forces are long range,
then we expect the procedures used in previous
theoretical investigations, which have concentrated
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on Fermi-surface and band-structure effects in al-
loys, to be applicable to solid solubilities.>* Act-
ually, this isnof the case. It has been established
by a number of workers that the predominant
forces affecting alloy solubilities are short range
and isotropic in nature. As noted by Heine and
Weaire, among others,®* both theoretical and ex-
perimental evidence suggests that in an alloy each
atom approximately retains its volume as if it
were a small macroscopic piece of the bulk ele-
ment. This idea, in conjunction with recent efforts
by Miedema, has led to a cellular picture of al-
loys where directional or shear forces play a sec-
ondary role, as constrasted with volume-dominated
or hydrostatic forces. We emphasize this point of

_view because band-structure effects, or Fermi-

surface effects, which result from long-range
forces, have been used successfully in analyzing
anisotropic properties of simple hcp metals, e.g.,
c¢/a ratios

To rephrase the situation, we note that Pearson®
has pointed out that the main criterion for observ-
ing energy-band effects in a series of related al-
loys is that nearest-neighbor coordination should
not change significantly from one structure to an-
other, so that the major contribution to the enthalpy
remains unchanged. In general, nearest-neighbor
or short-range interaction energies are much
greater than the small electron energies associated
with band-structure effects. For the case of an
arbitrary solute in a host, we expect the coordina-
tion to change from solute to solute, and we do not
expect long-range forces to be consequential. So,
while band-structure effects have been used by
Hume-Rothery, Raynor, Heine, and Weaire®+* )
among others to describe c¢/a ratios of hcp metals,
these effects will be of only secondary interest to
us.

‘Since treatments that concentrate on Fermi-
surface effects are not appropriate for solid solu-
tions, we need to approach this problem from a
fresh perspective. In doing so we wish to take ad-
vantage of all the empirical and experimental evi-
dence available to us. It is, therefore, unfortunate"
that our knowledge of metals is less complete than
that for simple insulators or semiconductors. For
many metals, the electronic structure is charac-
terized only for energies at or very near the Fer-
mi surface. While the largest set of data for inter--
metallic-alloy formation is the thermochemical in-
formation contained in binary phase diagrams,®
the data here are often complex. Regretably, no
generally accepted procedure exists for extracting
interatomic interactions from phase diagrams
which could in turn be applied to.the problem of
solid solubility. Moreover, with respect to defects
or impurities, there has been few quantitative
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studies. One exception to this latter point is the
case of fast interstitial diffusion.”"® Here a number
of systems have been examined and trends have
been studied, but only for a half dozen or so hosts,
e.g., Pb, Sn, In, T1, etc.

An approach that we might attempt is the direct
quantum-mechanical calculation of thermochemical
parameters. However, because of the very small
energy differences involved in such calculations,
the prediction of alloy properties from ab initio
calculations does not appear to be feasible. A
practical approach to these problems has therefore
concentrated on the use of elemental-configuration
variables. Classical examples of configuration
variables include atomic size and electronegativity.
The goal of constructing such variables is to de-
scribe the essential features of interatomic inter-
actions, e.g., charge transfer, within the frame- -
work of a simple scale or index. Using elemental
coordinates or variables, we hope to systematize
the chemical data on solubility trends.

In this paper we shall confine our attention to
simple close-packed divalent metals (e.g., Be,
Mg, Zn, etc.). As solvents these metals provide
an excellent base for a theoretical study. For ex-
ample, these are common metals, thus extensive
experimental data exist for their properties. Since
these metals are all close-packed, relaxation ef-
fects associated with any long-range strain fields
should be similar for each host. Finally, other
studies on these metals and their alloys have been
performed: c¢/a ratios, structural trends, and
ordered phases have been examined.3*

In this paper, we propose to apply a recent set
of chemical coordinates to the problem of solid
solubility. The coordinates are those derived by
Miedema and his collaborators. While Miedema’s
coordinates serve as the basis for our discussion,
we shall extend them and introduce other coordin-
ates as well. The paper will be organized as fol-
lows: in.Sec. II we will review some recently de-
vised chemical coordinates and the scheme of
Miedema, in Sec. III we will discuss the applica-
bility of the Medema coordinates to the problem of
solid-solution formation, in Sec. IV we will explic-
ity apply the scheme to several systems and dis-
cuss the extension to the general problem; and in
Sec. V we will review our conclusions and basic
results.,

II. MODERN ELEMENTAL CONFIGURATION VARIABLES

While the Hume—Rofhery criterion®®along with the
graphical scheme of Darken and Gurry' provide a
credible basis for predicting solubilities, an im-
proved scheme is clearly desirable. For example,

the Hume-Rothery size criterion is quite accurate

. in providing a necessary, but not sufficient, con-

dition for extensive solubility (e.g., a maximum
solubility in excess of 5 at.%). It has been deter- -
mined!! that if the atomic sizes of the solute and
solvent atoms are not within ~15% of each other,
then Hume-Rothery’s rule predicts, with an ac-
curacy of ~95%, that extensive solid solutions will
not be formed. On the other hand, if the solute and
solvent sizes are nearly equal, then Hume-
Rothery’s rules are of little use. Approximately
50% of these solvent-solute combinations will not
result in extensive solutions. ‘

In this context we seek more precise coordin-
ates, i.e., coordinates that will accurately de-
scribe the essential features of solid solutions.
Several new coordinates have been introduced in
the last twenty years,'?” 7 but the motivation of
these coordinates was to systematize structural
energies and not solubility data. While these co-
ordinates are useful and much knowledge has been
gained from their application to structural proper-
ties, they do not appear appropriate for the prob-
lem at hand.

The chemical coordinates that we seek should be
widely applicable and, preferably, derived from
quantum-mechanical variables. Unfortunately,
such coordinates do not exist at present. Never-
theless, the coordinates of Miedema and his col-
laborators appear to most closely approximate our
prescription. Miedema’s coordinates are empiri-
cal, and this is their greatest deficiency. How-
ever, a quantum-mechanical justification of
Miedema’s work has, at least partially, been pre-
sented by Chelikowsky and Phillips.'¢:1"

The work of Miedema is based upon an analysis
of well over 500 intermetallic-alloy systems.
Within his scheme two elemental coordinates are
introduced. As indicated earlier, the coordinates
are ¢* and nyg; he relates these variables to the
work function of the elemental metal and to the
electron density of the elemental metal at the
boundary of the Wigner-Seitz cell, respectively.
In Miedema’s cellular scheme for binary alloys, a
difference in ¢* between consituents results in a
charge:transfer across boundaries between dissim-~
ilar cells. This transfer provides a negative
“potential-energy-like” contribution to the heat of
formation. A difference in ng, conversely, im-
plies the need to expend energy in order to smooth
the discontinuity in the electron density at the cel-
lular boundary. This “kinetic energy” type of con-
tribution provides a positive term to the heat of
formation. The delicate interplay between the two
opposing contributions decides the resultant sign
for the heat of formation.

‘In practice, Miedema has determined his two co-



ordinates by making small empirical adjustments
in an initial set of coordinates determined from
bulk elemental data (e.g., work functions, com- -
pressibilities, and molar volumes). The adjust-
ments were executed so that perfect agreement
was nearly achieved for the signs of the heats of
formation for several hundred alloy systems.
The form Miedema takes for AH; is

AH,=-P(A¢*)? +Q(an¥$)? - R6,0,, (1)

where P, @, and R are positive constants. R is
presumed to represent a constant p-d hybridiza-
tion term which vanishes unless the alloy system
combines simple s and transition 4 metals. Be-
cause there are 100+ empirical variables in
Miedema’s scheme (i.e., two elemental variables
(¢*, n¥3) for over 50 elements), and because of
some ambiguities inherent in a phase-diagram
analysis, doubts have been raised about the physi-
cal significance of Miedema’s variables. How-
ever, a connection has been made between the
Miedema coordinates and spectroscopically defined
nonlocal*®''” pseudopotentials for simple metals
and metalloids. This connectionreduces Miedema’s
50+ adjustable variables to eight coupling param-
eters which relate orbitally dependent radii to ¢*
and 7 yg.

One of the ambiguities in discussing binary phase
diagrams is the relative importance of enthalpy
and entropy dominated processes. Miedema over-
comes this problem to a certain extent by examin-
ing only the signs of AH, and presenting rules for
the sign determination. If ordered phases exist in
-an alloy systems and persist to low temperatures,
then AH, is assumed to have a negative sign. If no
ordered phases exist and the solubility is not ex-
tensive (i.e., less than 10 at.%), then AH, is as-
sumed to have a positive sign.

In this manner, Miedema reduces a vast, some-
times complex, phase-diagram compilation to a
data formed by a binary set of signs. Miedema’s
scheme works exceptionally well in ascertaining
the signs for AH,, however, it is more efficacious
for transition-transition metal systems and non-
transition-transition metal systems than for non-

transition-nontransition ‘'metal systems. A signifi- -

cant observation is made by Miedema’ in the latter
case: namély, the scheme is more reliable for
liguid nontransition-nontransition metal alloy sys--
tems than for the corresponding solid alloys. This
situation suggests that Miedema’s scheme fails to
describe systems in which structural or covalent
energies play a significant role. The isotropic na-
ture of (1) precludes any structural description of
AH,, so that this limitation of Miedema’s scheme
is not surprising.
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III. APPLICABILITY OF CELLULAR COORDINATES

An ideal binary solution, e.g., the mixing of two
ideal gases, occurs with no net change in enthalpy
and an increase in entropy. For a solid intermetal-
lic solution, the ideal situation is never achieved.
The enthalpy term may be nonzero because of
charge transfer between the immersed solute atom
and the host or because of lattice strains intro-
duced by size and valence mismatches between the
solute and solvent atoms. Moreover, the entropy
term is never as large as that obtained from ideal
solution expressions because of short-range order
or clustering effects about the impurity. Neverthe-
less, provided the enthapy change is not to positive
the entropy term will prevail and the free energy
will be reduced by the formation of solid solutions.
A large negative change in enthalpy, however, may
not favor solid solutions, even though the free en-
ergy is reduced. For this case often an ordered
phase is obtained and the formation of solid solu-
tions is inhibited.®

The requirement of a “small” enthalpy change
relative to the entropy term for the formation of
extensive solid solutions is implicit in the rules of
Hume-Rothery® and the scheme of Darken and
Gurry.’ Qualitatively, if the sizes of solute and
solvent atoms are radically different the elastic
strain energies will be too severe to form extensive
solutions; this effect should be reflected in a large
and positive AH,. For large electronegativity dif-
ferences, we expect the electrochemical factor to
make enthalpy changes large and negative through
charge-transfer effects. When electrochemical
factors dominate, ordered phases become strongly
favored by electrostatic considerations.!'® For
these systems, structural energies become impor-
tant and we dnticipate problems in any scheme
that does not include directional or structurally
dependent forces.

If enthalpy trends are important for the system-
atization of solubility data, then the coordinates of
Miedema’s scheme should be an appropriate choice
for systematizing solubility trends. However, the
Miedema scheme was not developed primarily to
treat solubility problems, and several aspects of
Miedema’s work prevent its direct application to
solubility problems. The scheme is restricted in
that it predicts only signs for heats of formation
with a high degree of accuracy. The quantitative

predictive powers of the scheme work best for sys-

tems in which binary-compound formation exists
with the concentration of one component exceeding -

- ~20%." In this regime, enthalpy processes domin-

ate and entropy considerations are not of much
concern. When entropy considerations become
significant, we expect correlations with Miedema’s
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FIG. 1. Interstitial holes in close-packed hexagonal
structures. The octahedral holes are labeled by x, the
tetrahedral holes by y. (After Hume-Rothery, Ref. 3.)

coordinates, but not necessarily in the form of
Eq. (1). More importantly, for low concentrations
of the solute and large electrochemical differences
between the host and the solute, structural ener-
gies will dominate entropy changes. In these -
cases, ‘we expect significant errors to be produced
by the isotropic force model of Miedema.

To illustrate both the appropriateness and the ac-
curacy of Miedema’s coordinates to the problem of
impurity atoms in a metal host, we consider the
recent ion implantation work of Kaufman ef ql.? In
this work implanted impurities in Be were formed
for approximately 25 elements.. The implanted ele-
ments were found to occupy one of three sites: a
substitutional site (s), an interstitial ochtahedral
hole site (o), or an interstitial tetrahedral hole
site (¢). The site positions are indicated in Fig. 1.
At this point we should stress the essential differ-
ences between an implanted impurity and an impur-
ity that is introduced from the melt. Implanted al-
loys involve the direct injection of the solute. Dur-
ing the implant process the injected element at the
end of range simulates a system at a very high
temperature. The substitutional implants may

. easily be formed in this case by the creation of Be
self-interstitials.

While we can understand the creation of substitu-
tional implants, it is very surprising that inter-
stitial sites are occupied at all. If touching spheres
were inserted in the interstitial sites, they would
be quite small. If »; is the radius of such a sphere
and ¥, corresponds to the host radius, then for a
close-packed lattice we have 7,(¢)=0.2257, and
7,(0)=0.417,. Employing Hume-Rothery’s® criteria
for the formation of extensive interstitial solutions
prepared from the melt, we see that only hydrogen
would be small enough to form an interstitial solu-
tion with Be. Since Kaufmann et al.? find several
large interstitial implants, e.g., Cs, Ge, I, Xe,
etc., it follows that these systems are probably
metastable and are accompanied by large long-
range strain fields. '

At first, it might appear hopeless to apply any of
the coordinates discussed so far to this problem.
After all, the impurity configurations in most
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FIG. 2. Darken-Gurry map for metastable Be micro-

alloys. The ordinate is the Pauling electronegativity
(Ref. 23) of the element and the abscissa is the metallic
radius defined from the molar volume (Ref. 1). Symbols
are identified in the figure. The dashed line show an ap-
proximate division of substitutional and interstitial im-
purities.

cases correspond to metastable “microalloys” and
coordinates such as Miedema’s are derived from
systems in stable thermal equilibrium. In fact, the
usual approaches do not appear to work. A few
cases will illustrate the situation. One approach is
to consider the electron charge density as a single
coordinate. We define the density coordinate in
terms of the », parameter: 7,=(3Z/41Q,)V®, where
Z is the number of valence electrons in a bulk-
unit-cell volume .. This index has often been

. used to describe trends in simple metals (i.e., a

nearly-free-electron treatment).’®* However, for
the problem at hand, no statistically significant
correlation is achieved using »,. The majority of
octahedral site implants have larger », values than
do the substitutional site implants, but the implants
residing in octahedral and tetrahedral sites are not
separated. We know that », as a chemical index
works better for simple metals than for transition
metals, so its failure to produce an accurate sep-
aration is not surprising.

A more metallurgical approach to this implant
problem is displayed in Fig. 2. Darken and Gurry
coordinates,’® i.e., atomic size and electronegativ-
ity, are used in an attempt to systematize the data.
The attempt is only partially successful. Simple
domains which separate “size-electronegativity”
space into simple s, ¢, or o domains cannot be
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FIG. 3. Miedema plot for all tabulated elements (Ref.
1) including most of those from Fig. 2. Solid symbols
are from experiment; open symbols are predicted. Mie-
dema original coordinates for Al, Ga, In, Cd, and Ca
have been slightly modified (see the Appendix).

constructed. Nevertheless, certain aspects of the
plot are intriguing: for example, if R, (R, =QY3,
where &, is the elemental atomic volume) is less
than ~1.5 A, then substitutional sites are chemic-
ally preferred over interstitial sites. This trend
is compatible with the rules of Hume-Rothery;
i.e., atomic size is a more useful chemical index
for predicting alloy properties than is electroneg-
ativity. However, what is more surprising about
Fig. 2 is that the smaller octahedral and tetra-
hedral interstitial hole sites are occupied by ex-
tremely large atoms (i.e., “large” compared to
Be).

While the Darken-Gurry map is not altogether
successful, it does suggest that a schematic sepa-
ration might be possible using more refined chem-
ical coordinates. In Fig. 3 we employ another co-
ordinate space, i.e., Miedema’s set of coordinates
(¢*, n¥S). These coordinates are more accurate in
describing alloy.trends than are classical coordin-
ates such as size or electronegativity, We hope
this increased accuracy will be reflected in a com-
plete separation for the site preferences of the
various implanted elements. Inspection of Fig. 3
reveals that we, in fact, have achieved our goal;

a complete separation of site choices is obtained.

The high degree of success in the Miedema coor-
dinates implies that inherent in these coordinates
are not only measures of the energies involved in
equilibrium alloys, but also the energies involved
in any local lattice relaxations around the implant.
To facillitate more quantitative discussions of
our results, we explicitly provide definitions of the
boundaries in Fig. 3. We expand the site energies
on Miedema coordinates (¢*, nl“{g) using a Landau-
Ginzburg expansion. For each element A we have

AHgo, t)=AH/(s)+No, t)

(2)
N(o, t)= t a0, ) X, X, + £b¢(o, DX, +clo,t),
i=1

where

X,(A)=¢*(A) - ¢p*(Be)
X,(A)=n¥3(A) - n¥3(Be).

The form of (2) indicates that the site energy dif-
ferences are small; the same cancellations which
are implicit in AH,(s) are maintained in AH/(o, )

~ AH/(s). The expansion coefficients a,,, b;, and ¢
are listed in Table I. The expansion coordinates
are probably not unique, although the site energy
differences produced by (2) seem reasonable.

N(o, ¢) ranges from ~1 eV to 0.01 eV for the vari-
ous implanted elements.

In a few cases we found the coordinates of
Miedema to be incompatible with the quadratic do-
mains defined in Eq. (2). In these specific inci-
dences we reexamined the phase-diagram data and
found that the coordinates could be altered very
slightly to produce.the final results displayed in
Fig. 3. Our altered coordinates were just as ac-
curate as the Miedema coordinates, and in some
cases more accurate. A complete discussion of
the modified coordinates is given in the Appendix.

In summary, the geometry of the domains con-
structed from (5) are as follows: the substitutional
region is an ellipse, and the octahedral and tetra-
hedral regions are separated by a hyperbolic con-
tour which passes through the region of substitu-
tional implants.

In comparing the Miedema plot (Fig. 3) and the
Darken and Gurry map (Fig. 2), we can make an

TABLE 1. Expansion coefficients for the site-energy
differences as determined from Eq.(2). These coefficients
will produce the domains in Fig. 3.

Site aqy aqg +a 21 (2} bi b2 c
t -1.80 11.91 -24.04 1.95 -6.3¢ 0.16
o -1.77 11.71 -23.79 1.81 -5.87 0.28




692 J. R. CHELIKOWSKY 19

interesting analogy. In Miedema’s scheme nid
correlates roughly in an inverse fashion with atom-
ic size. We note the Miedema coordinates of Be
place it near the boundary between substitutional
and tetrahedral site domains, i.e., Beself-intersti-
tials should occupy tetrahedral sites. This placement
results in a value of nl/ 3 (Be) which is larger than
many of the substitutional implants and all of the
octahedral site implants. Thus, as with the Darken
and Gurry map, it appears that large atom im-
plants (e.g., Cs and Ba) chemically prefer to re-
side in the very small octahedral hole sites—a
surprising result.

One additional comment is in order concerning
the site expansion via Miedema’s coordinates [Eq.
(2)]. The reader will note that we have not in-
cluded any terms of the form AR =AR(o, #) - AR(s).
According to Miedema, R corresponds to a p-d
hybridization term. By setting AR =0 we assume
the p-d hybridization term is independent of the
site of the implanted element. This approximation
may be justified in part by an examination of the
energy distribution of p-like states in the Be con-

duction band. If an energetically broad distribution -

of p states exists in Be, as suggested by band cal-
culations, then it is reasonable for us to assume
that the local density of p states is constant, so
that the hybridization term will not change radical-
ly from one implant site to another. This would
allow the omission of a AR term in Eq. (2) without
serious loss of accuracy.

IV. EXTENSION AND APPLICATION OF CELLULAR
COORDINATES TO SOLID SOLUBILITY

The striking success of Miedema’s coordinates,
especially as contrasted to the limited usefulness
of the Darken and Gurry map for.the Be implants,
leads us to believe that his coordinates will be well
suited for describing the general situation of
foreign metal atoms in a metal host. However, be-
fore presenting a detailed discussion of solid solu-
bility trends in terms of Miedema (¢*, 7 ys) plot,
we will illustrate and comment on the Darken-
Gurry procedures.'® We will concentrate on two
prototypical simple close-packed metal hosts, Mg
and Pb. Darken and Gurry solubility maps for
these hosts are displayed in Figs. 4 and 5.

In our solubility maps, we do not categorize the
solubilities as previous workers have.l°'!! Earlier
studies have used the following binary classifica-
tion scheme: if the maximum solid soluability for
a specific solute exceeded 5 at.% the solubility was
characterized as “extensive”, otherwise, the solu-
bility was characterized as “limited”. Obviously,
such a classification scheme does not allow fine
distinctions. Moreover, the 5-at.% dividing line
figure refers to the maximum solubility achieved
at any temperature. This value may be quite dif-
ferent from the largest solubility achieved at room
temperature. As a consequence, the previous
classification schemes were difficult to use in
making any cross comparisons.
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To circumvent this problem and to provide a finer
distinction in gauging solubilities, we will proceed
as follows. First, we will compare maximum solu-
bilities at approximately room temperature. In
some cases room-temperature solubility data are
not available, and we will use the closest available
temperatures and make appropriate extrapolations.
Second, since the accuracy with which solubilities
can be measured is rather low and heavily depen-
dent on the system examined, we will divide the
solubility values into broad categories. However,
unlike the previous classification scheme,!*'!! we
will proceed as follows. The solubility will be con-
sidered “negligible” if the measured values is less
than ~0.01 at.%. If the solubility exceeds 0.5 at.%
at room temperature we consider the solubility as
“significant”, If the solute has some solubility but
does not fall into either of the above categories,
we put it into an “intermediate” category. Finally,
with respect to our solubility maps, we label so-
lutes for which no measurements exist by an open
circle. It is fairly safe to assume that the “not
measured” and “negligible” solubility categories
will, in general, mean the same thing.

In the case of Mg (Fig. 4) we see that the Darken-
Gurry map is partially successful. Extensively
soluble elements in Mg such as Li, Sc, In, Zn,
etc., do cluster about the coordinates of the host;

however, if we attempt to separate the highly solu-

able elements into a simple domain, the results
are quite unsatisfactory. We note that T1 and Pb
are highly soluble in Mg, yet are “surrounded” by
marginally soluble elements such as U, Hg, and

Bi. This means that any simply connected domain ‘
including T1 and Pb will contain a large percentage
of low-solubility solutes. The results for Pb (Fig.
5) are similar to Mg; we cannot construct a simple
domain that includes all the extensively soluble
elements without including a number of insoluble,
or probably insoluble, elements. (We say probably
insoluble, to include elements like U, Pu, Zr, Hf,
etc., which are probably insoluble in Pb, but have
either not been examined or not been reported as
such.)

The results we have illustrated, Mgand Pb, are
typical. A significant observation here is that it is
a fruitless activity to attempt to improve domain
definitions. In these prototypical examples we see
that the construction of any simple domain contain-
ing a large percentage of extensively soluble ele-
ments is not possible.

We will now turn our attention to the Miedema
coordinates and construct maps analogous tothe Dar-
ken-Gurry approach. Before outlining our results
for close-packed metals, we examine the special
case of Be (Fig. 6). For this example, we divide
the solutes into two general classes depending on
whether the solute is soluble to 0.01 at.% or not.
The similarity between the Be implant plot (Fig.

3) and the solubility plot (Fig. 6) is dramatic. Con-
ceptually, we cannot overestimate the significance
of the correspondence between Figs. 5 and 6. This
result implies that above a critical solubility, in
this case X,~0.01 at. %, solubility is synonymous
with a substitutional veplacement. In other studies
concerning impurities in metals,”*® the geometric
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FIG. 6. Miedema plot for intermetallic solid solubility
in a Be host. Note the close analogy with Fig. 3. This
suggests that extensive solubility implies a substitutional
solution. d.u: density units.

configuration has often been speculative and often
the evidence for a substitutional or interstitial site
preference has been obtained from quite indirect
evidence. Here (Figs. 3 and 6) we have direct evi-
dence of the site choice for foreign species in Be.
Moreover, that we are able to systematic the data
in a simple fashion using the Miedema coordinates
is a spectacular result. '

With reference of Fig. 6 we note that there exist
only two possible exceptions to our rule that exten-
sive solubilities imply substitutional solutions and
restricted solubilities imply interstitial solutions.
The two exceptions are Zn and Si. Si has most re-
cently been characterized as having “negligible”
solubility in Be,® however, the Miedema coordin-
ates for Si place it in a region where we would ex-
pect the solubility of Si in Be to be in excess of
0.01 at.%. This current placement may be the con-
sequence of poorly defined Miedema coordinates
for Si. In general, Si strongly prefers tetrahedral
coordination with respect to interatomic bonding in
solids. This low coordination implies that struc-
tural or directional forces are important in deter-
mining enthalpy trends for silicides. However,
Miedema’s scheme does not consider directional
forces. The solubility data indicate that Zn is in-
soluble in Be; however, Kaufmann’s? experiments
suggest that Zn implants are substitutional in Be
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FIG. 7. Miedema plot for intermetallic solid solubility
in a Mg host., Note the improved separation as contrasted
with the Darken-Gurry plot in Fig. 4.

and not interstitial as we might expect from Figs.
3 and 6. Since the solubility data for the Zn-Be
system is somewhat dated,® a reexamination of this
system might prove interesting.
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FIG. 8. Miedema plot for intermetallic solid solubility
in a Zn host, Note the impotency of Zn as a solvent.
Only four metals will dissolve extensively in Zn: Cd, Ga,
Ag, and Au,
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FIG. 10. Miedema plot for intermetéllic liquid solu-
bility in Hg. Note the analogous behavior of liquid solu-
bilities to the solid solubility situation as typified in Fig.
9.
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FIG. 11. Miedema plot for intermetallic solid solubili-
ty in a T1 host lattice.
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In Figs. 7-12 we present solubility data in terms
of Miedema (¢*,n ;) plots for several simple
close-packed metals. We include Hg in our dis-
cussion although, properly speaking, the crystal
structure of Hg is not close packed. In our study
we hope to outline general trends rather than con-
centrate on specific successes or failures. For
each plot we have sketched simple domains that
contain solutes of fairly high solubility on the host.
These domains are for illustrative reference and
are not meant to be definitive boundaries. In sharp
constrast to Darken and Gurry maps we find, in the
majority of cases, that simple domains that contain
very high percentages of extensively soluble ele-
ments can be constructed.

However, the construction of domains is only the
first step in a comprehensive analysis. Once we
have established a schematic scheme which results
in a complete or nearly complete separation, the
next step is to provide rules for defining boundaries
of the domains. The second step is a very difficult
one that may require analysis beyond the Miedema
scheme. Nevertheless, we shall provide a pro-
cedure for describing trends in the domain con-
structions.

A survey of the data presented in Figs. 6-12 re-
veals some interesting solubility trends. For ex-
ample, the extensively soluble elements tend to
cluster in elliptical domains about the host. This
is the case with a Mg host, elements which are ex-
tensively soluble, e.g., Pb, T1, In, Y, and Cd,
cluster about Mg as opposed to elements that show
restricted solubility, e.g., Cs, Hf, Nb, W, and
Co. In all cases, the ellipses tend to be elongated
along an axis defined by ¢* ~3nYs. In many cases
the solvent host coordinates are displaced from the
origin of the ellipse. Examples of this situation
are found in the hosts: Be, Zn, Hg, and Pb. How-
ever, it should be stated that with the possible ex-
ception of Pb the other hosts are somewhat atypi-
cal. Be, for example, is a first-row element and
as such has a different core structure than the
other hosts. Moreover, the data base for Be-based
alloys is not extensive, and as a consequence the
coordinates of Be may not be well defined. Like
Be, Zn is atypical in that only a few elements are
extensively soluble init. In such situations the
boundary of the elliptical domain is very difficult
to define. For Hg the data presented are for
alloys; we present the data mainly for complete-
ness. Parenthetically we note that since the liquid
data are amenable to an almost complete separation
between soluble and insoluble elements, our
scheme may work well for both solid and liquid al-
loys.

For many solid solutions the maximum solute
concentration as a function of temperature is given

by®
InX ,, = AH}/RT +1InX,, (3)

where X,, is the molar fraction of solute and AH‘}
is the energy change per solute atom. We would
like to use Miedema’s scheme to estimate AH‘},
e.g., as in (1). In this fasion we would have a
formula for estimating the domain size and shapes.
If we assume the form of (1) for an approximate
AHS, the results do 7ot agree with Figs. 6-12,
Equation (1) would imply hyperbolic patterns; in-
stead, we observe elliptical patterns for our do-
miains. This result is surprising and a bit distres-
sing. However, we should realize that since the
Miedema scheme was constructed for binaries
where X,,=0.2-0.8, there is no reason to believe
AH$ as from (1) will adequately describe X,, <0.1.
Moreover, (3)is based on the assumption of an
ideal solution, which is certainly not justified when
compound formation is favored. In fact, Miedema
has demonstrated that as electrochemical differ-
ences become large, compound formation becomes
favored.!'® Since compound formation involves di-
rectional interatomic forces, the Miedema scheme
fails in such situations. Nevertheless, we still ex-
pect the Miedema coordinates to be superior to the
classical Darker-Gurry coordinates. The only dif-

" ficulty is that (1) will no longer be appropriate for

estimating AH,.

We may improve Miedema’s scheme by consider-
ing anisotropic forces. To illustrate this, con-
sider the size of solubility domains in Figs. 6-12.
In some of these domains only a few elements are
present (e.g., Zn); in others (e.g., Pb), almost a
dozen elements are present. In order to obtain an
index for the solubility potency of a host lattice,
we extend Miedema’s isotropic approach and in-
¢lude anisotropic shear forces. We propose to ex-
amine the potency of the solvent in terms of a di-
mensionless index by which we characterize shear
deformability. To define this index we examine the
ratios C/B and C’/B where B is the bulk modulus,
and C=C,, and C’'=Cg=3(C,; — C;) are elastic con-
stants in the customary notation.!?"2!

We display the behavior of these two indices for
seven close-packed simple metals (Fig. 13). Be-
fore discussing any trends in Fig. 13, we note the
following expectations. First, we note that a soft
or deformable lattice should have a small value
for C/B or C’/B (a liquid would have a vanishing
ratio); conversely, a hard lattice should possess
relatively large values for these coordinates. Sec-
ond, we expect a monotonic decline in both C/B
and C’/B as we descend a column in the Periodic
Table. This trend would be consistent with the
ideas of Mooser and Pearson'®: directional bonding
forces are stronger for low principal quantum num-
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FIG. 13. Shear deformability for simple-close-packed
metals (including Hg). For definitions of Cyy, Cyy, Cyy,
and Cg see Ref. 19. The experimental values are from
Refs. 19-21,

ber elements than for high principal quantum num-
ber elements. We see that these two ideas are, in
part, upheld by the experimental values shown in
Fig. 13. For example, we observe Small values of
(c/B, C’/B) for Pb and T1, which we know have lat-
tices that may be easily deformed. Conversely,
Be and Zn have “hard” lattices and larger values
of (C/B,C'/B). However, we do not observe a
monotonic decrease in C/B or C’/B. Note the be-
havior of Zn in the series Be-Mg-Zn-Cd-Hg. This
anomaly is traceable to the d~core electrons which
occur first in the case of Zn.

From Fig. 13 we expect C’/B to be a better co-
ordinate than C/B. C’/B experiences more varia-
tion describing the column than does C/B, and as
a consequence appears to be more sensitive to
changes in the lattice properties. We can justify
this speculation more precisely by examining the
C and C’ shear modes. In Fig. 14 we display the
interstitial hole sites for a face-centered cubic
lattice (our arguments will also be valid for a hex-
agonal close-packed lattice). A shear wave along
the (110) axis separates the C and C’ modes as
shown. The motions of the atoms are displayed
with the cube center serving as a fixed origin. We
see motions associated with a pure C mode move
the corner atoms toward interstitial holes.

In terms of our deformability index C’/B, we
hope to characterize the capacity of a host to dis-
solve other elements. A problem arises, however,
in how to define precisely a measure of the potency
of the solvent (especially considering the quality of
the solubility data). We have chosen to define an
index as follows. We arbitrarily specify a critical
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FIG. 14. Atomic displacements for a shear wave along
the {110) direction in a cubic-close-packed lattice. C and
C’ modes separate for this wave., Note that the C’ mode
displaces the corner atoms toward their nearest neigh-
bor, while the C mode displaces the atoms toward inter-
stitial holes. An analogous displacement occurs for hex-
agonal-close-packed lattices.

solubility and determine the number of elements
for a given host which equal or exceed the critical
value. (The more elements soluble beyond the
specified solubility, the more potent the host will
be.) This index is a bit arbitrary, but, neverthe-
less, it provides a simple and widely applicable
measure. It is preferable to an index which, for
example, measures the area of a domain as we
have, at present, no quantitative ab initio means
of constructing the boundary. ’

We expect a soft lattice (small C’/B) to be a
more potent solvent than a hard lattice (large C’/
B). To make this idea quantitative in Fig. 15 we
plot B/C’ and the number of elements that are sol-
uble to greater than 0.5 at.% for the simple close-
packed metals; Be-Mg-Zn-Cd-Hg. The results are
quite dramatic. The nonmonotonic behavior of B/
C’ (or C’/B in Fig. 13) is reflected in the number
of extensively soluble elements. Only three or four
elements are extensively soluble in the harder lat-
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FIG. 15. This plot demonstrates the usefulness of B/C’
as in index of solvent potency for close-packed metals.
A soft lattice, e.g., Mg, has a large value of B/C’ and is
capable of dissolving numerous metallic solutes. Con-
versely, a hard lattice, e.g., Be, has a small value of
B/C’ and will only dissolve a few elements extensively.

tices of Be and Zn, while ten or more elements are
soluble in the softer lattices of Mg, Cd, and Hg.
This confirms our comments and expectations with
respect to the importance of the specific shear de-
formability of the host lattice with respect to solu-
bility properties.

V. CONCLUSIONS

In this paper we have attempted to review and up-
date the problem of solid solubilities in intermetal-
lic alloys. Our efforts have been stimulated by two
important developments. The first is a series of
dramatic experiments by Kaufmann et gl.> In their
measurements they have determined in a direct .
fashion the preferred site locations of impurities
in a metal host. Heretofore, there existed no di-
rect evidence for impurity site locations (although
in a few cases, e.g., fast-diffusion data, indirect
evidence is available). Kaufmann’s experiments
have also provided us with new and unique alloy
systems which could not be prepared by chemical
means.

Through an analysis of his results we were able
to suggest a relationship between the extent of sol-
ubility and whether interstitial or substitutional solu-
tion formationis favored. Inessence, if a soluteis
soluble to more than a critical solubility limit,
then substitutional solutions will be formed instead
of interstitial solutions. Conceptually and histor-
ically this is an important result. It appears not to

have been generally recognized in previous investi-
gations that such a criterion was possible.

The second development which has made a review
of solubility problems possible is the dramtic suc-
cess of a recently devised scheme to predict heats
of formation of intermetallic alloys. The scheme
was invented by Miedema et al.,* and involves two
elemental configurational variables that are of a
semi-empirical origin. As indicated in the text
ab initio calculations appear to be a fruitless ap-
proach, and we have tried to invoke chemical scal-
ing arguments in which Miedema’s variables play
a predominant rule.

We have also presented arguments that in Miede-
ma’s scheme® short-range isotropic forces are im-
plicity assumed. Further, we noted that this as-
sumption is responsible for the phenomenal suc-
cess of Medema’s work, as short-range isotropic
forces predominate in most intermetallic alloys.
We, therefore, excluded from our discussion ap-
proaches that have been based on long-range force
descriptions such as these involving Fermi-surface
contacts with the Brillouin zone. The long-range
force arguments are applicable only for isostruc-
tional alloy systems, and are not appropriate for
solubility trends.

While Miedema’s scheme can successfully ac-
count for solubility trends in metals, as con-
trasted with Darken and Gurry’s' scheme, it does
not appear to be completely adequate for forming a
description of solubility trends. Miedema plots
are quite useful for defining domains of extensive
solubilities; however, the size of the domains is
not explicable solely in terms of Miedema’s coor-
dinates. To define trends in domain sizes, or in
essence the potency of the solvent, we must include
directional forces or anisotropic coordinates. We,
therefore, introduced an index C’/B, where C’ is
an elastic constant and B is a bulk modulus for the
host. We found that this coordinate was capable of
accurately describing the nearest-neighbor inter-
atomic forces. Further, it correctly accounted for
the nonmonotic trends in the potency of the solvent
in the Be-Mg-Zn-Cd series. This nonmonotic be-
havior is completely inexplicable in terms of Fer-
mi-surface variations as those proposed to account
for several properties of hep metals including ¢/a
ratios.

In addition to a description of intermetallic al-
loys, our studies have consequence to pseudopo-
tential theory. While psetdopotential calculations,
in general, have been most useful in accounting for
the electronic structure of solids, they have ex-
hibited a notable lack of success for impurities or
defects in metals. For example, a recent pseudo-
potential calculation for the heat of formation of
vacancies in Al yielded a negative (unphysical) val-



ue.?? This calculation, and most such calculations,
have employed a “soft”-core pseudopotential. Our
studies of nonlocal hard-core pseudopotentials de-
vised by Bloch and Simons,' "7 along with the pres-
ent investigation, suggest that these potentials may
provide a superior approach. As we have noted,
short-range forces play a significant role in deter-
mining the properties of defects in alloys. This
suggests the core regions of the potential are more
significant for the problem at hand. In this con-
text, the hard-core potential seems more physical
(especially since we have found these potentials
capable of structural separations). This idea is
reinforced by the fact that trends in Miedema’s ¢*
coordinate may be accurately defined in terms of
the Bloch-Simons potential.®~7

Finally we note that the results of Kaufmann’s
experiments and our studies may have important
ramifications with respect to other studies of de-
fects in metals, e.g., the phenomena of fast inter-
stitial diffusion.”*® A classic example of a fast dif-
fuser is Au in a Pb host. In this system Au dif-
fuses several orders of magnitude faster than the
self diffusion of Pb. A crucial question in the fast
interstitial diffusion system as the nature of the
diffusion mechanism. There is extensive indirect
evidence that suggests fast diffusers are not sub-
stitutional. Experiments such as Kaufmann’s may
illuminate the perferred impurity geometry and
conform the interstial nature of fast diffusers. In
addition, the coordinates that we have used to dis-
tinguish site differences (Fig. 3) may be useful to
systematize the activation energies of fast inter-
stials.
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APPENDIX

As the reader has no doubt noted, we must have
accurate coordinates to achieve the separation ob-
tained in Fig. 3 between the s, ¢, and o domains.
In particular, the region of p metals (e.g., In, Cd,
Zn, Al, Ga, Sn, etc.) requires a very delicate de-
termination of the coordinates. Indeed, our origin-
al analysis using Eq. (2) failed to obtain an exact
separation, and we found it necessary to alter
(very slightly) the Miedema coordinates for a few
elements: Al, Cd, Ca, In, and Ga to obtain an ex-
act separation, With the possible exception of In,
the shifting of Miedema’s original coordinates did
not damage the quality of his fits with respect to
the phase diagrams. The modified coordinates are
listed in Table II, and the phase-diagram data are
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summarized in Table III,

To review the motivation for obtaining the new
coordinates we shall briefly discuss each case.
With respect to Al, Miedema used values of ¢*
=4.20 and #¥$=1.39. These values placed Al fairly
deep within the substitutional domain. However,
Al is known not to be substitutional, but rather
interstitial. Whether Al is an octahedral or tetra-
hedral interstitial is unknown.?® If we wish our
plot in Fig. 3 to reflect this fact we should move Al
toward the domain boundary (between s and ¢). If
we alter n¥2 to 1.34 we accomplish this, but we do
not seriously affect Miedema’s fit for Al alloys.
Miedema’s original coordinates make four errors:
Al-T1, Al-Si, Al-Ge, and Al-Sb. (In all these
cases we expect structural energy terms to invali-
date Miedema’s isotropic approach). Only two pos-
sible errors are introduced with n¥3=1.34: Al-Ga
and Al-Zn. In either case, the phase-diagram data
do not yield an unequivocal sign for the heat of
formation.

In the case of Ga, Miedema uses nearly identical
coordinates for both Ga and Zn. This seems un-
physical;, furthermore, it places Ga in the ¢ region
while it is observed to be 0. If we move Ga as Al,
which would seem to follow by analogy, we place
Ga in the octahedral region and actually improve
the phase-diagram data. Miedema’s original co-
ordinates make six errors (Table III); however,
our modified coordinates make five errors.

Similar arguments may be made for Cd and In.
In these cases, they were originally located in the
o domian, but experimentally they should be placed
in the ¢ region. Thus we attempted a larger value
for nY¢ on both cases. For Ce, Miedema’s fit was
unhurt. In both the original and modified coor-
dinates, six errors were made (Table III). Unfor-
tunately, in the case of In we do not improve Mie-
dema’s fit, however, the modified coordinates are
only slightly worse. Originally, Miedema’s coor-
dinates for In make two errors (In-Ge and In-Bi).
Our modified coordinates make four errors. Inter-

TABLE II. Modified Miedema coordinates as suggested
from the Be implant data. These coordinates, with the
possible exception of In, will not affect the quality of
Miedema’s fits, and are compatible with the domains in
Fig. 3.

Original Modified
Element o* /3 o* nt/3
Al 4.20 1.39 4.20 1.34
Ga 4,10 1,31 4.10 1.24
Cd 4.05 1.24 4.05 1.26
In 3.90 1.17 3.86 1.22
Ca 2,55 0.91 2.55 0.90
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TABLE III. Signs for the heats of formation for binary intermetallic-alloy systems
involving Al, Cd, In, and Ga. The signs given are from experiment (E), and as calculated
from Eq. (1) using Miedema’s original coordinates (O) and our modified coordinates (M)
from Table @I, If the heat of formation is positive we denote it by a (+) sign. If it is negative,
then we use a (-) sign. In a few cases the value is unknown, but thought to be small but
positive (0O*) or small but negative (0~). Undetermined heats of formation are medicated by
an (X). For rules in determinining the signs from phase diagrams see Ref. 1 and the text.

Al Ga In Cd
Element (E) (0) (M) (E) (0) W) (E) () W) (E) (0) (M)

Sc - - - - - - - -
Ti - - - - - -
v - - - - - -
Cr - - - - - -
Mn - - - - - -
Fe - - - - - -
Co - - - - - - - - -
Ni - - - - - - - - -
Y - - - - - -
Zr - - - - - -
Nb - - - - _ -
Mo - - - - -
Te - - - - - -
Ru - - - - -
Rh - - - - - - -
Pd . - - - - - -
La - - -
Hf - - - - - -
Ta - - -
w - - -
Re - - -
Os - - -
Ir - - -
Pt - - - - - - -
Th - - - - - - - - - - - -

U - - - - - - - - - - - _

o+
1+ 1
+ o+
o+
1+

Lo X 1

I !

L ) !

PR MM [ I I i
T N TN B SR !

! ! Lo ' i
BB M b M I I T S
R !
oAk ' RN '

I
1

1
1
1
1
1

Pu - - - - - - - - - - - -
Cu - - - - - - - - - - - -
Ag - - - -
Au - -
Li -
Na +
K +
Rb +

+

+

1
I
i
I
1
1
1
1

t
1
1
1
1
1
1
I
1
1

I
1
1
1
1
1

Cs
Be
Mg - -
Ca - -
Sr -

Ba -

Zn ot
Cd +

Hg
Al
Ga
In

Tl
Si

Ge
Sn
Pb
As
Sb

L S
1

+ o+ o+

+ o+ o+
1

+ 10

+ o+
1

[
[ |
[
[}
[
11
[
[
[}
[}

1
1

'

1

1

+ 1
+ + 11
1

+ I
I

1

+

+
L+ + + +
1 +
> S+ + +

+ + + +
+ + + + 1
o 4+ o
[ +
+ +
+ +

+
+oF kot
+ o+t o+ o+

1
1
+
f
i
1
1

+

+ + + + + + O
+ + 1
+ + 1
+ + + + + 2
+ 4+ 0+
+ + + +
(=1 (=]
t +
1 +
! +
+ 9+ + + O+ 4+

+

(=]
1

i

I

+

+

[
+ 1
+ 1
(]
11
1

[
(]
[
[
(]
[

et
+
+
+
+
1
1
4
+




estingly enough, the additional errors arise from
In-Rb and In-Cs; Miedema’s Cd coordinates also
fail for these alloys.

Finally, 'with respect to Ca we suggest a slightly
smaller value of n%¢ (Table II). We do not tabulate
the new signs in Table III, because only one sign
change arises from the original to modified case.
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The sign of Ca~Ru changes from (~) to (+). No
experimental determination has been made for this
alloy system. We propose the smaller value of

n‘“{s" to place Ca with the other alkali earths that are
found to be in the 0 domain. In general, the reader
should note that the small shifts shown in Table II

are similar for Al and Ga, and for Cd and In.
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