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The theory of the orientational epitaxy phase is developed for an anharmonic solid monolayer
within the framework of a self-consistent phonon approximation. This theory shows how the
adatom-adatom coupling constants and adatom-substrate coupling constants in the theory of No-

vaco and McTague are modified by renormalization due to the zero-point motion and the ther-

mal vibration of the adatoms. Some general conclusions about the nature of orientational epi-

taxy are presented and numerical results are given for argon adsorbed on basal plane graphite.

These results show that while many calculated properties of the argon solid have important

corrections due to the anharmonic nature of the system, the orientation angle versus lattice con-

stant curve is not affected to any significant degree.

I. INTRODUCTION

The structure of a solid monolayer (or single layer
"crystal" ) in the field of a solid substrate surface is an
important problem which has received much atten-
tion over many years. ' The interest in this problem
is due, in part, to the general interest in the study of
gases adsorbed on solid surfaces. ' The study of the
monolayer problem is also relevant to the study of
the interface between two crystalline solids' and to
the study of how dimensionality affects phase transi-
tions. ' Generally, the monolayer and the substrate
lattices are incommensurate, that is, they have no
common unit cell. The response of each lattice to
the perturbing field of the other generates a structure
within each lattice which is incommensurate with
both parent lattices. The physics of these coupled lat-

tices has, naturally, much in common with other in-

commensurate structures such as charge-density
waves in metals and spin-density waves in magnetic
materials. '

Recent theoretical and experimental work on the
adsorption of rare-gas monolayers on graphite has
demonstrated the existence of a new phase which ex-
hibits a rather striking phenomenon called orienta-
tional epitaxy. " This effect is the rotational locking
of the monolayer to the substrate surface even when
these lattices are incommensurate. It is generated by
the existence of static mass-density waves (MDWs)
in the monolayer, these MD%s being "frozen" dis-
placement waves caused by the external periodic field
of the substrate. Assuming this field is incommen-
surate with the monolayer lattice, the angle at which
the two lattices are locked is generally a nonsym-
metry angle because it depends upon the lattice
dynamics of the monolayer as well as the degree of

misfit between the two lattices. The recently pub-
lished theory of orientational epitaxy used both the
linear response and harmonic approximations to in-

vestigate the physics of this new phase. It is shown
here how these limitations can be removed while still

retaining the picture of noninteracting phonons.
After discussing the general approach, the equations
which describe the "large" oscillation and "small" dis-
tortion limit are derived as a special case. The rela-
tion of the large distortion limit to the generation of
higher harmonic distortions and mixed phonon states
is discussed briefly. The general approach is to
search for the "best" phonon representation for a
monolayer interacting with a fixed substrate. Even in

the large distortion limit, this procedure would be a
logical first step in the construction of a general
theory. The present theory is then a self-consistent
phonon'~ calculation (SCP) now with both the
adatom-adatom coupling constants and the adatom-
substrate coupling constants renormalized by the os-
cillations of the atoms about their equilibrium posi-
tions. Within the small distortion limit, the results
quoted here are formally the same as the earlier work
of Novaco and McTague except here all coupling
constants are renormalized.

A commonly used model for the monolayer is the
two-dimensional approximation where the atoms are
restricted to a plane arid the substrate is replaced by
an external field which acts in this space. This model
has most of the important physics of the actual prob-
lem9 and so we use it here. The general theory is

developed at finite temperatures and without any re-
striction in the dimensionality of the system. How
the two-dimensional nature of the monolayer model
and finite temperature aspects of the calculation are
to be reconciled with Mermin's theorem' on the ab-
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sence of crystalline long-range order in two dimen-
sions will be discussed after the results are presented.

The numerical results for argon adsorbed on graph-
ite show important anharmonic corrections to the lat-
tice dynamics of the argon solid due to the zero-point
motion of the atoms. There are corresponding
changes in both the intramonolayer and monolayer-
substrate energy terms. The SCP values for the am-

plitudes of the strains are about 30% smaller than the
quasiharmonic (QH) values, but the orientation angle
at fixed lattice constant differs by less than 5% from
its QH value. This small change in the orientation
angle is due to the small shift in the ratio of
transverse to longitudinal sound velocities produced
by the SCP corrections. The orientation angle has
been measured for argon on graphite, and the calcu-
lated values agree very well with the experimental
ones. "

II. SELF-CONSISTENT PHONON THEORY

The Hamiltonian of the monolayer in the presence
of a static, periodic substrate potential field is taken
to be

H=E+4+U,
A

where K is the kinetic energy, 4 is the two-body
adatom-adatom potential energy, and Uis the one-
body adatom-substrate potential energy. If RJ
represents the a component of the ideal (undistort-
ed) lattice site of the j th adatom, ui represents the
0. component of the displacement of this particle
from its ideal site, and pJ represents the o. com-
ponent of its momentum; then using the Einstein
convention for summations over components

zation 1 are introduced via the transformation

The polarization vectors eP(q) and the frequencies
col(q) are to be considered variational parameters
which are determined by minimizing an approximate
form of the Helmholtz free energy F subject to the
eP(q) satisfying the usual orthonormal constants. If
the (H), where (.. .) is the ensemble average, were
calculated by taking the diagonal part of H in the
above phonon basis set and this were used in the cal-
culation of F, then the standard equations for self-
consistent phonon theory would be reproduced upon
the minimization of F.' However, such a procedure
guarantees that (uj ) =0, and this condition is incon-
sistent with U WO. A nonzero value of (u& ) implies
a nonzero value of both (a t, ) and (i-, ,). This ef-
fect can be incorporated into a new set of phonon
modes through the displaced oscillator transformation
on the a-, and a-, operators. This canonical
transformation to new phonon operators n-, and

Ag /
is given by the equations

and

1/2a~i=N ( i+a (4a)

DJ (i2 $ 6P (q ) exp (i q Ki)N'/2
I

1/2

(a&, +a ~~,), (3a)
2M')((q)

0

pj I 2 X ei (q ) exp( i—q Ki)g1/2

1/2
M ta)((q)

(~~t, —~~,) . (3b)

K = Xpf p~
J

jg(R -R ) if (ua u )
V~e

' J e

(2a)

(2b)

a-, =N ~ +I1/2 (4b)

where f«and g-, are c numbers determined by the
conditions

A jG ~ R /Gau a
U=XXUoe Je

J G

(2c)

where M is the mass of the adatom, V, is the Fourier
transform of the two-body potential, and UG is the
Fourier coefficient of the one-body potential associat-
ed with the (substrate lattice) reciprocal lattice vector
G. The quantity y& is equal to one for i W j and

equal to zero for i =j. The symbol X&represents
the sum over all values of q in the two-dimensional
space. This is to be distinguished from X&(no tilde)
which will represent the sum over all q in the first
Brillouin zone of the undistorted solid.

The usual creation and destruction operators a&t,
and a &, for phonons with momentum p and polari-

( g)=( —,, )=0
and by the minimization of the free energy. The new
phonon operators'n-, and n-, describe the oscilla-
tion of each adatom about its statically displaced
equilibrium point R& + (u& ). These new operators
are related to Bu& =

u&
—

(0& ) by the same transfor-
mation which relates the old phonon operators to uJ .
The (H) is now calculated by taking the diagonal ele-
ments in the a-basis set. These new phonon states .

are then treated as a set of noninteracting modes with
S, the entropy, being the standard boson functional
of

n(( p ) = (a~t,a~,)

(see Ref. 15) the average occupation number of the
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(p, i) mode. The free energy F = (H) —TS is now a
functional of the quantities

] /2~a, (q)"g=' X'I (q) (5b)

&I (p). ~i(p). (p, (.

and n, (p). In calculating (H), the well-known pro-
perty of the harmonic oscillator wave functions is
used to replace the average of the exponential by the
exponential of averages. '

The variational calculation is carried out in a
straightforward although somewhat tedious fashion.
%'e begin by defining order parameters u & and v&
for the new phase. These order parameters are given
by + —' X fool( q) [nl( q) + —', ]

g I

(6)

The u & and v- are just the Fourier amplitudes as-

sociated with (u& ) and (p~ ) respectively, as can easi-
ly be seen by comparing Eqs. (5) to Eqs. (4) and Eqs.
(3). It is convenient to carry out the variation of the
free energy with respect to the u & and v& instead of
the (&, and g&, . The (K) is found to be given by

(K) = $ ~( (q) u~v ~sais(q)
g I

u~ = X.I (q), ((~,+ g ',)
I 2Mru( q)

(Sa) The (4) is calculated by taking the cumulant expan-
sion for (exp[iq (u; —

r1& )]) to second order. The
result is

(4) = —X ys X V~ exp[iq( (R;"—R~»)] exp( —
2

q~»qt» I,j& ) exp(iqt» (u» —u~»))
IJ i)i

where l,&~ is given by

I".» =2((5&i; 5u; ) —(5u; 5M )) =—Xe"(q)af(q) [2nl(q) +1](I—exp[iq (R; —R~ )]) (8)

The calculation of (U) is carried out in the same fashion resulting in the equations

(U) = X X Uo exp(iGR»~ )»exp(iG»(u&»)) exp( —G G&lY'&)
J G

where

lY = —, (5uj 5uj ) = Xel (q)e, (q) [n, (q)+ —,]
1 ~ p 1 ~ ~ P A ~ 1

M~, (q)

Minimization of I' with respect to n, (q) gives

&i(q) = [exp[Phd~(q)] —1] '

where P = (ks T) ' and ~l(q) is defined by

~( ) 5(H)
5n((q )

Carrying out the indicated variations we find

(9)

(12)

ta»(q) =
2 h~i(q) +

2 ei (q)D s(q)ei (q)' ~l(q)

We have defined the dynamical matrix D ~(q) =Dt s + D2~ (q)

(13)

and

DP& =—X—g GGaUoexP—( GG'W»)ex»—P(iG(uz»»)) exP(iGR »)J»
N J M G

(14)

D2&(q) = Xy~X qt qf'v~ exp[—iqt»(R~ —RP)]exp(iq t»(u;
—» u~»)) exp( ——qt»q, 'r»')

NM

x [I —exp[iq»(R, » RJ»)]} . —(15)
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Next the variation with respect to v& is carried out. It is immediately seen that v-=0 minimizes F, which

means f&, =)~,. The variation of F with respect to col(q) gives

u)f(q) =aI (q)D &a, (q) (16)

and the miinimization of F with respect to a set of orthonormal eP(q) gives

D ~(q)ala(q) =~i2(q)ai (q) (17)

Comparison of Eq. (13) with Eq. (17) shows rui(q) =col(q).
At this point if u- were set to zero, we would recover the standard SCP equations. The equations for the ac-

tual values are obtained by varying F with respect to u&. The entropy and kinetic energy are independent of u&,
so we need only vary the potential-energy terms with respect to the parameter. We have after some manipulation

8(4) i= —X y J X V~ qt exp[iq,' (R;" R&")] e—xp(iq ( (u;" up)) —exp( — q,"q, I-'i ) [exp(iq"R, "r) exp(iq—"RJ")]
uq

1

(18)

and

8 U
. =i IX G UG exp(iG"Ri")exp(iG" (ui")) exp( G"Gs W"—s)exp(iqrRi )

u~ J G

(19)

These last two equations are quite complex and some approximation scheme is necessary in obtaining a solu-
tion. In Sec. III we examine these equations in the case that the u& are small, that is we examine the small dis-

tortion limit of the exact equations. This limit is valid for argon on graphite over a reasonable range of lattice
constants.

III. LINEAR RESPONSE APPROXIMATION

The general equations for the strain amplitudes are significantly simplified when the strains are small. This
condition is satisfied by rare-gas monolayers adsorbed on graphite except for those cases where the lattice con-

0
stant is very close to the commensurate value of 4.26 A. We assume that (uj ) (( a, where a is the lattice con-
stant of the undistorted solid and expand the exp(iG (ui )) term in a power series. Starting with Eq. (18), we ig-
nore all terms which are higher order than linear in the (u& ). The term which is independent of (uj ) can be
shown to be zero so only the linear term is needed. If we first define

Dos�

(q) to be the dynamical matrix in the
absence of the strains with

Do'(q) =
N~ Xys $( qAPV&—,)exp[iqt" (R;" R&')]ex—p[ , qpq, '—I,,"'] (1 —cos[q (R, —R,)]},

lII

(20)

Then we find that to first order in the u~,

) = NMDO & (q )u &ue
(21)

In Eq. (19), the term which is independent of u& is

not zero, and so we retain only this term. Thus we
have to first order in the U G

This term is linear in the UG for small u ~. If
wi(q) and ei (q) are the frequencies and polarization
vectors determined by the diagonalization of Daa(q)
then

( ) =IN~KG. U-e-'""w"'8-
VG+q (23)

Setting the sum of 8(@)jgu& and 5(U)/Su& equal
to zero we find after some manipulation

MN Xei (q) wP(q)e& (q)u . (22)
Su@ I

(u& ) = Xu-sin[6 (R& —Z)]
G

(24)
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where

- a (G) U-e
M.'(G) e,'(0) Ga . (25)

(@)= —,
'

X y,q X V, , exp [iq P (R —R~') )
J e&

x exp( ——,qPq,'r,i&')
1

(26)

+ , NM X u-Daau—

Equations (24) and (25) have been written in the
periodic Brillouin-zone scheme. The quantities u

G
and U G are the "moduli" of the complex quantities
u-and UG with

u-= iu-—exp( —iG Z)G

and

U o = U o exp( i 6 Z—)

Both u
G and UG are real with u

G being antisym-
metric in 6 and U- being symmetric. The "phase" 4
is the displacement between a center of symmetry of
the substrate and the origin (which is a center of
symmetry of the undistorted lattice). 9 Equations (24)
and (25) are essentially those of Novaco and
McTague with the exception that both adatom-
adatom and adatom-substrate coupling constants are
now renormalized by the motion of the adatom. For
the adatom-substrate coupling, this renormalization
appears through the

exp( ——,G "Ga (Su; gu; ) )

term in Eq. (25).
The evaluation of the (H) is relatively straightfor-

ward in the small distortion limit. Expanding the
exp(iq, (u&")) term in Eq. (7) as a power series in the
u- and retaining the first three terms gives the ener-

gy to second order in the UG. Since the linear term
is zero due to symmetry we find

bution associated with the strains in the monolayer
generated by the MDWs. The first term on the right
in Eq. (27) is an energy gain associated with the un-
distorted solid and it is nonzero only for commen-
surate structures. The second term is the energy gain
associated with the MDWs. Both terms associated
with the MDWs can be combined to give

FMow = ——,N g Uo exp( —G"G~W"a)G&uG . (28)
G

For the incommensurate structure this is the only
energy term associated with the substrate field. This
term is independent of Z showing that (in this ap-
proximation) the energy of the system is invariant to
translations of the monolayer relative to the sub-
strate.

The physics of the orientational epitaxy phase is
the same here as in the or'iginal calculation of Novaco
and McTague. We outline here the reasons for the
alignment of the rnonolayer crystal axes away from
those of the substrate and refer the reader to Ref. 9
for more complete details. The misorientation of the
monolayer and substrate is caused by the competition
between the [w, (q)] ' and the G el (q) terms in Eq.
(25). The MDW energy at fixed angle is, as can be
seen from Eqs. (25) and (28), proportional to the
product of the first term and the square of the
second, this product then summed over the mode in-
dex t. Those orientations with large strains are asso-
ciated with large energy shifts (although the two
functions do not peak at exactly the same angle).
The [w~'(q)] ' term favors small q orientations thus
tending to align the crystal axes. However, when the
crystal axes are exactly aligned, the second term is
identically zero for the transverse branch. Since the
transverse branch is softer [smaller w(q)] it will be
advantageous for the system to rotate away from the
symmetry direction if the transverse branch is low

enough. This is the case for the rare-gas on graphite
systems except for those lattice constants very close
to the registered state value. Only for krypton is this
state important, the other systems tending to find
equilibrium away from the registered state.

Following the same procedure for the (U), but re-
taining only the first two terms in the expansion of
the exponential we find to second order in UG that

(U) = N X4 (&) U o exp( —G"G' W~')

I

+iN X Uoexp( G"GaWra)G~u ~- . —
G

(27)

The energy term of the right-hand side of Eq. (26)
which is independent of UG is just the usual
potential-energy term associated with the motion of
the atom. The second term is positive energy contri-

IV. LATTICE DYNAMICS AND ORIENTATIONAL
EPITAXY OF ARGON

The argon rnonolayer on a graphite substrate has
been studied experimentally by both neutron scatter-
ing" and low-energy electron diffraction (LEED)
techniques. " The neutron experiments have pro-
duced a wealth of information on the "average" struc-
ture of the monolayer and its lattice dynamics. The
LEED study shows both the structure of the argon
and its orientation relative to the graphite surface cry-
stal axes. Both techniques had associated experimen-
tal difficulties which make the observation of struc-
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ture factor satellite peaks difficult to observe. These
satellites might be observable in an x-ray experi-
ment. "The quasiharmonic (QH) predictions of No-
vaco and McTague agree quite well with experimental
results, but the SCP corrections to the lattice dynam-
ics of this system are not negligible. Thus we choose
this important and well characterized system as the
one to study first within the SCP approximation.

The initial step in the SCP calculation is the gen-
eration, at various lattice constants, of solutions to
the SCP equations in zero external field. This re-
quires the iteration of Eqs. (8) and (20) along with
the eigenvalue equation for Do~(q). We assume
that the argon-argon interaction on the graphite sur-
face is well approximated by their interaction in vacu-
um so that we may choose one of the standard
Lennard-Jones (12-6) interactions without serious er-
ror. The ~p and o. values, taken from Ref. 19, are
listed in Table I. Since the Lennard-Jones interaction
does not have a Fourier transform, Eq. (20) must be
rewritten in real space and the real-space integration
truncated at very small interatomic distances. This
transformation from momentum space to real space

TABLE I. Parameters for the argon-argon and argon-

graphite interactions. The argon-argon jnteraction is a
Lennard-Jones (12- 6) potential with minimum energy ep

and "hard-core" radius of o-. The argon-graphite interaction

is represented by the six (equal) Fourier coefficients associ-

ated with the 6 vectors generated by symmetry from

Gi =4m/(3) ' a.

argon-argon argon-graphite

cr =3.40 A

ep =119 K

U- =—4.7 K
Gi

Dos(a) = Xysety [1 —cos[q (Rt —Rt))j,NM, i
(29)

we find

is quite standard' and we only quote the final results.

Defining the coupling constants $& via the equation

@g = Jt du" I du~~ a(Rt —R;+u) exp[ '1Zisu—&u—s]
2rr(det 1')'

(30a)

80 with v & being the second derivative of the real-space
potential v(r) and given by

70 aP
u~ = v(r)

9r Br&
(30b)

60

50

30

The matrix F i is the inverse of I' defined by Eq.
(8). The third-nearest-neighbor SCP spectrum for

0
argon at a lattice constant of 3.86 A is shown in Fig.
1. The phonon frequencies in the SCP approxima-
tion are about 15% higher than in the corresponding
QH calculation. This can be readily seen upon exa-
mining Table II which lists leo for zone-boundary
phonons at a =-3.82 and 3.86 A in both the SCP and

20
TABLE II. Zone-boundary phonon frequencies for both

SCP and QH calculations.

IO

0
M

FIG. 1. The phonon spectrum along high-symmetry direc-
tions in the Brillouin zone. The notation of Ref. 17 is used.
The calculation was done within the SCP approximation at a

O

lattice parameter of 3.86 A.

a
(A)

QH:3.82

I gH:
3 86 SCP:

s~~(M)
(meV)

5.90
6,74

5.28
6.14

m, (M)
(meV)

3.35
3.77

3.04
3.46

fo)L (K) = Ao)~ (K)
(meV)

5.11
5.81

4.59
5.30
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QH schemes. The neutron scattering experiments for
0

a =3.86 A agree quite well with a QH calculation us-

ing coupling constants calculated for the same
Lennard-Jones interaction we use but with a =3.82
A." Note from Table II that although the SCP
corrections are large, the SCP values for hem at 3.86 A

0
are quite close to the QH values at 3.82 A. Given
the constraints and uncertainties of the neutron
scattering results, our SCP phonon frequencies at

0
3.86 A are quite consistent with the neutron data.
Both the QH and SCP third-nearest-neighbor calcula-

0
tions predict 3.86 A to be the zero-pressure lattice
parameter at zero temperature. This is in excellent
agreement with the neutron studies. ' It would seem
then that any effects on the argon-argon interaction
due to the presence of the graphite substrate are
small enough that we may neglect them for the pur-
poses of this calculation. We might add that uncer-
tainties in the Lerinard-Jones parameters for the
argon-argon interaction in vacuum also are small

enough that we may neglect their effe'cts. The values
of U G were taken from Steele's paper ' on the in-

teraction of rare-gaS atoms with graphite and are list-
ed in Table I. Only the lowest six coefficients were
used, these six are equal to each other because of the
six fold symmetry of the graphite surface basal plane.
The orientation of the argon is independent of U 0 if

only these lowest terms are used. The orientation
also appears to be relatively insensitive to the inclu-
sion or exclusion of realistic estimates for higher U G

terms.
Once the phonon frequencies and polarization vec-

tors have been calculated at some chosen value of a,
the energy associated with the MDWs can be calcu-
lated as a function of rotation angle 8, the angle
between the argon crystal axes and that of the graph-
ite. We use the same angle as that in Ref. 9. This

0
energy is shown in Fig. 2 at a =3.86 A for both the
QH and SCP calculations. Note that the SCP curve
has much the same shape as the QH curve, but the
magnitude of EMDw is reduced by about 40%. The
reduction in EMDw reflects a corresponding decrease
in u & and is due to both the increase in the phonon

frequencies and the renormalization of the U G due
to the SCP corrections.

The energy of the system in the SCP appr'oxima-
tion can now be calculated as a function of a. The
($) is calculated by transforming the first term in Eq.
(26) to real-space. The (U) is given by Eq. (27).
Figure 3 shows both Ep (the zero-field energy) and

Er = (Ep+ EMow) as a function of a for both QH and
SCP calculations. Note that the zero-pressure lattice

-540

-O. l

-0.2

-0.3

-0.4

-0.5

A
& -0.6

COg -550-
LLI

R
Lal

-0.7

-0.8

-0.9

-I.o

I I

IO' 20
ROTATION ANGLE 8

504
-560 I I I I

3 75 5.80 5.85 3.90 3.95 4.0
LATTICE CONSTANT (8)

FIG. 2. The mass-density wave contribution to the energy
plotted as a function of the angle 8. The curves show both
the SCP calculation and the QH calculation at a lattice
parameter of 3.86 A.

FIG. 3. The zero-strain energy Fo and the total energy

FT plotted as a function of the lattice parameter. Both SCP
an/ QH calculations are shown.
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40

$0-

z
O 20-
I-
I-
O
lK

l
0

03.75 3.80 3.8S 3.90 3.95 4.0
LATTtCE CONSTANT (8)

FIG. 4. The equilibrium orientation angle 8 as a function
of lattice parameter for both SCP and QH calculations. The
shaded region indicates where the experimental values of
Ref. 11 lie.

0
constant is about 3.86 A in both cases. This value is
determined mostly by Eo, EMpw having only a very
small effect. The zero-point energy contribution to
Eo is responsible for increase in A beyond its classical
value of about 3.82 A.

Figure 4 shows the rotation angle 8 as a function
of lattice parameter for both QH and SCP calcula-
tions. Note that the SCP corr'ection to this curve is
very small. The experimental points lie in the shaded
region. The general agreement is very good except at
the higher angles. Here, the shift of the data away
from the theoretical curve appears to be a result of
extrinsic experimental effects. " Nevertheless, there
is a systematic difference between theory and experi-
ment,

U. DISCUSSION

The SCP corrections to the phonon frequencies of
the argon monolayer at 0 K are important and are
large enough to be observable in an inelastic-
neutron-scattering experiment. The neutron study of

adsorbed argon was sensitive to the large density of
states near the zone-boundary modes. The QH cal-
culation at 3.86 A gives zone-boundary modes which
are definitely too low, while the SCP results at 3.86 A
are in good agreement with the data. Note that the
15 to 20% increase in the mode frequencies alters the
rotation angle by only 0.2'. This angle is largely
determined by the ratio of transverse to longitudinal
sound velocities and this ratio is only slightly affected
by the SCP corrections. Although finite temperature
effects would alter the mode frequencies, they are
unlikely to alter the sound velocity by any significant
factor until the system is very close to the melting
transition. Thus it is reasonable to expect the zero-
temperature SCP results to be a good estimate of the
experimental results outside the melting region. The
LEED data was taken at temperatures between 30
and 50 K while the melting of the argon layer begins
at about 50 K."

It is worthwhile, at this point, to discuss the
relevance of the Mermin theorem to the above equa-

tions when applied to two-dimensional systems at fin-

ite temperatures. It is well known that many physi-

cally important quantities are well defined even in the

presence of the long-wavelength divergences associat-
ed with this theorem. " This is certainly true for the
correlation function (Su; SCi, —56; 5&) which is used

in calculating the phonon frequencies. However, the
same is not true of the (Suj Su& ) term used to calcu-

late (trj ) since this formally diverges. This formal
divergence is, however, not a strong one (it goes as

lnN) and there are a number of considerations which

will result in a finite value of (Sti& Sti& ). The finite

size of the real system will certainly provide a natural

long-wavelength cutoff for the phonon modes result-

ing in a finite value of the average-square displace-
ment. There is also the fact that the monolayer is

adsorbed on a substrate with its own dynamics, and

the very long-wavelength phonons of the monolayer
are just the ones which are strongly coupled to the
substrate phonon modes. 24 Furthermore the orienta-
tional epitaxy phase will have (exact) transverse
"phonons" with a gap at zero q due to the removal of
the rotational symmetry from the problem. If the
substrate is now allowed to deform, it is reasonable to
believe that the only mode with zero frequency will

be that mode which corresponds to the rigid move-
ment of both the substrate and the monolayer. The
long-wavelength modes which correspond to the rela-

tive moment of each in the direction parallel to the
surface should have a gap. It is this relative move-
ment which defines the renormalized coupling con-
stant to the surface. All of the above aspects of the
problem must be considered in a full treatment of the
finite temperature properties of the orientational epi-

taxy phase in real systems, especially near an
incommensurate-commensurate phase transition.

Finally, a few remarks are in order about the terms
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which are ignored in the small distortion limit. These
missing terms show that the Uo generate {u&j

1

which then generate {u&I, etc. The q2 terms are2'
higher harmonics, thus demonstrating that as the dis-
tortions increase in amplitude, they are no longer
pure sine waves. Similar effects can be seen in a
more general treatment of the dynamical matrix. In
this case one finds that the MDWs couple phonon
modes of different q vectors so that the true excita-
tions of the system are linear combinations of pho-
non modes. This combination of mode mixing and
generation of higher harmonics must be an important
part of any phase transitions between commensurate
and incommensurate states. One would expect these
higher harmonics to place as many atoms on absorp-
tion sites as possible, this taking place at the expense
of a few atoms which will be far from registry and
separate the regions where the atoms do nearly regis-
ter. Thus, as the commensurate phase is approached
from the incommensurate phase, there appear
domains in the monolayer system with boundaries

that are; at first, very diffuse and ill defined. As the
system gets closer and closer to the phase transition,
these domains. grow in size and become better de-
fined with sharper domain boundaries. This
phenomenon is related to dislocation networks in ad-
sorbed layers and to solitons in one-dimensional con-
ductors. ' ' The problem of orientational epitaxy
and the incommensurate to commensurate phase
transition will continue to provide an exciting area of
research for the future.
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