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Scattering matrix method for surface states applied to Al(001)
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An effective high-accuracy method for finding surface states or surface resonances of a given crystal
potential, based on locating singularities of the scattering matrix of the semi-infinite crystal, is described and
illustrated by detailed calculations. The method is applied to Al(001) using a potential that is known to give
reasonable results for bulk and surface properties; the effects of various transitional potentials between bulk
and vacuum are also s)udied. A large number and a great variety of surface states are found, which can be
classified by the types and numbers of overlapping energy gaps of the bulk band structure in which they
occur. Seven types are found between the muffin-tin zero and the vacuum level, and surface states are
present in almost all the energy gaps in that energy range. For the most widely distributed types in the two-
dimensional Brillouin zone, densities of surface states in energy are found that include logarithmic
singularities. A convenient method is described for calculating such densities of states for states whose
energies are given on an arbitrary mesh of points in two dimensions.

I. INTRODUCTION

Surface states on metals have long been studied
theoretically, particularly as interest in the elec-
tronic structure of surfaces has grown. ' ' How-
ever, only recently has direct experimental obser-
vation by field emiission and angle-resolved photo-
emission techniques made'the. study of surface
states an impprtant part of surface physics. ' ' The
calculation of these states is a difficult extension
of band theory, requiring both new types of wave
function in a periodic potential and the satisfaction
of special boundary conditions at an interface and
at infinity.

The present work describes and applies an ef-
fective method for finding with high accuracy the
surface states of the true semi-infinite crystal,
and thereby avoids difficulties encountered by
methods using eigenvalues of films, such as con-
fusion-between surface states and bulk states, and
interaction behireen states on two surfaces. The
procedure used. here loc'ates surface states as
singularities of the sGattering matrix, rather than
as eigenvalues of a coefficient rgatrix for station-
ary-state equatiorig, and is a development of an
earlier formulatiori7 that found the scattering ma-
trix i' the same vray as in low--energy electron-
diffraction (I,EED) theory.

The method is apy&ied to a self-consistent bulk
potential for A.l, truncated at the (001) surface.
This potentia1 is due. to Snow, ' and is known to give
reasonable bugr, ,properties and also. to give certain
surface states in the positions observed by angle-
resolved photoemiaiion. ' A careful search through
all the. energy gaps: betmeen the muffin-tin zero and

the vacuum level (12.4 eV higher) reveals the
presence of a large number of surface states of a
great variety of types. Some seven types are iden-
tified by the nature of the gaps in which they occur,
notably in gaps at the edge or center of the Bril-
louin zone (edge gaps) or in gaps between extrema
at points inside the zone (inner gaps), or in over-
lapping gaps of various types up to as many as
three —in which case three surface states are
present in the overlapping range. A systematic
classification is given, including the region of the
two-dimensional zone in which each type occurs.
For certain surface states, which occur over sub-
stantial ranges of the Brillouin zone, a sufficient
number of states is found to permit evaluation of
the density of these surface states in energy, in-
cluding the occurrence of discontinuous jumps and
logarithmic singularities in such densities; how-
ever, the densities show differences from the den-
sities of functions which exist everywhere in the
Brillouin zone.

One interesting part of the analysis, discussed
in Sec. IV, concerns the way in which an edge-gap
type surface state is continuously transformed into
an inner-gap type as a continuous path for k, and

k„ in the surface Brillouin zone is followed. The
analysis makes use of the ~em/ line, a line of solu-
tions of the Schrodinger equation for the given bulk
periodic potential with fixed 4, and k, along which
the energy E &s real and continuous and traces out
all the bands and all the energy gaps as a function
of the rea) and imaginary parts of A, . As A, and k„
are varied, the entire real line moves in this space
with coordinates E and complex k,. When an edge
gap turps into an inner gap, two real lines first
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intersect and then pull apart with a different inter-
connection of the four segments; the surface state
is.carried with the gap. A sharp criterion is shown
to exist for the transformation from an edge-gap-
type to an inner-gap-type surface state, when the
k, values of the Bloch waves making up the surface
state abruptly change character.

In Sec. II the scattering matrix method for loca-
tion of surface states is formulated, and in Sec. III
the computational procedures are discussed, in-
cluding a particularly useful form of the singularity
condition which avoids certain numerical complica-
tions. It is shown that the method can locate reso-
nant states almost as easily as true surface states,
and a numerical example is given. Detailed results
for Al are given in Sec. IV, including the ranges in
k space for each type of surface state and the loca-
tion in the band structure for the most prevalent
types. Some states that penetrate very deeply into
the lattice are found, which would be difficult to
locate by methods based on films. Some compari-
sons of these results with the work of C aruthers,
Kleinman, and Alldredge' on Al(001} by a different
method (based on films) and a different potential
(a surface-modified pseudopotential} are made; the
two sets of results show a satisfactory general
agreement, but a few differences that could permit
discrimination between potentials.

Section V obtains and discusses the density of
surface states in energy calculated by a special
triangular-cell modification of the Gilat-Rauben-
heimer method, which is convenient for carrying
out integrations of a function defined at an arbitrary
set of points in two dimensions (hence can be ef-
ficiently improved to a desired accuracy by adding
points in the appropriate regions). The theory of
this method, as well as a simple discussion of the
Van. Hove singularities for two-dimensional distri-
butions are given in Appendices I and II. The ef-
fects of various transition potentials between bulk
and vacuum, including a simple smooth transition
based on jellium work are studied in Sec. VI. It is
concluded that shifts in the energy scale of the
surface states can be produced, but not significant
shifts in number and distribution of surface states.
This conclusion is in agreement with Forstmann, '
and indicates that the self-consistent potential for
the Al surface, when found, would probably show
similar small differences from the present calcu-
lation.

waves of given energy E and reduced component of
wave number k~ parallel to the surface of the
semi-infinite crystal, . whose amplitudes form the
components of a vector a' (Fig. 1). Let the ampli-
tudes of the reflected waves, all of which have the
same E and k~, form a vector e, which is linear-
ly related to o.' by the reflection matrix 9

For a surface state to exist, the amplitudes ~
must be finite even when e' vanishes, hence the
determinant of 9 must be singular, i.e., we seek
a solution of the homogeneous equation 8e'= 0.

The matrix R is in fact found in the solution of
the LEQD problem, since the vector o. gives the
amplitudes of the diffracted beam's from the crys-
tal surface. Th e- layer Korringa-Kohn-Rostoker
(layer KKR) method applies multiple-scattering
theory in the KKB form to a single atomic layer,
assumed periodic in the p or g-Y plane, to give the
scattering from a semi-infinite crystal. Vfe give
a brief summary of the method in order to point
out special features relevant. to the surface state
problem.

Consider the crystal to be dissected into a suc-
cession of elementary layers, each of which is
periodic in the plane of the layer, and, for con-
venience, imagine these layers separated by in-
finitesimal vacuum spaces. Then the wave function
may be expanded in plane waves in the p plane in
the form

t(r) = g 4&(s)s""~ '"~",
. (2)

E

where k~ is the component of the wave vector k in
the p plane, the K~ are the reciprocal-lattice vec-
tors of the two-dimensional lattice at z, and the
summation is over all the Kp. In the vacuum space
between layers (at s), pr(z) may be regarded as
the sum of two running waves in the +z and -z di-

II. FORMULATION OF THE SURFACE-STATE CONDITION
'

The method used to calculate surface states
makes use of the procedures developed for the
LIED problem. ' " Consider a set of incident plane

0 C)

FIG. l. Incident and reflected beams from a semi-
infinite crystal.
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rections with amplitudes e~ and e~

(3)

d'y»(z) =-k', g (z)+ Q V, , (z)y, (z),
Z g»

where

y (z) =n'(z)e" ' "+n„(z)e " ' "
where k, (K ) =(E—~kp+Kp(')' '.

Substitution of (2) into the Schrodinger equation
leads to coupled differential equations for the am-
plitudes P»(z)

the lower half. As there is no wave carrying flux
from inside the solid, we must have

(10)

where the lower half of the Bloch wave amplitude
vector y vanishes. The wave function may simi-
larly be expanded in vacuum in plane waves (the
Bloch waves of the vacuum) in the form

V»(z) = V(p, z)e ' '~ d2p
A.

p

and Az is the area of the unit cell in the p plane.
Equation (4) can be compactly written in matrix

form

dC (z )/dz =AC (z) . (6)

When (2) contains n plane waves (n-beam represen-
tation), 4 has the 2n components P», g», . . . , g»,
si(l», /sz, &p», /sz, . . . , sp»„/sz and A is a 2n&2n
matrix depending on V~ and k, . The formal solu-
tion of (6) can be written

where F is readily found from (3).
If we now introduce a matrix P,„,~ that propagates

the wave function from vacuum through the transi-
tion region between vacuum and bulk, the matching
equations expressing continuity of 4 can be writ-
ten, using (10) and (11),

(12)

Thus n =L 'Mn' and R in (1) is the known matrix
L, 'M, thus the surface-state condition is

C (z) =P(z, z, )C (z,), det(L 'M) = (13)

P(z, +I.„z,) p (z, ) =e'"~ ~g'(z, ), (8)

where I., is the thickness of the layer and k, may
be complex. Let B denote the matrix that diagonal-
izes P, so that a matrix relation holds of the form

I3 PB =A,

where A is diagonal. Then any 4 (z) can be resolved
into Bloch waves by multiplying by B ' on the left.
The rows of 8 ':are made up of the left eigenvec-
tors of P and it is convenient to order them so that
those corresponding to waves carrying flux into the
solid (toward +z) or attenuating toward +z lie in the
upper half of the B ' matrix while the others lie in

where P is the matricant of the system, "which has
been called the propagation matrix since P propa-
gates the wave function from zo to z. The particu-
lar case in which P propagates the wave function
from one side of a layer to the other side is of in-
terest here. The single-layer P matrix is simply
related to the usual scattering matrix of a layer
(the matrix relating outgoing plane waves to incom-
ing plane waves), which may be found by the layer-
KKR method. ' We assume here that P has been
found as in the LEED calculations and refer to that
work for details of the layer-KKB method.

The eigenvectors of the single-layer P matrix
give the "generalized" Bloch waves of the crystal
made up by repetition of that layer, i.e., general-
ized to include attenuating waves. If gz is a Bloch
wave (of 2n components) then

In fact, the condition det(L) =0 is sufficient to find
the surface state, but for practical reasons it is
better to calculate I. 'M, which has a simple phys-
ical interpretation as a reflection matrix. The de-
terminant of I. ',V is a well-behaved function of en-
ergy, independent of the ordering and normalization
of the eigenvectors used to form it; and hence eas-
ier to handle than det(L).

This formulation, yielding the condition (13), has
been systematically applied to the (001) face of
alumi. num.

III. COMPUTATIONAL DETAILS

In the calculation made here for Al(001) using a
standard muffin-tin potential for aluminum' and

studying energies between the muffin-tin zero and

the vacuum level, 12.4 eV higher, accurate band
structures can be found with 13 beams, i.e. , yg

= 13. At given k„,k„values, a systematic search
procedure for surface states calculates det(L 'M)

at a mesh of E values from 0 to 12.4 eV with a
typical spacing ~E =0.02 eV and tests for the
change of sign in the real and imaginary parts that
must occur at a singularity. When a change in sign
occurs, the ~E is divided by a factor, typically 10,
the sign of ~E is reversed, and a new series of
steps is made in order to locate the change of sign
again on the smaller mesh, continuing the process
until the position of the sign change is located to a
desired. precision, say aE/10'. If a plot of S/
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FIG. 2. (a) Real and imaginary parts of det(L 'I) vs
E in the neighborhood of a surface state existing in a
true gap. (b) Real and imaginary parts of det(L M) vs
E in the neighborhood of a resonance. (c) Same as (b) on
an expanded energy scaLe. S=—det(L I).l
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vs E, where 8 is the sign of the real
part of det(I. 'M), gives a smooth curve through
zero, then a pole of det(L 'M) has been found and

a surface state located.
In general, the surface state lies in an absolute

gap, i.e. , at an energy at which no propagating
Bloch function exists for the given k„and k„al-
though two exceptions are noted later. If the tran-
sition region is simply an abrupt step between the
bulk potential and the vacuum level, then det(L 'M)
is real and the above procedure is simplified. The
typical behavior of det(L 'M) is shown in Fig. 2(a)
for k„=0.4, k, =0. Note that the surface state is in

the center of the gap but its occurrence is already

indicated by the behavior of Re[det(L 'M)] near the
edges of the gap. When det(L 'M) does not have a
true pole on the real E axis, but has one at a near-
by complex E value, we have a "leaky" surface
state or a resonance. ' " Such a state has no singu-
larity for real E values, but shows the typical
resonance curves illustrated in Fig. 2(b) around
E =8.5 eV at k„=0.2, k, =0.4. This state in fact ex-'
ists in a gap, but propagating Bloch states exist at
that same energy and k„and k, values.

A difficulty in locating the surface state develops
if the singularity of det(L 'M) is very near a zero
of det(L 'M), so that a coarse mesh in E misses
the change of sign due to the singularity because of
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the double change of sign. To avoid these over-
sights, it is necessary to keep track of the zeros
of det(L 'M) as k moves in the Brillouin zone,
starting from regions in which the singularity and

the zero are well-separated.

IV. DETAILED RESULTS FOR Al

I

I

I

I

I

I

"k„

W

X

The self-consistent muffin-tin potential for Al
found by Snow' and used here has been shown to
give reasonable Fermi-surface results" and LEED
spectra xo, x4 In addition, recent work by Gartland
and Slagsvold' using angle- resolved photoemission
has found the surface state along I'X classified as
A type later in this section to be within 0.3 eV of
the position calculated here from the Snow poten-
tial. However, unlike the LEED calculations,
which add an imaginary part to the potential, no
absorption to represent inelastic scattering of
electrons need be introduced here. The electronic
states should in any case be quite sharp because
they are within a few volts of the Fermi level. The
initial calculations assumed an abrupt transition
region between bulk crystal and vacuum, i.e., a
jump in the potential of 12.4 eV at a plane midway
betweenatomic planes, the sum of the Fermi energy
(8.2 eV) and the work function of the (001) face
(4.24 +0.3 eV); in agreement with Snow, the lattice
parameter (side of the cubic cell) was taken as a
= 7.6524 a.u.

The square two-dimensional Brillouin zone for
the (001) surface of the face-centered cubic lattice

FIG. 3. Two-dimensional Brillouin zone for the (001)
face of a fcc lattice embedded in the corresponding
three-dimensional Brillouin zone.

is shown in Fig. 3 (heavy lines) embedded in the
xy projection of the three-dimensional zone. Note
that the k„', k,' axes used for the two-dimensional
zone are at 45' to the cubic k„, )h„axes. Symmetry
allows us to restrict attention to one-eighth of the
square, namely to the irreducible shaded triangle
PXM.

In Figs. 4(a)-4(c) are shown three sets of plots
of the three-dimensional band structures E(k, ) at
k„,k„values along the edges of the irreducible tri-
angle covering the relevant range of energies.
These band plots provide a valuable guide to locat-
ing and classifying the surface states, which are
marked in the energy gaps in the figures, and, in
fact, for this study 66 such plots were made on a
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Fj:G. 4. (a) Plots of the three-dimensional band structures E(k ) at k», A&values along the FM direction. (b) Plots
of the three-dimensional band structures E(k~) at F„, k values along the FX direction. (c) Plots of the three-dimen-
sional band structures E(k, ) at k„, k~ values along the XM direction.
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FIG. 5. (a) Variations of the energy of the surface states A and F (and of the corresponding band edges) along the I'M
direction. (b) Variations of the energy of the surface states A, B, and C (and of the corresponding band edges) along
the I'X direction. (c) Variations of the energy of the surface states B, C, D, E (and of the corresponding band edges)
along the XM direction.

uniform mesh over the Brillouin zone with a spac-
ing of Ak„Ak„=0.1,0.1, in terms of the reduced
coordinates

k, = k„'aW/w, k, = k„'a W/v. (14)

The continuous variation of the band edges occur-
ring in Fig. 4 and of the corresponding surface
states in the gaps belonging to these edges is shown
in Figs. 5(a)-5(c). The regions of existence and

the characterization of the seven types of surface
state (classified according to the number and types

of gape in which they occur) in the energy range
studied are indicated on the irreducible triangle in

Fig. 6 and listed in Table I. Note that only the A
and B states have a sizeable range in k space,
nearly covering the zone, and each exists in a sin-
gle absolute energy gap. However, states like C
and D require the overlap of (the energy ranges of)
two gaps, and have rather limited ranges in P

space, while the E state requires the overlap of
three gaps and has an even more limited range in
k space. States like F and G exist only along sym-
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FIG. 6. Regions of existence and labeling of the seven
types of surface states in the irreducible two-dimen-
sional Brillouin zone.

metry lines, since they achieve stability in spite
of the Presence of a band of propagating Bloch
states at the same energy by the vanishing of the
interaction of the surface state with that Bloch
state; t" has the more limited range in 0 since it
requires the overlap of two energy gaps.

It is of interest to note that the A and 8 states
appear to be continuously connected, even though
they exist in different types of energy gap (A in

edge gaps, B in inner gaps). This continuity can
be understood from. the band edge plot in Fig. 5(b),

Im(kz) Im(k, } Im(k, )

FIG. 7. Perspective plots of the complex band struc-
ture at a sequence of points along the I'X line going from
the regionA. to the region B.

which shows that although the gap become's very
narrow, it never closes completely, and the sur-
face state in the gap appears to thread its way con-
tinuously between A and p regions without disap-
pearing. " At the narrowest part of the gap, the
surface state attenuates very slowly, as we shall
see in Fig. 8, and is far from localized'.

If we move in the Brillouin zone from the A re-
gion to the 8 region, a complicated sequence of

I

TABLE I. Classification and location of the surface states of Al(001) above the muffin-tin zero.

Label
Nature of

energy gap
Symmetry
required ~

Range in basic
triangle of

Brillouin zone

Range in energy
(in eV above the
muffin-tin zero)

Relevant figur es
and comments

D

Edge
Inner

Two edge

Two inner

Two edge
and
one inner

One edge
then
one inner

One edge
and
one inner

No
No

No

No

No

Yes

0 ~ k„,k~~ 0,5

0.97 k„1.00,
0 ~k &0.5

k„=1.00,
0.5 ~ k ~1.00

k„=1.00

0.59 k~ 0.66,
0.47 k„=k~ ~ 0.92

0.76( k„=k &0.78

5.8 Eg 7.7
3.6~~ Eg ~ 7.0

9 7~ Ec~11 0

7.9~ E~~ 10.8

11.3~ E~~ 11.9

7.1 Ep 8.0

10.8- Ec 11 0

4(a), 4(b), 5(a), 5(b)
4(b), 4(c), 5(b), 5(c)

continuous with &
4(c), 5(c)

long thin area in
k near k„=1

4(c), 5 (b), 5(c)
continuous with C
long, very thin area
in k near k„=l

4(c) (seventh plot), 5(c)
small area in k
near k„'=1

4(a), 5(a)
only along a symmetry
line in k

4(a) (between plots 8
and 9) symmetry line,
small range
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transformations of the bands takes place as the
band gap at the zone boundary containing the A
state is narrowed by the movement of another band
across, it and converted into a band gap inside the
zone. These transformations, are made easier to
follow by studying the behavior of the entire real
lines, of which the bands are segments, in the
space where coordinates are E and the real and

imaginary parts of k, . In Fig. 7 we give a sequence
of perspective plots of two real lines, i.e., of the
complex band structure at a sequence of points on
the I'X line (k, =0), which cross from the A region
to the 8 region. The real lines, which run contin-
uously from E =-~ to E =+~, are made up of seg-
ments in the E-Re(k, ) plane which form the usual
energy bands, and connecting segments. in- the
E-Im(k, ) plane, as well as space curves Ishown
dotted in Figs. V(d)-V(f)]; this curve finally be-
came a real line. connecting band edges inside the
zone in Fig. V(e). This sequence exhibits the way
in which an edge gap is transformed into an inner
gap in a prototype situation in which a band moves
across the edge gap. formed by two other bands,
'while continuity of real lines is preserved through-
out. The behavior in Figs. V and 5(b) is in contrast
to the behavior shown in Fig. 5(a), where the mov-
ing band does not interact with the bands -forming

' the-edge gap, hence cuts off the: gap sharply and-
completely as A- states turn into E states. How-
ever, later, the nonabsolute gap in which the I'
state exists is crossed by another, interacting,
band and the gap is pulled away from the zone edge
as in the A to B-transformation.

Further insight into the behavior of a surface
state as it transforms from type A to type B is
provided by examining the decay factor of the sur-
face state, which we define as the relative decrease
in intensity of the most slowly attenuat&ng Bloch
wave component of the surface state after one lat-
tice spacing (distance —,a). These decay factors
are plotted in Fig. 8 along the I'X symmetry line.
The plot shows that at the edge of the A states
(k„—= 0.5) the attenuation rate becomes very small
(decay factor very near unity). A second important
slowly decaying component is added to the first in
this region and the two components merge with a
value of about 0.8 near the point at which the lower
band edge pulls away from the zone edge.
. AlthoughtheA. states appear to go continuously
into the B states, they can be distinguished in gen-
eral by the type of gap in which each exists —edge
or inner —as in done above. However, this dis-
tinction does not provide a sharp line. of separation
on the k plane, since the separation takes place
over a range in k as first one band edge and then,
at a different k, the other band edge pulls away
from the edge of the zone. The transformation

l.0

0.7-

I I I I I I I
'

I I

049 0.50 0.5I 052 0.55 0.54 0.55 0.56 0.57 058
"x

FIG. 8. Decay factor af the surface state A and B
along the 1"X line.

from type A state to type B can be arbitrarily
chosen as the point where one or the other band.
edge pulls away into the interior, or where the en-
ergy gap is narrowest, but the sharpest criterion
appears to be the point of merger of two attenuating
waves to a single (degenerate) attenuating wave.
This merger occurs when the surface state is at an
energy at which the real line starts into the E-
Re(k, ) plane, i.e., when the relevant part of the

gap, the part containing the surface state, is an in-
ner type gap. This point is shown in Fig. 8 at k„
= 0.54.

These results constitute an exhaustive survey of
the entire Brillouin zone for surface states, a sur-
vey made pqssible by the construction of the band
structures at a dense mesh of points in the zone.
All absolute gaps can then be located in the energy
range surveyed, including cases in which such
gaps open and close between mesh points (e.g. , the
G states), since the mesh points are closely spaced
enough to follow the changes by continuity. Surface
states have been found in all absolute gaps both
edge and inner type, and in aI1 nonabsolute gaps,
both edge and inner type, which are cut off by a
band which is noninteracting with the gap bands due
to symmetry —with one exception: at k„,k,
=1.0, 1.0, no surface state was found in an inner
gap cut off by a noninteraeting band, although al- '

lowed. Thus the results are consistent with
Shockley's work, "which predicts the existence of
a surface state inside -an edge gap, provided that
the matrix element responsible for the gay has the
right sign, and also with Forstmann's work, "
which predicts the existence of a surface state in
inner gaps provided that the gap is due to an inter-
action not present in the surface barrier, and that
the transition region of the potential is an abrupt
step at one of the mirror planes of the crystal.

It is useful to compare our results on Al(001) to
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those obtained by Caruthers, Kleinman, and Al-
ldredge9 (CKA) with a different method (one which
finds thin-film eigenvalues}, and a different poten-
tial (one derived from a bulk pseudopotential mod-
ified by a transition potential to vacuum based on
the jellium work}. They found the gaps along the
symmetry lines and list a few surface states at I',
X, and M. The positions of the gaps along the
I'M, IVIX, and XI' lines of the two-dimensional
zones are very similar in the two calculations.
However, on MJ, the gap E is missing in CKA.
T he surface states found at I' and & are in agree-
ment, but a surface state found by CKA at 1P does
not exist in our calculation. As shown in Fig. 4(a),
the surface states B and D have vanished at M as a
result of the closing of their respective gaps. How-

ever, there is still the possibility of a surface
state about 8 eV above the muffin-tin zero in a
nonabsolute gap (the gap is closed by two @loch
waves which do not mix with the bands forming the
gap}. It is possible that a change in the surface
potential would produce a surface state in this gap,
which would become a surface resonance around
the M point (outside the I'M line).

V. DISTRIBUTION OF SURFACE STA'fFS

In Sec. IV, we have been concerned with survey-
ing, classifying and discussing the relations among
the surface states on Al(001). Now we put together
all the individual results to give a quantitative de-
scription of the distribution of these surface states.
The most numerous states are the A, and B states,
which together almost cover the Brillouin zone,
hence we focus attention on them, but also give
some results on the C states. A comprehensive
view of the distribution of A and B states in k
space is provided by the contour lines of constant
surface-state energy in the irreducible triangle in
Fig. 9. Note the following features of these con-
tour lines, which correspond to features of the
density of states in energy to be given later:

(i) the minimum at (k„, k, ) =(1,0), E, =3.564 eV;
(ii) the (local) minimum at (k„,k„) =(0, 0), E,

=5.718 eV;
(iii) the saddle point at (k„k„)= (0.496, 0), E,

=6.715 eV.
(iv) the maximum near (k„,k„)= (0.5, 0.5), E„

=7.6 eV;
(v) the cutting off of the states in the vicinity of

(k„k,) = (1, 1) produced by the closing of the 8-
state eriergy gap, so that the maximum point is not
attained.

A more compact view of the distribution of sur-
face states than the contour line plots is provided
by the density of states in energy as a function of
energy. We calculate this function using a modifi-

f' X

FIG. 9. Contour lines of constant surface-state energy
in the irreducible two-dimensional Brillouin zone.
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cation of the Gilat-Raubenheimer method" based
on triangular cells, in each of which the linearity
of E,(k„,k„) is assumed. The method is simple and

Qexible, since additional triangles are readily in-
troduced in regions where E, varies more rapidly.
The procedure used by Hoffstein" appears to be
very similar, but he does not give any details or
specific formulas, so that we have put these form-
ulas into Appendix A for reference.

The results obtained for the density of A states
p„, the density of P states p~, and for their com-
bined contributions by means of the triangular
Gila(-Baubenheimer method using about 150 tri-
angles in each region, are shown in Fig. 10. For
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convenience in relating the contour lines to the
density of states, we give in Appendix B a sum-
mary of the general relationships between level
lines of a function of two coordinates and the den-
sity of the area in that function (i.e., area per unit
change in the function value). Note first the over-
all flatness of both the A. and 8 state densities,
which is related to the nearly parabolic dispersion
curves of E, against k that we see along symmetry
lines in Figs. 5(a) and 5(b). Thus when E is a
quadratic function of A„and Q„ in the vicinity of a
maximum or minimum point, the general formulas
(B4) and (B5) show that p(E) is linear in E, starting
from a finite jump at the maximum or minimum
point. The discontinuities in p„at E =3.56 and p~
at F = 5.72 eV correspond to the minima noted in
features (i) and (ii) above. The logarithmic singu-
larity in p„at E =6.715 corresponds to the saddle
point noted in feature (iii}, in accordance with
(86). Finally, the gradual falloff of ps on the
high-energy side corresponds to the cutoff of the
maximum point noted in feature (v), but the gradual
falloffof p„, even though the maximum of feature
(iv) is attained, arises from the special shape of
the contour lines as they approach the minimum.
Essentially the contour lines each have a cusp and

the maximum lies on the line of cusps (i.e., is the
top of a sharp ridge rather than a rounded hill). It
is easy to see from (Bl}and (B2) that if E is linear
in k„and k„as the maximum E is approached,
then o„(E) is linear in E —E . Finally, we note
that our results are analogous to the results of
Hoffstein, ".who uses a very simple pseudopoten-
tial. However, Hoffstein does not obtain a singu-
larity, which could be explained by a small differ-
ence in the states given by his potential.

VI. VARIATION OF SURFACE STATES WITH THE

SURFACE POTENTIAL

Calculations of the variation in energy of the sur-
face states with the height and position of the step
barrier have been performed for some points of
the Brillouin zone.

In Fig. 11, we show results for the surface state
energy at the I' point. When the step barrier moves
away from the last layer of atoms, the energy of
the surface state decreases and vice versa. This
effect has a simple physical interpretation, i.e.,
when the barrier moves away from the last layer
of atoms, the wave function needs to vary less ra-
pidly in order to match the decaying wave in vacu-
um and therefore the energy of the surface state
is lowered. Similarly, if we increase the height of
the barrier the energy of the surface state in-
creases.

In Fig. 11, we also compare our results to the

&~ E (eV)
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FIG. 11. Energy of the surface state A. at the I' point
as a function of the step barrier position relative to the
last layer of nuclei. The dotted line corresponds to re-
sults using a nearly-free-electron approximation. 1n

2x/a, x is the position of the sharp step with respect to
the position of the last layer of atoms.

nearly-free-electron results of Velicky et al.'

e, = (b, /o. (cos[gx, —2cos '(-,'gV, '~'}],

provided

0 &gxo —2cos '(-, gV, ' ') &s,

where e, measures the surface state energy from
the middle of the gap, is the width of the gap
(0.96 eV at the I" point), xo is the position of the
barrier with respect to the position of the last lay-
er of atoms, t/', is the distance in energy from the
bottom of the lower nearly-free-electron band to
the top of the potential barrier (approximated here
as 15.18 eV), and g is equal to 2s/a. It is clear
that this formula gives a fair approximation of our
results.

In addition, calculations have been made using a
smooth potential barrier of the form V=-,' V, [tanh(z/
2f)+I]. The exact solution of the Schrodinger
equation for such a potential has been given by
Eckart." In order to solve our matching problem
we fit the Eckart wave function and its derivative
to the bulk wave function in the plane wave repre-
sentation at the sites of last layer of atoms. The
results for the I' point are shown in Fig. 12, where
the energy of the surface states is plotted against
t for several values of the distance between the in-
flexion point of the surface potential and the sites
of the last layer of atoms. Calculations made for
some other points' inside the Brillouin zone showed
very similar behavior.

If we compare the Eckart potential to the Al sur-
face potential as calculated by Lang and Kohn, " it
is seen that a good fit cannot be obtained because
the Lang-Kohn potential is very asymmetric. If the
position of the last layer of atoms is taken as half
the layer spacing before the end of the continuum
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tices of the triangle and X„g, and A., are bari-
centric coordinates for points of the triangle so
that
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FIG. l2. Energy of the surface state A at the l" point
as function of the width t of the Eckart potential for
several positions of the step barrier relative to the last
layer of nuclei.

of positive charge, the best fit of the lower part of
the two potentials is achieved for t=0.574 a.u.
(i.e. , f =0.15a/2) and the position of the inflexion
point of the potential is at ~=2.46 a.u. (i.e. ,
0.644a/2) from the last layer sites. An Eckart
potential with these parameters would produce a
slight shift in energy of the surface states. How-
ever, the dispersion relation of the surface states
is largely imposed by the gaps (i.e. , by the bulk
potential) and therefore the effect produced in the
density of states would be a shift of the energy
scale rather than a change of shape.

APPENDIX A: CALCULATION OF THE DENSITY OF STATES

E(k) = y,E, + A.EE, + A.,E, , (A1)

where E„E„and E, are the energies at the ver-

A simplified version of the Gilat-Raubenheimer
'method based on triangles was used to calculate
the density of states. Our procedure is the two-di-
mentional analog of the method of Lehmann and
Taut." A similar procedure was used by Hof-
fstein. » The surface Brillouin zone was divided
into a mesh of small triangles of arbitrary shape
and a contribution to the density of states as a
function of energy was calculated from each tri-
angle. A linear fit to the dispersion of surface
state energy with k was used within each triangle.
The results obtained from all the triangles were
summed to get a result for the complete density of
states. Those triangles in which the linear fit
proved to be inaccurate were divided into smaller
triangles and the result resummed until a reason-
able approximation to the density of states was ob-
tained.

If the surface state energy varies linearly across
a triangle it can be represented by

p(E)= ff ))(E(k) —E) d'k,
triangle

which can be easily evaluated by choosing two of
the A. 's as independent coordinates. One has

p(E)=2 f dk, f dk

X 6(A.,(E, —EE)+82(EE —E )

+E, —E),

where A is the area of the triangle, which gives

E &EE, p(E) =0,

EE = E & E2, p(E) = 2g E, -E
2 3 1 3

E, &E &E, , p(E) = 2S E-E,
(A5)

E, &E, p(E) =0;

thus a single triangle gives the contribution to the
density of states shown in Fig. 13.

ky

tkx2 ky~)

(k alkyl)

FIG. 13. Elementary triangle in the two-dimensional
Brillouin zone and its contribution to the density of sur-
face states as a function of energy.

where k„k„and k, are the k coordinates of the
vertices of the triangle. %e shall assume for sim-
plicity that the labeling of the vertices of the tri-
angle is chosen so that E,CE2 &E3. The contribu-
tion of this triangle to the density of states is given
by
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APPENDIX 8: LEVEL LINES OF SURFACE ENERGY AND

THE TWO-DIMENSIONAL DENSITY OF STATES

dg
A|2(E) = bk'(8, E)

For simplicity consider only sectors in which E
is entirely )E0 or entirely &E0. Then the contribu-
tion of the level line at E within the sector to the
density of states at E is

a&112(E)

p,.(E) =
(

&A„(E)
7 0 ~

where 2/(2w)' is the factor for counting states in k

space, including a factor of 2 for spin. In addition
to the sectoral contribution to the total density of
states pIE), there will be external contributions
from the rest of this contour line or separate con-
tour lines at the same energy, which will be des-
ignated p, (E). The results of applying (82) to (83)
to five cases of interest will now be tabulated.

(i) Minimum point k, E, full range sector 8,
=0, 8, =2g

(81}

(82}

(83)

6E =5k'(a' cos'8+b' sin'8)

+5k'f(8)+O(bk'), E -E. ,

dg

Some convenient relations are obtained below
between the level lines along which a function in
two dimensions is constant, such as those shown in

Fig. 9 for the A- and B-type surface-state energy
in the two-dimensional Brillouin zone, and the
two-dimensional density of states or density of
function values, such as shown for the surface
state energy in Fig. 10. These results make ap-
parent the connection between slow function varia-
tion (shown by widely separated level lines) at min-

ima, maxima, and to an even greater degree at
saddle points and the singularities in the density
function given by Van Hove. '4

Let the equation of a level line of energy E be
given with respect to a reference point k0 energy E0,
by 6E(bk, 8) where 6E =E —E„bk = ik —k, i, and 8

is the polar angle of k —k0 with respect to the k„
axis. Then the (positive) area of the angular sec-
tor around k0 from 8, to 8, and bounded by the level
line is

p, (E)+ ,'wab+O-(5E), E & E„
p(E) =

p,(E), E )E„. (85)

(iii) Saddle point, k„E„angular range contains
four sectors:

6E = (bk)'(a' cos'8 —b' sin'8)+5k'f (8)+O(bk ) .
The sectors, in counterclockwise order, are

sector 1: E Es& gl gB2 & 82 . gg3

sector 2: E)E, , 8, =8~~, 8, =8»',

gj =8B6 82 =gg7i

sector 4: E & E, , gy 8 g8 82 8BI,

where all the 8, and 8, values are polar angles of
successive intersection points of the level line 5E
with a cell boundary at radius M~„

6E = (bkw, .)'(a' cos'8s, —b' sin'8s, .), i = 1-8 .

Then, to first order in 5E,

a/b —6E(a'+ 'b) /2a' bbk, s2, i=i, 2, 5, 6
tang„=

a/b+5E(a'+-b )/2ab'bka, , i=3, 4, V, 8,
A, (E)+X,(E)

883 e87 dg
2 2 COS28 + $2 Sin2g

682 6g6

At E„, p, (E) will not in general show sharp behav-
ior, so that a discontinuous upward jump in p(E)
takes place at E, followed by a rise (or fall) lin-
ear in 6E. The term bk'f(8) in the relation between
5E and bk, where f(8) is made up of terms like
cos'8, cos'8 sing, etc. . . . , if E is analytic at k„
cancel out in the integration ov'er 8 from 0 to 2n,
and the term in 6k' provides the term of order 5E2

in A„(E).
(ii) Maximum point, k„, E„, full-range sector

8 =0 g =2m.

6E =-(6k)'(a' cos'8+ b' sin'8)

+ bk'f(8)+O(bk4), E & E„,
2I dgX„(E)=-, +, . , +O(5E')a2 cos'g+ 52 sin'g

= -w 5E/ah +O (5E'),

hence, using (83),

= w 6E/ah+ O (bE' ),
p (E)

p(E) =

p, (E)+ ,'wab+O(5E), E)E„-.
(84)

lnlbE I+C&~+O(5E'), E &E, ,2ab

where Q» is a constant depending on g, 5 and

5k~i, 6k q3.
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Similarly

A2 (E)+ A~(E) = —(bE/2ab) ln [ bE i+ C24 +0 (bE ),

p(E) = p, (E) —On ( bE i)/4m'ab+ O(bE),

E & E, and E & E, . (B6)

(iv) Ordinary point k„,E„sector g, -g, (on one
side of the E, level line):

bE = 5k(acosg- b sing)+ O(bk'), .

bE 2 dg

1

where for definiteness take

92 0 I 0

tan '(a/b), a/b &0
(90 =

tan '(a/b)+w, a/b «.
Using the principal value of tan '

A(E) = b[E'/2(a'+ b')] [cot(8, —9 ) —cot(8, —8 )]
+O(bE' )

p(E) =p, (E)+ [bE/(a'+b')»']
&& (cot(g, —8, ) —cot(g, —9,)]+p(bE' ),

which agrees with the linear variation of p(E)
in (A5) and Fig. 13.

(v) Ordinary point k„E„ full angular range con-
tains two sectors of size g one for E)E, and one
for E ( Eo.

bE = bk(a cosg —b sing)

= bk(a'+ b')'~' sin(80 —g) .

82 = (90 - e2, 9, = (90 —m + q,

(then E & Eo for e„e, &0). Consider the limit of
p(E) in case (iv) at.e„e,-0. Introduce boundary
values 6k», 5k», where the level line 6E crosses
the boundary of the cell enclosing ko,

bE = bj'gs, (a'+b')'i' sine,

= bk»(a'+ b')'i' sine, .
Then, since cote-1/sine as e-0,

p(E) = ps(E) + ( bE /( a' +b') 2v' ]( cote, +cote, )

=- ps(E) + (bus, + bk~)/(a'+ b')'i'2w', (B8)

where 6k»+ 6k» is essentially the diameter of the
cell along the level line through k„and (a'+ b')' '
= fi,E

( a.t k, .
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