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We establish contact between two stress-assisted diffusion theories. The first theory is formal

and has been developed b'y the author by a consistent use of the principles of modern continu-

um mechanics. The second theory is microscopic, based on solid-state physics argumerits and

has been published in a recent issue of Phys. Rev. B by Varotsos et al. We show that both

theories are compatible within the low-pressure regime. As a result of this compatibility the

phenomenological coefficients of the formal theory can be explicitly calculated in terms of mi-

croscopic parameters. Furthermore, an interesting experimental result which cannot be

modeled within the formal theory is now adequately explained. The present findings seen' to

provide additional supporting evidence to the validity of the Varotsos et al. proposition.

I. INTRODUCTION

In this short communication we report an interest-
ing observation regarding the relationship between
two different stress-assisted diffusion theories. The
first theory is purely phenomenological and was
derived by Aifantis et al. ' by adopting the approach
of modern continuum mechanics. The second theory
was established by Varotsos et al. by using solid-
state physics arguments. The first theory is inherent-
ly linear modeling, in particular, diffusion in materi-
als elastically stressed and, therefore, it is applicable
to many interesting engineering applications. The
second theory is nonlinear and it claims to model dif-
fusion processes in materials subjected to extremely
high hydrostatic pressures.

It has been shown that the linear theory is in ac-
cordance with experimental data for certain diffusion
systems and when the applied stresses are relatively
low. The relevant plots are given in a previous pa-
per. ' Two comments are important to be made
here'3: (i) the value of the various phenomenologi-
cal coefficients can only be determined by the experi-
mental data; (ii) certain plots show a strong depen-
dence on temperature, a fact which cannot be justi-
fied by considering the small temperature dependence
of the elastic constants.

The above two questions are reconsidered here
within the nonlinear theory proposed by Varotsos
et al. 4 In particular, we show how a linearization
procedure establishes compatibility for both theories
in the low-pressure regime. The compatibility re-
quirement yields an explicit calculation of an impor-
tant phenomenological constant in terms of micros-
copic parameters. The calculation agrees with the ex-
perimental data, Furthermore, the above mentioned

temperature dependence is sufficiently explained. In
this connection, the present paper can be thought of
as supplement to the analysis contained in a paper by
Varotsos, Ludwig, and Alexopoulos.

II. CONTINUUM MECHANICS APPROACH

By employing arguments of modern continuum
mechanics it has been recently shown' ' that diffu-
sion in a solid elastically stressed is described by the
equation

~P ~ 2= D "72p —M'7a- ~ '7p,
Bt

D" =D +N(r

(la)

(1b)

where A is a new constant. Equation (2) suggests
that for small stresses the ratio (D'/D —1)/cr must
be a constant. This fact has been experimentally con-
firmed for certain systems. ' It has also been experi-

where p is the concentration of the diffusing species,
D the diffusion coefficient of the unstressed solid, cr

is the trace of the stress tensor, and M and N are
phenomenological constants. Certain microscopic ar-
guments have been invoked' to relate the constant
M to diffusivity D, the activation volume v, the
Boltzmann's constant k, and the absolute tempera-
ture T. However, no such theory has been developed
for the constant N whose determination is, thus, ex-
clusively left to experiment.

Equation (1b) can be rearranged to read

1

D' N—1 /(r= —=A
D D
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mentally observed that the constant A varies with
temperature, in particular, it decreases as temperature
increases. A theoretical calculation of the constant A

and a justification of its dependence on the tempera-
ture is not possible within the framework of -continu-

urn mechanics which is based on purely phenomeno-

logical arguments. Below we examine the validity of
Eq. (2) within a physical model proposed by Varot-

sos, Ludwig, and Alexopoulos. We show that this

model is consistent with Eq. (2) in the low-pressure

regime. In addition, we show that the model pro-

vides a theoretical calculation for the constant A and

explains its temperature variation, in agreement with

the experimental data.

given6 by

ho
c =

8p Ao
(8)

DQ

D
I /P

ho 0 dB I 1

kT Op dP 80
(9)

By recalling that P = —
3

cr, we observe that Eq. (9)1

is compatible with Eq. (2). This compatibility is esta-
blished by taking

where ho is the activation enthalpy at absolute zero
and 80 and 00 are the corresponding values of 8 and

0 at absolute zero. Combining Eqs. (6) —(8) we

obtain

III. SOLID-STATE PH YSICS APPROACH
ho 0 d8

1
1"

3kT A, dp
' 8. (10)

It is well known from statistical thermodynamics
that the diffusion coefficient D is related to the
Gibb's activation energy g by

D (P) = Do exp- g(P)
kT

(3)

where P denotes the applied hydrostatic pressure, k
is Boltzmann's constant, T is the absolute ternpera-

ture, and the pre-exponential term can be considered
as constant. By following the terminology of'Sec. II
we have

D =—D(0) =Doexp- g (0)
kT

(4)

For small pressures we expand Eq. (3) in Taylor's

series to obtain

D(P) =D(0) +D'(0)P+
2
D"(0)P'+, (5)

D ~gP
kT 9P

(6)

The value of dg/BP can be obtained from the
Varotsos-Ludwig-Alexopoulos model as

9g d8
9P dP

where 8 is the isothermal bulk modulus, 0 the mean
volume per atom, and c is a known constant indepen-
dent of temperature and pressure. The value of c is

where a prime denotes-differentiation with respect to
P. We neglect the second-order term and, in confor-
mity with the terminology of Sec. II, we denote by D'
the linear variation of D(P). We also use definition

(4) and Eq. (3) to compute D'(0). Then, Eq. (5)
reads

which provides a theoretical calculation of the con-
stant A in terms of known microscopic parameters.
In addition, expression (10) suggests that A is de-

creasing with temperature, roughly as —I/T, in

agreement with the experimental data. To illustrate

further the above observation we searched in the
literature ' specific values for Cu, i.e.,

dB/dP = 5.65 (at room temperature),

hp =2.2 eV, 00=11.66 x 10 cm

0/00 ——1.08, 80 ——1.45 x 10'2 erg/cm3

These values, in conjunction with Eq. (10), predict

3 =3 X 10 8—'K1

cm'

Ho~ever, the value of A should be about 300/o larger
than the above due to the increase of dB/dP with
temperature (we used the value of dB/dP in room
temperature since there are no relevant experimental
values for higher temperatures). Thus, the value that
A predicted from Eq. (10) is comparable with this
predicted from experiment.

IV. CONCLUSION

We have shown that formal continuum mechanics
theories can be substantiated by invoking solid-state
physics arguments. In particular, we have shown that
the Varotsos-Ludwig-Alexopoulos physical model is

compatible with the author's formal theory in the
low-pressure regime. Also, the parameter A which in
the formal theory is an experimental constant was

found here to depend explicitly on the bulk proper-
ties {0,00,80,dB/dPI, the diffusion process
through the value of ho, and the inverse of absolute
temperature I / T.
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